Slovak Technical University
Faculty of Electrical Engineering and Information Technology

Department of Computer Science and Engineering

Recurrent Neural Networks
Michal Cernansky

Written Part of the Ph.D. Examination
Supervised by Lubica Benuskova, Ph.D.

Bratislava, December 2001

Abstract

Dynamical neural networks have much larger potential than classical feed-forward neural
networks. Their output responses depend also on time position of given input and they can be
successfully used in spatio-temporal task processing. This work describes basic architectures of
dynamical neural networks. Training methods and algorithms are also discussed. Widely used
architecture - Elman’s simple recurrent network is chosen to explain its behavior by means of
the theory of iterated function system. Novel methods making use of this type of dynamics are
described. Simple recurrent network can also acquire behavior of regular grammar and work
as finite state automaton. Also it is able to process strings generated by simple context-free
grammars by creating counting mechanisms. Our preliminary experiments are described and

future research activities are suggested.

Contents

1 Introduction

2 Feed-Forward Neural Networks

2.1 Error Back-Propagation Algorithm
2.1.1 Forward pass . . - . . . i o i e e e e e e e e e e e
2.1.2 Backward pass e e e e e e
2.1.3 Momentum e
2.1.4 Weight update o
215 Batchmode e
2.1.6 Parameters and othernotes oL,

3 Dynamical Neural Networks

3.1
3.2
3.3
3.4

3.5

Time Delay Neural Network,

Recurrent Neural Networks

Back Propagation Through Time

Real Time Recurrent Learning

3.4.1 Forward pass . . .
3.4.2 Backward pass . .
3.4.3 Weight update . .
Other Approaches

4 RNNs and IFSs

4.1
4.2
4.3
4.4

Iterated Function System
Architectural bias of RNNs
Properties of IFSs
RNNs with TFS dynamics

5 RNNSs and Finite State Machines
5.1 Finite State Machines (FSMs) and Regular Grammars

II

12
13
13
14
14
15
15

16
16
17
18
19

23

5.2 Grammatical Inference e

6 Beyond Finite State Representation

6.1 RNN as Counters o v vt i e e e e e e e e e e e e e e
6.2 Chaotic RNN behavior e e e

7 Our Preliminary Research

7.1 Evolution of clusters in state space of SRN trained by RTRL

7.1.1 Introduction L.

7.1.2 Experiment

713 Results o . L
7.2 Evolution of clusters in state space of BCM RNN

7.2.1 Introduction

7.2.2 Experiment L

723 Results
7.3 Processing Language Structures by SRN

7.3.1 Introduction L e

7.3.2 Experiment L

7.3.3 Results e

8 Future Work

9 Conclusion

111

27
27
29

30
30
30
30
32
33
33
33
34
34
34
35
36

38

40

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

4.1

4.2
4.3
4.4

4.5

5.1
5.2

6.1

7.1

7.2

Model of a neuron and two-layer feedforward neural network.
Common activation functions. oL L oo
Two layer feedforward neural network showing notation used for units and

weights. o L

Simple time delay neural network. oL oL
Two simple Mealy automata.
Extended TDNN. L e e
Architectures of recurrent networks. oo oL
Elman SRN unfolded in 4 time steps into feedforward neural network.

Simple Recurrent Network showing the notation of units and weights.

Sierpinski triange created by random iteration of transformations decribed by
equation 4.2. L oL Lo e e e e
Regions of points with common IFS address prefixes.
Detailed dynamics in state space for first 6 symbols of Laser sequence.
Chaos game representations of sequence created of random symbols and Laser
sequence (by IFS represented by equation 4.5).
RNN architecture proposed for IFSN and fractal prediction machine (FPM).

State space of an untrained and trained SRN.
Automaton associated with grammar described by equation 5.1 and well known

Reber grammar automaton. 0000 Lo
Idealized representation of dynamics of trained SRN.

