Exam answers

(‘M1’ means
midterm problem 1.
Get it?)

HERE ARE sketches of solutions to the midterm and final exam problems.

M1 First we note that the recurrence has at most one solution: The addition
formula defines | ", f for all n when [} | is defined for all n, and it defines

IEI for all n when gI is given and Ik’Lj is defined for all n. Therefore if
f(n, k) is any function that satisfies the given recurrence equations, we must
have IL‘I = f(n, k) for all n and k.

Experimentation with small cases leads us to conjecture that

IU _ (L2/§J> [m odd or k even] .
[k/2]

Let f(n, k) be the right-hand side of this equation. Setting n = 0, we have
10/2]
[k/2]

Setting k = 0 clearly gives f(n,0) = 1. So our proof will be complete if we
can show that f(n, k) satisfies the addition formula. If n is odd then

f(0,k) = ( )[O odd or k even] = ( )[k even] = [k=0].

0
[k/2]

(=D*f(mn—1,k) +fn—1,k—1)

= (g v+ (o ) o
- (a

Lk/2J) = finb.

And if n is even we have
(=D)*¥fn—1,k) +f(n—1,k—1)
o Ln/ZJ—1) (Ln/ZJ—1)
() (@ sy

= (B:;;J) [k even] = f(n, k).

M2 (a) (Exercise 6.21 is similar.) Consider any sum a/b+ a’/b’ = a”/b"
where all three fractions are in lowest terms, and suppose that 2<\\b, 2K \b’,
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2%"\\b”. Then it’s not difficult to prove that k” = max(k, k') if k # k', while
k" <kifk=k"

The answer is |lgn|, since 1/21'8™ is the unique fraction in the sum
> v, 1/k = H,, whose denominator is divisible by this many 2s.

(b) In binary notation we have m = (x0f)z and n = («ly), for some
bit-strings «, 3, v, where B and 'y have the same length. Hence the highest
power of 2 that occurs in the fractions # +- 4 % occurs uniquely in the
term ]E where k = («10...0),. This power is 2l18(m®&n)],

(c) Clearly m = n is a solution for all n > 0. Otherwise we may assume
that m < n. Then m;ﬂ +-F % = 0 (mod 1), so the largest power of
2 dividing the denominator of the sum mLH + -+ % must be 2°. Hence
lg(m @ n)| = 0; hence m @& n = 1, and we must have n = m + 1, an odd
number. But % =0 (mod 1) iff n = 1. So the only solutions with m # n are
{m,n}=1{0,1}

M3 We have F, = (¢™ — $™)/v/5 and 2 ns12t/m = —In(1 —z); it follows

that the stated sum is 1/\/5 times

2 -

(S}
©

In(1—$/2)—In(1—¢/2) = In = 4In¢),

since2—d=2+¢ "'=¢%?and 2— ¢ = —dp 2. Thus C =4//5.

M4 This problem takes us on a guided tour of the book; at each step there’s
only one “obvious” thing to do. First, if p\m the sum reduces to zero since
mj modp = m?j modp = 0 for all j. Second, if pxm we can split the sum
into two parts and then replace both mj mod p and m?j mod p by j, because
these quantities run through the values 0 < j < p in some order. Third, we
can evaluate the sum

szgj <[];J)Hk - (J'[;l’/]]> <Hi+1 —h]/—]) , v =In(m+n)

using summation by parts and/or (6.70), since Hy = 0 and v is not an inte-
ger. Fourth, we can negate the upper index of @:::1‘) = 7(7_“"“) and then
use identity (3.4) to change ceiling to floor; the given sum has reduced to a

telescoping series

£ (|(5 )] - |(Ms?)

oj<p

_ K(E) (Hp — ﬁ))J  u— Mnfm )],

2n+1

Multiply this last result by [pXm] to get the general answer.
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M35 Assign new numbers as in 3.3. At time t, the second inspector is exam-
ining the building whose original number is the first element in the sequence

2tmod 2n+1), 2*tmod 2n+1), 23tmod (2n+1),

that is < n. The other numbers in this sequence are the new numbers assigned
to that building.

