
Priesvitka 1

Lecture 10

Neural networks

Priesvitka 2

Some stimulating concepts from the neurobiology

1. Human brain - a top result (the most complex
system that we know) of evolutionary process since
the big bang.

Priesvitka 3

2. The human brain is composed of 1011 neural cells
- neurons, that are highly interconnected.

Priesvitka 4

3. The neuron contains many (few hundreds) input
as well as output connections

Priesvitka 5

4. Each neurons has an activity (roughly, zero or
one). Its inner potential is determined as a weighted
summation of input activities of other neurons that
are in-connected with the neuron.

If the potential is greater than a threshold value,
then the neuron starts to fire (it has a nonzero
activity) signals to other neurons that are out-
connected with the neuron.

� ξ
ξ

ξ
1 6

1 6

1 6
=

>

≤

%
&
K

'K

� �
� � transfer function

Priesvitka 6

5. Neurons are classified as follows:
(1) Input neurons, they get

 input information for the brain.
(2) Hidden neurons, they process

 input information onto output
 information

(3) Output neurons, they send
 output information to motor
 centers.

Priesvitka 7

Artificial neural networks (NN)

Basic stimulus for their constructions are gained
from the neurobiology (see previous transparencies).

Many types of NNs are suggested. We will discuss
here only the so-called feed-forward NNs that are
trained by the back-propagation method
(Rumelhart et al. 1986). This type of NNs, widely
used in computer science and many branches of
science and technology, belongs to the most popular
paradigms of NN theory.

Priesvitka 8

Definition of NN

Let G=(V,E) be an acyclic oriented graph

Vertex set V is composed of N vertices (neurons)

{ }1 2 NV v ,v ,...,v=

Edge set E is composed of M oriented edges
(connections)

{ }1 2 ME e ,e ,...,e=

Each connection e∈E is interpreted as an ordered
pair (v,v') of two neurons from V

Priesvitka 9

Examples of oriented graphs

Neurons of acyclic graph are uniquely classified as
follows:

I H OV V V V= ∪ ∪

VI input neurons that are incident only with
 outgoing connections
VH hidden neurons that are simultaneously
 incident with outgoing and incoming
 connections
VO output neurons that are incident only with
 incoming connections

Priesvitka 10

Neurons of acyclic graphs are divided onto the so-
called layers

1 2 1

1

2 1

t t

I

H t

O t

V L L ... L L

V L

V L ... L

V L

−

−

= ∪ ∪ ∪ ∪
=
= ∪ ∪
=

Priesvitka 11

Neurons and connections of the graph are evaluated
by real numbers:

(1) Each connection e=(vi,vj) is evaluated by
 the weight coefficient wji .

(2) Each hidden or output neuron vi is
 evaluated by the threshold coefficient ϑi

 and the activity xi

Priesvitka 12

Activities are determined by

i ij j i
j

x t w x

= + ϑ

∑

where t(ξ) is the so-called transfer function
specified, in general, by

(1) t : R→(0,1) is continuos and monotonous-
 ly increasing function, satisfying

(2) asymptotic conditions t(-∞)=0 and t(∞)=1.

Priesvitka 13

Sigmoid realization of the transfer function

() 1
1

t
eα − α ξξ =

+

()
()

()
()

1 0

lim 1 2 0

0 0

tαα→∞

 ξ >

ξ = ξ =
 ξ <

Priesvitka 14

 Why feed-forward neural
 networks? The activities
 of hidden and output
 activities are evaluated
 recurrently going bottom-
 up through all layers.

Step 1 (L2)
x4=t(w41x1+ϑ4)

x5=t(w51x1+w52x2+w53x3+ϑ5)

Step 2 (L3)
x6=t(w65x5+w63x3+ϑ6)
x7=t(w74x4+w75x5+ϑ7)

Step 3 (L4)
x8=t(w84x4+w87x7+ϑ8)
x9=t(w97x7+w96x6+ϑ9)

Important note: This recurrent feed-forward
approach is applicable only for NNs that are
represented by acyclic oriented graphs

Priesvitka 15

Formal generalization

NN may be understood as a mapping of input
activities onto output activities, hidden activities
are considered as auxiliary results that should not be
explicitly displayed

I H O= ⊕ ⊕x x x x
()O IG ; ,=x x w ϑϑ

()0 1 MN
I OR , ,∈ ∈x x

() ()0 1 MNG , : R ,→w ϑϑ

Priesvitka 16

Classification of objects and
regression analysis (general comment)

Let us introduce a set of objects O={o1,o2,....}.