NNL results for the next-symbol prediction of the RNN for 6 and 8 recurrent
NEUTOINS. . . . v & v 4t v e e v e s s s s 4 s s s e s e e e e e e e e e e e e e
NNL results for the next-symbol prediction of the BCM RNN for 8 and 12

recurrent NEUTOIS. v v o v v v e

v

17
19
20

25

7.3 NNLs achieved on Christiansen and Chater recursion data sets by RNNs and

7.4 NNLs achieved on Christiansen and Chater recursion data sets by NPMs. . . . 37

Chapter 1

Introduction

Artificial neural networks are inspired by biological neural networks such as human brain.
According to [12], human brain is an extremely powerful and complex information-processing
system. It works in an entirely different way than the computer does. Rate of neural events
is much more slower than the rate of operations in logical gates. In spite of its relatively slow
operation rate the computational power of the human brain is enormous, many times superior
to that of nowadays computers. This computational power is the result of cooperation between
huge amount of relatively simple processing elements - neurons. Interactions between neurons
are determined by the neural interconnections that are called synapses. Plasticity - the ability
to adapt to its surrounding environment can be met by two mechanisms: by creating new
synaptic interconnections and by modifying the strength of existing ones. In this manner
an artificial neural network resembles the brain, it is processing device composed of simple
elements working in parallel way. Knowledge is acquired by the process called learning and

information obtained during this process is stored in strengths of neural interconnections.

Concepts of the theory of artificial neural networks can be found far in the past. However,
the pioneering work of this field was achieved by McCulloch and Pitts in 1943. They introduced
simplified model of neural cell - binary threshold unit. Later, models of units organized
in layers were developed and a problem, how to find appropriate synaptic weights arose.
Rosenblatt (1962) was able to prove convergence of a learning algorithm for networks without
intermediate layers. But in 1969 Minski and Papert pointed out that some rather elementary
computations cannot be done by this learning algorithm. XOR problem is typical example of
the tasks that cannot be solved by Rosenblatt’s neural network. Since that, various people
have developed an appropriate learning algorithm for multi layer neural network. It is known

as back-propagation and was introduced by Rumelhart, Hinton and Williams in 1986. Much

activity was centered on back-propagation and its extensions or modifications. Still it is the

most widely used algorithm for training multi-layer neural network.

All these models are extremely simplified from the biological point of view. Still, many
researcher believe that they are able to make us understand better the principles of biological
computation. Of course, neural networks are successfully used in many practical applications

such as object recognition, sound and signal processing, robotics, etc.

Chapter 2

Feed-Forward Neural Networks

Feed-forward neural networks are usually composed of multiple layers. These networks
are also called perceptrons or multi-layer perceptrons. Every layer is composed of simple
processing elements called neurons (Figure 2.1). Usually, there are no connections leading
from units to previous layer or to units in the same layer nor the units more than one layer
ahead. Every unit feeds only the units in the next layer. Networks, that are not strictly

feed-forward are called recurrent networks.

X1

A= 0 X1

Xpr=— 1 Vi

Figure 2.1: Model of a neuron and two-layer feedforward neural network.

The units in the intermediate layer are called hidden units, they have no direct connection
to the outside world, neither input or output. Inputs from the environment are provided by
input units. Qutput values calculated by the network are delivered by output units. Com-

putation of a single processing element - neuron is very simple. For every input z; there is a

weight w;. One input is usually hardwired to be —1 and the corresponding weight is called

threshold or bias. Output o is calculated according to these equations:

o = f(net) (2.1)
n n—1

net = Z W;T; = Z w;x; — 0 (2.2)
i=1 i=1

where net is an internal activity level of the neuron, also called net output, # is a threshold
and f stands for the so-called activation function. Common activation functions are the step
function (McCulloch and Pitts binary threshold unit - figure 2.2 (a)), linear and piecewise
linear functions (2.2 figure (b)) and sigmoid function (2.2 figure (c)).

(a) (b) (©)

Figure 2.2: Common activation functions.

There are two main paradigms how to adjust the strengths of weights iteratively. The first
is called supervised learning or learning with a teacher. Current output of neural network is
compared with a desired output and appropriate weight changes are computed. A ”teacher”
is an external entity that knows the correct output values. Error Back-propagation is the
commonest supervised learning algorithm. On the other hand neural networks trained in
unsupervised manner are expected to find the correlations in the input data and to produce
corresponding output signal. No desired output signal is given to them. An example of
unsupervised learning algorithm is the BCM learning rule proposed by Bienenstock, Cooper
and Munroo [4].