(a) When n =3m+1 and t = 2m+ 1, this sequence begins with 4m + 2,
then comes (8m+4) mod (6m+3) = 2m+1; the inspectors collide in building
2m+1. (b) When n =7m+ 3 and t = 6m + 3, the sequence begins

2m+6, (24m+12)mod (14m +7) = 10m +5,
(20m 4+ 10) mod (14m +7) = 6m + 3,

hence they collide in building 6m + 3. (Notice that both cases (a) and (b)
occur when n = 10.)

(c) In general suppose that t is the first element < n in the stated se-
quence, and suppose t is the kth element. Then k > 2, and the sequence must
have the form

n+l—u n+1-2u, 2n+1—4u, ..., 2n+1-=2"1y

where 2t =2n + 1 —u and 2n + 1 — 2% 'y = t. These equations imply that
u=2n+1)/(2 - 1) and t = (2! — 1)u. Hence there is at most one
such sequence, and it exists iff 2n + 1 is divisible by 2 — 1. (This argument
proves that the number of times the inspectors meet is exactly the number of
divisors of 2n + 1 that have the form 2% —1.)

Notice that if 2n + 1 is divisible by 2% — 1 and if p is a prime factor of k,
then 2n + 1 is divisible by 2P — 1. So it suffices to test cases when k is prime.
Finally, 2n+ 1 is divisible by 2P —1iff 2n = —1 (mod 2P — 1) iff n = 2P~1 -1
(mod 2P —1).

F1 (a) By induction it’s 1/x1x2...%y, since this induction hypothesis tells
us that the sub-sum when 7, = k is

Xk 1
X1X2 ... Xn (X1 - FXn)

k
(b) (Lier 21/%1) - (Liex 2n/%¥1) =Ly . knek 21 - - 20/ Xiy -+ X
which we know from (a) is
PI - Ry
k1,....kn€K m(n) km ka‘{’an )"'(Xk"l+...+xknn)
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o Z Z Ziry e Znﬁn
Ki,..., kn€K m(n) Xk (Xk] +Xk2)'”(Xk] ot )

Now set z; = --- =z, = z and divide by n!.
(c) Let K ={0,1,2,...} and xx = k!; equate coefficients of z™ in the
identity of part (b). (d) {T"}/m!, by (7.49).
F2 (a) Alice has flipped exactly k heads with probability (T)Z*m, and Bill  Courtship rituals

has flipped exactly k tails with probability (m”_‘k)Z*m. So ;)Qzer V‘;d inchis "
ribe of mathemati-

cians were

m
_ Z m m _ 2m most peculiar.
= k/\m—k m

which equals (—1)™(7!/?) by (5.37).

m

(b) According to (5.114) we have

1,2 (32
3 ( - )(nk— 1) ( X )

k<n+1

which can also be written (“’:I/ 2). Subtract 1 because the term for k = 0
should not be included.

(c) One way is to write (“J“T:/z) =(2n+1) (2:11) /2?" and apply Stirling’s
approximation to this formula. A slightly more difficult, but possibly more
instructive, way is to proceed directly as follows: We have

Inn+3)! = m+Nnn+3)—m+3I)+o+5n"+0Mn2);
Inn! = (n+3)mn—-n+o+5n'+0(n2);
Inn+3) =n+in'—gn2+0Mn3).

Hence In(n + %)! —Inn! = %lnn + %n_] + O(n~2). Taking the exponential
of both sides yields

(n+ 1)

y = n1/2+§n_1/2+0(n_3/2),

aresult that can also be obtained by using exercise 9.44 since [_11/ /22] = (1 éz) =

f%. Now divide by %! (see exercise 5.22), and get the answer:

2v/n/m—1+3/(4y/nn) + 0(n=3/2).

(d) Ptm =PiPm_1.
(e) Consider the random variable X;,, = [they shake after mth flip]. Now
X =Xi+---+ Xy, and we can proceed as in the derivation of (8.24).
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(f) We have
-1/2 (172
e E(L)m ()
T v = e () e

Il
N
3
\
-
N
N
7 N

1/2) _2(_”m<1/2>
m—1 m

(see the derivation of (5.39)), hence E(X?) =3 " _,(2—3Py).

(g) The variance is E(X?) — (EX)? = 2n — (“+11/2)2 — (nﬂ/z) + 2, so the
standard deviation is v/(2 —4/7t)n + O(1).

