/* Author: Pate Williams (c) 1997 Exercise III.2.8 "You intercept the message "ZRIXXYVBMNPO", which you know resulted from a linear enciphering transformation of digraph-vectors in a 27-letter alphabet, in which A-Z have the numerical equivalents 0-25, and blank = 26. You have found that the most frequently occurring ciphertext digraphs are "PK" and "RZ". You guess that they correspond to the most frequently occurring plaintext digraphs in the 27-letter alphabet, namely "E " (E followed by blank) and "S ". Find the deciphering matrix, and read the message." -Neal Koblitz- See "A Course in Number Theory and Cryptography" by Neal Koblitz second edition page 78. */ #include #include #include long **create_square_matrix(long n) { long i, **matrix = calloc(n, sizeof(long *)); if (!matrix) { fprintf(stderr, "fatal error\ninsufficient memory\n"); fprintf(stderr, "from create_matrix\n"); exit(1); } for (i = 0; i < n; i++) { matrix[i] = calloc(n, sizeof(long)); if (!matrix[i]) { fprintf(stderr, "fatal error\ninsufficient memory\n"); fprintf(stderr, "from create_matrix\n"); exit(1); } } return matrix; } void delete_square_matrix(long n, long **matrix) { long i; for (i = 0; i < n; i++) free(matrix[i]); free(matrix); } void Euclid_extended(long a, long b, long *u, long *v, long *d) { long q, t1, t3, v1, v3; *u = 1, *d = a; if (b == 0) { *v = 0; return; } v1 = 0, v3 = b; #ifdef DEBUG printf("----------------------------------\n"); printf(" q t3 *u *d t1 v1 v3\n"); printf("----------------------------------\n"); #endif while (v3 != 0) { q = *d / v3; t3 = *d - q * v3; t1 = *u - q * v1; *u = v1, *d = v3; #ifdef DEBUG printf("%4ld %4ld %4ld ", q, t3, *u); printf("%4ld %4ld %4ld %4ld\n", *d, t1, v1, v3); #endif v1 = t1, v3 = t3; } *v = (*d - a * *u) / b; #ifdef DEBUG printf("----------------------------------\n"); #endif } long inv(long number, long modulus) { long d, u, v; Euclid_extended(number, modulus, &u, &v, &d); if (d == 1) return u; return 0; } void gaussian_elimination(long n, long p, long *b, long *x, long **m) { int found; long *d = calloc(n, sizeof(long)), ck, dj; long i, j, k, l, sum, t; if (!d) { fprintf(stderr, "fatal error\ninsufficient memory\n"); fprintf(stderr, "from gaussian_elimination\n"); exit(1); } for (j = 0; j < n; j++) { found = 0, i = j; while (!found && i < n) { found = m[i][j] != 0 && inv(m[i][j], p) != 0; if (!found) i++; } if (!found) { fprintf(stderr, "fatal error\nnon-invertible matrix\n"); fprintf(stderr, "from gaussian_elimination\n"); fprintf(stderr, "j = %ld\n", j); for (k = 0; k < n; k++) { for (l = 0; l < n; l++) printf("%2ld ", m[k][l]); printf("\n"); } exit(1); } if (i > j) { /* swap elements */ for (l = j; l < n; l++) t = m[i][l], m[i][l] = m[j][l], m[j][l] = t; t = b[i], b[i] = b[j], b[j] = t; } dj = d[j] = inv(m[j][j], p); if (dj == 0) { fprintf(stderr, "fatal error\nnon-invertible element\n"); fprintf(stderr, "from gaussian elimination\n"); fprintf(stderr, "element %ld mod %ld\n", m[j][j], p); exit(1); } for (k = j + 1; k < n; k++) { ck = (dj * m[k][j]) % p; for (l = j + 1; l < n; l++) { m[k][l] = (m[k][l] - ck * m[j][l]) % p; if (m[k][l] < 0) m[k][l] += p; } b[k] = (b[k] - ck * b[j]) % p; if (b[k] < 0) b[k] += p; } } for (i = n - 1; i >= 0; i--) { sum = 0; for (j = i + 1; j < n; j++) sum += (m[i][j] * x[j]) % p; if (sum < 0) sum += p; x[i] = (d[i] * (b[i] - sum)) % p; if (x[i] < 0) x[i] += p; } } void inverse(long n, long p, long **m, long **X) { int found; long d, i, j, k, l, sum, temp; long **B = create_square_matrix(n); long *c = calloc(n, sizeof(long)); if (!c) { fprintf(stderr, "fatal error\ninsufficient memory\n"); fprintf(stderr, "from inverse\n"); exit(1); } for (i = 0; i < n; i++) B[i][i] = 1; for (j = 0; j < n; j++) { found = 0; for (i = j; i < n && !found;) { found = m[i][j] != 0 && inv(m[i][j], p) != 0; if (!found) i++; } if (!found) { fprintf(stderr, "fatal error\nnon-invertible matrix\n"); fprintf(stderr, "from inverse\n", j); exit(1); } if (i > j) { for (l = j; l < n; l++) { temp = m[i][l]; m[i][l] = m[j][l]; m[j][l] = temp; } for (l = 0; l < n; l++) { temp = B[i][l]; B[i][l] = B[j][l]; B[j][l] = temp; } } d = inv(m[j][j], p); for (k = j + 1; k < n; k++) c[k] = (d * m[k][j]) % p; for (k = j + 1; k < n; k++) { for (l = j + 1; l < n; l++) { m[k][l] -= (c[k] * m[j][l]) % p; m[k][l] %= p; if (m[k][l] < 0) m[k][l] += p; } } for (k = j + 1; k < n; k++) { for (l = 0; l < n; l++) { B[k][l] -= (c[k] * B[j][l]) % p; B[k][l] %= p; if (B[k][l] < 0) B[k][l] += p; } } } for (i = n - 1; i >= 0; i--) { for (j = 0; j < n; j++) { sum = 0; for (k = i + 1; k < n; k++) sum += m[i][k] * X[k][j]; X[i][j] = inv(m[i][i], p) * (B[i][j] - sum); X[i][j] %= p; if (X[i][j] < 0) X[i][j] += p; } } delete_square_matrix(n, B); free(c); } int main(void) { char ciphertext[32] = "ZRIXXYVBMNPO"; long a, b, i, p = 27, B[4], x[4]; long **A = create_square_matrix(4); long **m = create_square_matrix(2); long **X = create_square_matrix(2); A[0][0] = 'E' - 'A'; A[0][1] = ' ' - ' ' + 26; A[1][2] = A[0][0]; A[1][3] = A[0][1]; A[2][0] = 'S' - 'A'; A[2][1] = ' ' - ' ' + 26; A[3][2] = A[2][0]; A[3][3] = A[2][1]; B[0] = 'P' - 'A'; B[1] = 'K' - 'A'; B[2] = 'R' - 'A'; B[3] = 'Z' - 'A'; gaussian_elimination(4, p, B, x, A); m[0][0] = x[0], m[0][1] = x[1]; m[1][0] = x[2], m[1][1] = x[3]; inverse(2, p, m, X); printf("the key is:\n"); printf("| %2ld %2ld |\n", x[0], x[1]); printf("| %2ld %2ld |\n", x[2], x[3]); printf("the inverse key is:\n"); printf("| %2ld %2ld |\n", X[0][0], X[0][1]); printf("| %2ld %2ld |\n", X[1][0], X[1][1]); printf("%s\n", ciphertext); for (i = 0; i < strlen(ciphertext); i += 2) { a = ciphertext[i] - 'A'; b = ciphertext[i + 1] - 'A'; x[0] = (X[0][0] * a + X[0][1] * b) % p; x[1] = (X[1][0] * a + X[1][1] * b) % p; if (x[0] < 26) x[0] += 'A'; else x[0] = ' '; if (x[1] < 26) x[1] += 'A'; else x[1] = ' '; printf("%c%c", x[0], x[1]); } printf("\n"); delete_square_matrix(4, A); delete_square_matrix(2, m); delete_square_matrix(2, X); return 0; }