A mechanism of weight adjustment for simple neuron (or single-layer network) was pro-
posed by Rosenblatt in 1962. But such a network is able to solve only linearly separable prob-
lems. These limitations do not apply to feed-forward networks with hidden layers between
input and output layer. Although the greater power of the multi-layer network was realized
long ago, a learning algorithm was invented 20 years after Rosenblatt’s work. The algorithm

gives a prescription for changing weights to learn a training set of input output pairs. The basis

is a simple gradient descent and back-propagation of error signals in multi-layer feed-forward

network. It is called error back-propagation algorithm or simply back-propagation.

2.1 Error Back-Propagation Algorithm

Back-propagation is an example of supervised learning. It is based on minimization of

error by gradient descent. Consider two layer feedforward network (Figure 2.3).

@ @ Output Layer O
T

Hidden Layer Y
T

Input Layer X

Figure 2.3: Two layer feedforward neural network showing notation used for units and weights.

2.1.1 Forward pass

Given input patter T = (x1,...,x7) output vector o = (o1, ...,0x) is calculated as forward
pass of signal. Simple processing elements - neurons calculate their outputs according to the

equation 2.1. Hidden unit j calculates its net input ¥;:

I
gj = Z'Ujixi (23)
i=1
and produces output y;:
y;j = f(55)- (2.4)

Output unit k& calculates its net input 0y and output value og in the same way:

J

O = Y wr;yj, (2.5)
7j=1

o = f(0k), (2.6)

where vj; is weight connecting hidden unit j with input unit 7 and wy; is weight connecting
output unit £ with hidden unit j. Special weights (units’ thresholds vj(r+1) and wyg +1)) from
constant input hardwired to —1 are not considered, but they follow exactly same rules as

described here.

2.1.2 Backward pass

For given input pattern T output o is calculated (equations 2.4 and 2.6). But desired-
expected output values d = (di,...,dx) are unlikely to be the same as computed ones 6 =
(01,-..,0K). This difference is expressed through error function. Commonly used error function
is the L2 norm:

1 &)
B=3 > (di — ox)”- (2.7)
k=1

The aim of the back-propagation algorithm is to minimize the error E. Weights are updated
by gradient descent method. Weight changes for units in layers are calculated in backward

order - from output layer to first hidden layer.

Weight changes for output units are calculated first:

A’wk]’ = —Oza = aékyj, (28)

wkj

where error signal J is defined as

ok = f'(0k)(dk, — ok)- (2.9)

f' is an activation function derivative and « is a learning rate. Weight changes for units in

hidden layer are calculated:

on
a(%ji

where error signal J; of hidden neuron j is defined as

Avj; = — = ad;z;, (2.10)

K
8 = f'(T) D w0k (2.11)
k=1

This equation allows us to determine the error signal of hidden unit in terms of the error
signal of units that the hidden unit feeds. Error signal is propagated backwards, that is
why the algorithm is called error back-propagation. Two layer network has only one hidden
layer, but in general, number of hidden layers can be higher. This calculation can be easily
generalized to multi-layer network. Error signals for units in all hidden layers are calculated

exactly as shown in equation 2.11.

An activation function usually used is sigmoid function defined as

1
= . 2.12
f@) = (2.12)
A derivative of it can be simply computed as
fl(z) = f(2)(1 = f(=)) (2.13)
and therefore error signals 5, (equation 2.9) and §; (equation 2.11) can be rewritten as
Sk = f(0k) (1 — f(0%))(d — ox) (2.14)
and
K
8 = F@) A~ F(F5)) D wrjk. (2.15)

k=1

2.1.3 Momentum

Back-propagation algorithm can be very slow. Other common problem while using gradient
descent is its susceptibility to local minima. Instead of finding global minimum of error
function back-propagation can get stuck in one of local minima. Simple but very useful
method to avoid this problems (at least partially) is using momentum. Actual weight changes

take into account weight changes from previous time step:
A’Uji(t) = Oé(Sj:Ei + ,BA’Uji(t -1) (2.16)

and
Awy;(t) = adky; + BAwg;(t — 1), (2.17)

where 8 is momentum parameter.

2.1.4 'Weight update

After weight changes are calculated, weights can be updated:
Wk = Wk + Awkj (2.18)

and

Uj; = V4 + AU]'Z'. (2.19)

2.1.5 Batch mode

According to this version of weight update, after a pattern is presented to the network
at the input, weights are updated before the next pattern is considered. It works well for
small learning rate. An alternative batch mode can be used. In this case weights are updated
after all patterns have been presented. Batch mode is a result of minimization of total error

function (over all patterns).