Each object of O is determined by the so-called
descriptor x(o) and property y(o).

The descriptor and property entities are mutually
related by a hypothetical function

y=F(x)

In most cases of interest, an analytical form of this
function F is unknown.

Regression analysis offers a numerical tool how to
model the function F. We introduce the so-called
training set (regression table)

Atrain={x/y, x'/y',...}

composed of pairs of the descriptor and the required
property

Priesvitka 17

Goal: To find optimal parameters of the so-called
model function G(x,w) (where w denotes its
parameters) such that it provides properties that are
closely related to the required ones (determined by
y=F(x))

() ()()21
2

train/ A

E G ,
∈

= −∑
x y

w x w y

Optimal values of the parameters w are determined
by

()arg min
W

E
∈

=
w

w w

Objective function E(w) has the global minimum at
w .

Common believe: It is expected that the so-called
adapted model function ()G ,x w well
approximates the hypothetical function F(x) outside
the training set

() ()F G ,≈x x w

Priesvitka 18

Adaptation process (learning)
of neural networks

The main idea is the same as in the regression
analysis. The model function G is constructed so that
it corresponds to a preselected architecture of the
used NN (see previous transparencies), we get
G(x;w,ϑϑ).

Input activities - descriptors of objects that are
classified by the NN

Output activities - properties of objects

The training set Atrain is composed of pairs of the
input activity and the required output activity

{ }train I O ,req I O ,reqA / , / ,...′ ′= x x x x

Priesvitka 19

Objective function is determined by

() ()()21
2

I req ,O train

I req ,O
/ A

E , G ; ,
∈

= −∑
x x

w x w xϑϑ ϑϑ

Adaptation process of NN consists in looking for the
weight and threshold coefficients that minimize the
objective function E(w,ϑ)�

()
()

()
w

arg min
,

, E ,=w w
ϑϑ

ϑϑ ϑϑ

How to realize this minimization problem? Simple
gradient method (called the steepest descent
method) is usually applied. The weight and
threshold coefficients are recurrently updated by

() ()

() ()

1

1

k k
ij ij

ij

k k
i i

i

E
w w

w

E

+

+

∂= − λ
∂

∂ϑ = ϑ − λ
∂ϑ

where λ is a small positive number called the
learning rate.

Priesvitka 20

Back-propagation method
(calculation of grad E)

It is assumed that the objective function E is
determined with respect to a single pair of input and
required output activity xI/xreq,O

() ()()21
2 I req ,OE , G ; ,= −w x w xϑϑ ϑϑ

Applying standard rules for evaluation of partial
derivatives of composed functions (chain rule),
partial derivatives of the above specified E are

j
ij i

E E
x

w
∂ ∂=
∂ ∂ϑ

()i i ki
ki k

E E
t g w

 ∂ ∂′= ξ + ∂ϑ ∂ϑ
∑

where t'(ξ)=t(ξ)[1-t(ξ)] is the first derivative of the
transfer function, and

() ()
()

for V

0 for V
i i ,req O

i

O

x x i
g

i

 − ∈=
∉

Priesvitka 21

 Why back-propagation
 method? The evaluation of
 the grad E is performed in
 the opposite direction of
 the evaluation of activities.