(h) In this case Py, = (_]1“/2)(—4pq)m, where q = 1 — p, so the average
number of handshakes approaches 3 | - Pm = (1 — 4pq)~1/?2 — 1 (by the
binomial theorem).

- 1-2P,,

F3 (a) We can assume that j = 0 and k = n — 1, because the variables

Let’s resist the X;j ..., Xk form a sequence of k —j + 1 consecutive natural disasters. Then the
temptation to numerator of Pr(xp > xn—1 > X1,...,Xn_2) 18
comment about
disasters. 1 o X 1 X 1
J dXoJ an71 J dX] . J anfz
0 0 0 0
1 X0 1 n—1
_ X 1
= J don dxn_1 xﬁj = J dxo =2 1~ .
0 0 0 n-— nmn-—1)

(b) Let p = 1/(1+¢€). The probability Py that xy is a world record equals
1 minus the probability that it isn’t a world record, namely

k—j+1y

o7 k p("z
1— =1- :
Zo(k—Hl)(k—i) Zi(iH)’

i= j=1

+1

and P(iz F=(1+ €)7(i§1] =1- (H])e + O(e?). Thus, for fixed k,

k

_q_ r 1 ) _ 1k 2
Py = 1 ]Z](],(H” 2e+0(€))—k+2e+0(e).

(c) And My (e) = H, + %n(n —1)e + O(e?). [Note: This asymptotic value
holds when € is very very small, but it can be misleading when € is larger
because the error term is really O(n*e?). Indeed, a closer analysis shows that
when (Inn)?/n? < e < 1 we have My, (e) = ©(ny/e ). To prove this, we can
break the sums into two ranges, using one estimate for j < \/m and another
estimate for the larger values of j (when p( 5 s getting small).]
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F4 (a) Let o be such that |S,, 1 —InS,| < «, and let B be any number
greater than «. We will use the fact that x < y—f implies e*** < e¥ —B ify
is sufficiently large, namely if e¥ > B/(1 —e* B). Take N large enough that
Sn 2 1n([3/(1 —e* B )) and define t by the relation Sy = eTT(N+t)—p. Then
we can prove by induction that S;, < e T (n+t)—p for all n > N. Similarly,
if we choose M and u so that Sy =eTT (M +u)+p = In(ﬁ/(eﬁ_"‘ — 1)),
then S, > e T (n+u) + B for all n > M. Hence

efTn+u) < S < eTT(n+1)

for all large n; QED.
(b) Let mA,, /InAyn—1 = An_2(1 — €,). The crude inequalities

m-—k\" m
- = < < mk
tell us that €,, > 0 and that

InA,—> In(1—An_2/An-1)
€n < -
In An,1 In An,1

1 An—Z
-1 0 (7) .
An_3(T—€n_1) An_1InAn

We can use bootstrapping to prove that €, is very small. First we prove
inductively that A, > 2™ and that A,, > 2A,,_; for all n > 2. Hence €, <
1/(An,3(1 — Gn,])) + O(1/n), hence €, = O(1/n), hence €,, = O(1/A,,_3).

(The estimate A, > 2™ is “a bit conservative,” but we need to start the
proof somewhere. In fact, the sequence continues after A; with

Az =6,

A3z = 15,

As = 5005,

As = 23197529289205687077586038842122627336104000,

and Ag ~ 8.2 x 10290699 is too large to write down here.)
Now we have

. lnAg =
InA, = (1nA1)HlnA = (In4) [J Ar—2(1 —ex)
k=2 k] k=2
CTTi—s Ax

Hk>n(] —€x)
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where C = (In4) [];—,(1 — ex). (This infinite product converges because we
know that ex = O(27¥); in fact it converges very rapidly, and we have C ~
0.12824.) Notice that InJ],. (1 —ex) =) ., In(1 —ex) = O(Zk>n €x) =
O(1/A,_2), hence

InA, = CAp...An2(1+0(1/An_2));
InlnA,, = InA, > +InlnA,,_1+0(1/A._2)
InA, 2+ 0O(nlogA, _3)
(InAn2)(1+0(M/An-4));
InlInAn_> +O0(n/An_4).

InlnlnA,,

Merry Christmas Now apply part (a) with S, =Inln A, /5.
and Happy New
Year to all!