2.1.6 Parameters and other notes

Untrained network is usually initialized by random weights from small interval. It is
important to initialized weights with random values, both positive and negative ones, for
example by using uniform distribution over interval [—1,1]. Specific weights - thresholds
although not considered in equations, obey the same rules as described. They are randomly
initialized and trained exactly as other weights. Learning rate « is value usually chosen from
interval (0,2] and momentum parameter S from interval [0, 1] often value 0.9 is used for §.
While using described incremental mode of back-propagation algorithm (not batch mode), it
is good idea to chose patterns in random order. Frequently used activation function is sigmoid
(equation 2.12, figure 2.2 (c)).

Chapter 3

Dynamical Neural Networks

The back-propagation algorithm has become the most popular method for training neural
networks. Neural network trained according to this algorithm can learn only a static input-
output mapping. This is well suited for, for example, a pattern recognition tasks, where input
and output represent spatial patterns, patterns that are independent of time. In this case
an output of the network depends entirely on the current input, a position of input in time
is not relevant. But time is important in many tasks such as signal-processing or speech.
There is a need for computational system whose response behavior varies over time. Neural
network has to be provided with dynamic properties, that would allow the network acquire
a knowledge from spatio-temporal tasks. The network must be given a memory for storing

temporal context.

3.1 Time Delay Neural Network

One way of how to accomplish this task is to introduce time delays into a network struc-
ture [13]. Such approach was suggested by Hinton in 1988 and this technique is called Time
Delay Neural Network (TDNN). The network is provided not only with the current input
vector but also with input vectors from previous discrete time steps. Extended input is called

the ”time window”.

Output Layer
= T~

Hidden Layer
= >~

Extended Input Layer
X(t-3) X(t-2) X(t-1) X(1)

|
v 4+—— 4— <4— <

Figure 3.1: Simple time delay neural network.

The simplest variant is represented in the figure 3.1 (a). All layers are fully connected,
only some connections are shown. Figure 3.1 (b) shows simplified schematic representation of
TDNN. An advantage of this TDNN approach is that the network can be trained by common
error back-propagation method. Even such a simple technique can be successful in some
cases and can acquire the structure hidden in temporal data. But the way how this type of

dynamical network represents temporal context can be insufficient.

To illustrate a potential of TDNN consider two simple automata. They characterize simple
association tasks with temporal context. With given state and a given input symbol is uniquely

associated with the next state and an output symbol.

10

B|0

Figure 3.2: Two simple Mealy automata.

First Mealy automaton represented in figure 3.2 (a) was motivated by well known Reber
automaton. The aim of the neural network is to associate given input symbol with an output
symbol. In this specific case output symbol describes the next state of the automaton. Each
automaton state is uniquely determined by the last two input symbols. TDNN with time
window of length 2 can easily create appropriate mapping between the last pair of input
symbols and a corresponding output symbol. An automaton in figure 3.2 (b) is also relatively
simple. There are only three input symbols: one starting symbol, one symbol for ”changing”
automaton state and one for ”staying” in current state. Input symbol sequence can be infinitely
long and current automaton state depends also on the very first input symbol. It seems, that

TDNN architecture with time window of any finite length would fail in solving this task.

In previous very simple example of TDNN time window was used only for input units.
This time window technique can also be extended for hidden units and whole network can
consist of multiple copies of hidden and output layers. Figure 3.3 shows TDNN replicated in
time. Output layer consists of 2 copies of output neurons and hidden layer consists of 4 copies
of hidden neurons. Output units apply their weights to three-time-step window of hidden

units. Hidden units apply their weights to four-time-step window of input units.

11

O(t-1) O(t)

3 o

A2 Al

¥

°é

Y(t-3) Y(t2) Y(t1) Y(1)

4‘*

X(t-6) X(t-5) X(t-4) X(t-3) X(t-2) X(t-1) X(t)
v “— ¢ “— 4 ¢ — <

..‘—

Figure 3.3: Extended TDNN.