Step 1 (L4)

 ()()8 8 8 8
8

1 req ,

E
x x x x

∂ = − −
∂ϑ

 ()()9 9 9 9
9

1 req ,

E
x x x x

∂ = − −
∂ϑ

Step 2 (L3)

()7 7 87 97
7 8 9

1
E E E

x x w w
 ∂ ∂ ∂= − + ∂ϑ ∂ϑ ∂ϑ

()6 6 96
6 9

1
E E

x x w
 ∂ ∂= − ∂ϑ ∂ϑ

Step 3 (L2)

()4 4 84 74
4 8 7

1
E E E

x x w w
 ∂ ∂ ∂= − + ∂ϑ ∂ϑ ∂ϑ

()5 5 75 65
5 7 6

1
E E E

x x w w
 ∂ ∂ ∂= − + ∂ϑ ∂ϑ ∂ϑ

Priesvitka 22

Adaptation phase

Weight and threshold coefficients are recurrently
updated such that the best match between calculated
and required output activities is achieved

Active phase

Weight and threshold coefficients are already
"tuned" by the adaptation process, input activities
are mapped onto output activities

Priesvitka 23

Neural networks are universal approximator

Let F be a function, which maps space RN onto open
interval (0,1)

()0 1NF : R ,→
Training set (regression table) is composed of r
points, Atrain={xi/F(xi);i=1,2,..,r}

Theorem (Hoecht-Nielsen, Hornik). For
each ε>0 there exists a 3-layer NN

 represented by G(x;w,ϑϑ), such that

() ()((
1

r

i i
i

F G ; ,
=

− < ε∑ x x w ϑϑ

Note: This theorem is only an existence theorem, it
does not specify the number of hidden neurons and
actual values of weight and threshold coefficients.

Priesvitka 24

The above theorem can be simply generalized for
more general functions

()0 1 MNF : R ,→

Then the corresponding NN is composed of N input
neurons, q hidden neurons, and M output neurons.

The theorem is of the great importance for NN
theory. It states that NNs may be considered as a
universal model-free regression tool. Under the
term "model-free" it is understood that there is not
necessary to specify an analytical form of the model
function, it is automatically constructed according to
the chosen architecture of the used NN. In other
words, 3-layer NNs are the universal
approximator of functions.

Priesvitka 25

NNs as the classifier
and/or predictor

An ability of NNs to classify objects and/or to
predict object properties is the main subject of NN
theory and its applications.

Let us consider two sets:
(1) Training set { }train I req ,OA /= x x

(2) Test set { }test I req ,OA /= x x

Both these sets are composed of different pairs of
input activities (descriptors) and required output
activities (required properties). The NN is adapted
with respect to the training set Atrain, an efficiency of
the adapted NN to correctly predict/classify is tested
by objects from the test set Atest . This approach is
based on an assumption (or believe) that a "well"
adapted NN is also able to "well" predict/ classify.

Priesvitka 26

How to realize a decomposition of A onto Atran and
Atest ?

train testA A A= ∪
Training set Atrain should contain only those objects
of A that are good "representatives", i.e. it is
expected that each object of Atest has at least one
"counterpart" in Atrain.

How to adapt the NN for a given decompo-sition of
A onto Atrain and Atest ?

() ()()21
2

train

train I req ,O
A

E , G ; ,= −∑w x w xϑϑ ϑϑ

() ()()21
2

test

test I req ,O
A

E , G ; ,= −∑w x w xϑϑ ϑϑ

The adaptation process is performed with respect to
Atrain, i.e. Etrain is minimized

Priesvitka 27

If we plot values of Etrain and Etest vs. numbers of
iteration steps and hidden neurons, then we get the
following two diagrams

Conclusion: There exist optimal numbers of
iteration steps and hidden neurons, where the
prediction ability of objects from the test set is the
best. Increasing these numbers, then the prediction
ability is worse. This observation is called the
overtraining (overfitting) of NNs.

Priesvitka 28

Illustrative examples

1. Boolean function XOR (playing an important
role in the history of NNs)

XOR = eXclusive OR (verbally, either...or...)

Example: Symmetric difference of two sets is
determined by

() ()A B A B \ A B− = ∪ ∩

It means than an element of the symmetric difference
either belongs to A or B,

{ }xorA B x;x A x B− = ∈ ∈

x1 x2 x1 or x2

0 0 0
0 1 1
1 0 1
1 1 1

x1 x2 x1 xor x2

0 0 0
0 1 1
1 0 1
1 1 0

Priesvitka 29

 XOR is considered as a Boolean function

y=F(x1,x2)

Goal: We look for such NN, which simulates this
Boolean function

Simplest NNs without hidden neurons are
perceptrons

Training set is determined as follows:

� ���	��
�
= � � � � � � � � � � � �� � � � � � �0 5 0 5 0 5 0 5< A

Priesvitka 30

Output activity y is determined by

()1 1 2 2y t w x w x= + + ϑ

The activity is closely related to one if argument
(potential) of the transfer function is sufficiently
great (Q) . In the opposite case, if the argument is
sufficiently small (-Q), then the activity is closely
related to zero.

For single objects of Atrain we get

()()
()()
()()
()()

2

1

1 2

0 0 0

0 1 1

1 0 1

11 0

Q , /

w Q , /

w Q , /

w w Q , /

ϑ = −

ϑ + =

ϑ + =

ϑ + + = −

where t(Q)=1-ε≈1 and t(-Q)=ε≈0 , where ε is a small
positive number. The above system does not have a
solution (e.g. subtracting from the fourth equation
the second and third equation we get ϑ=3Q, while
the first equation is ϑ=Q).

Priesvitka 31

Conclusion: Simple percetron is not able to solve
correctly Boolean function XOR.
How to interpret this result? Let us consider the
equation

1 1 2 2 0w x w x+ + ϑ =

It defines a straightline in plane x1-x2 , which divides
plane onto two halfplanes. If a point (x1,x2) is placed
above (below) the straightline, then

()1 1 2 2 0 point is above straightlinew x w x+ + ϑ >
()1 1 2 2 0 point is below straightlinew x w x+ + ϑ <

The corresponding activities of these two points are

Priesvitka 32

Conclusion: We say that objects of XOR problems
are not linearly separable. In general, perceptrons
(i.e. NNs without hidden neurons) correctly classify
only objects that are linearly separable.

From history of NN: In 1969 Minsky and Papert
published seminal book Perceptron. One of Minsky
and Papert's most discouraging results was that
perceptrons are not able to solve problems (e.g.
XOR) that are not linearly separable. What is very
interesting, they discussed hidden neurons as a way
how to overcome this serious drawback of
perceptrons, but did not present a solution to the
problem of how to adjust weight and threshold
coefficients. An answer to this question was
presented by Rumelhart et al. in 1986

Priesvitka 33

XOR problem is correctly interpreted by 3-layer NN
composed of two hidden neurons (Rumelhart et al.
1987)

Training set of XOR problem

� ���	����
= � � � � � � � � � � � �� � � � � � �0 5 0 5 0 5 0 5< A

Priesvitka 34

Table of activities for different objects

Hidden activities introduce new - internal
representation of objects that is already linearly
separable.

Conclusion: Hidden neurons in 3-layer NNs are
very important for the correct interpretation of
objects that are not linearly separable. Hidden
neurons produce the so-called internal
representation of objects, which is used by output
neurons as input and it is processed by percetron-like
approach to give correct results.

No. x1 x2 x3 x4 x5 xreq,5

1 0.00 0.00 0.96 0.08 0.06 0.00
2 0.00 1.00 1.00 0.89 0.95 1.00
3 1.00 0.00 0.06 0.00 0.94 1.00
4 1.00 1.00 0.96 0.07 0.05 0.00

Priesvitka 35

Conclusions
1. NNs with hidden neurons offer very robust and
effective numerical tool for prediction of properties
and/or classification of objects that are numerically
determined by descriptors.

2. Black-box character of NNs is often mentioned in
literature as the most serious drawback Recently,
this aspect of NNs is very intensively studied by NN
people. In particular, many different approaches how
to "extract" symbolic information from the adapted
NNs are suggested .

3. Adaptation process of NNs is usually slightly
lengthy. Other more effective possibilities of
optimization are studied, including stochastic
optimization methods (see Pospichal's part of this
series).

4. Implementation in C++ or Pascal is not very
complicated. One of the best ways how to actively
master NNs is to write a code of simple 3-layer NN.
Do it!