3.2 Recurrent Neural Networks

Another way how to incorporate dynamical properties into a neural network is to built
feedback into its design through recurrent connections. One well known architecture was in-
troduced by Elman [10] and is called Simple Recurrent Network (SRN). This architecture
is presented in 3.4 (a). Network input layer is extended with so called recurrent or context
neurons. They hold activations of hidden neurons from previous time step. Other interest-
ing architectures are modified Elman architecture (figure 3.4 (b)), architectures proposed by
Jordan (figure 3.4 (¢)) and Bengio (figure 3.4 (d))

[(Ht-D] [1® | [o@¢-1)]

Figure 3.4: Architectures of recurrent networks.

There are two main approaches how to train recurrent networks. First is called Back-

propagation through time and the second is called Real Time Recurrent Learning.

12

3.3 Back Propagation Through Time

Back propagation through time is based on the idea that every recurrent network can
be unfolded in time and an appropriate feedforward network with identical behavior over a
particular time interval can be created [33]. Unfolded recurrent neural network is multilayer
feedforward neural network with extra layers for every time step. Unfolded Elman network is
represented in figure 3.5. This method can be successfully used when it is possible to partition
the input data into epochs. For each epoch recurrent network is unfolded in time and then
weight changes of neuron replicas are computed by the error back-propagation algorithm.
Specific neuronal weight modification is calculated as a sum of weight changes calculated
for all replicas of given neuron. This epoch by epoch approach is not suitable for real-time

operation of recurrent network.

O(t)

S(t) | 1[I

[Se-D) | [1) |

I(tp)

| S(to) | ! | I(t;) |

T

Figure 3.5: Elman SRN unfolded in 4 time steps into feedforward neural network.

3.4 Real Time Recurrent Learning

Real time recurrent learning [40] was proposed to address continuously running recurrent
network. There is no need for duplicating hidden neurons and sequences of arbitrary length
can be presented to a network. The principle lies in updating the weights after each time step
although weight changes are not derived from exact gradient of total error function. For small

learning rate this approach works well.

13

Output Layer O

T

Time Hidden Layer Y

TAVITIT

Context Layer S Input Layer X

Figure 3.6: Simple Recurrent Network showing the notation of units and weights.

3.4.1 Forward pass

Given input patter Z(t) = (wl(t), ...,:L‘[(t)) output vector o(t) = (ol(t), ...,oK(t)) is cal-

culated as forward pass of signal. Hidden unit j calculates its net input ;(¢):

I J
7 () =D vjmi(t) + Y myiyi(t — 1) (3.1)
i=1 i=1
and produces output y;(t):
yi(t) = £ (5(1))- (3.2)
Output unit k calculates its net input og(t) and output value ox(t) as:
J
or(t) =D wijy;(t), (3.3)
j=1
or(t) = f(5x(®)), (34)

where v;; is weight connecting hidden unit j with input unit ¢, m; is weight connecting hidden

unit j with context unit 4 and wy; is weight connecting output unit k£ with hidden unit j.

3.4.2 Backward pass

The difference between d(t) = (dl (1), ...,dK(t)) and 0 = (01(1&), ...,oK(t)) is expressed

through error function

E= fj (dxt) — ox(®)) . (3.5)

k=1

N | —

14

The aim is to minimize the error E. Weights are updated by gradient descent method.

changes for output units are given by:

OE

Awyj = T By of' (@) (i (t) — ok (t) ;.

Modifications of weights from input to hidden units are calculated:

t)

Avji = —a 0B = Z l(dk — o))f (k(t)) iwkhayh('
h=1

|

0vj; pet 0vj;
where p
Oyp(t 8 (t—1
gh() _ xz kron Z yh)
Vji 0vj;

Modifications of weights from context to hidden units are calculated:

Amji = —a 8 :ai (dk(t) — or(®) 1 (3:(®)) i:w %n(t)
7% amji — k k k ~ kh 8mjz' 3
where
8yh(t) _ kron t B 1)
Omj; = vl + Z 8m]Z '

3.4.3 'Weight update

After weight changes are calculated, weights can be updated:
Wk = Wkj + Awkj,
Uji = Wj; + iji,

Mj; = Myj; + Amﬁ.

3.5 Other Approaches

Weight

(3.6)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

Computational power of recurrent networks is very high [35], but common training methods

based on gradient descent are inappropriate [3]. Error signal flowing backwards in time tend

to vanish. Novel RNN architecture called long short-term memory (LSTM) was introduced

[11, 14]. It uses recurrent connections of constant strength called constant error carrousel to

guarantee constant error flow.

15

Chapter 4

RNNs and IFSs

State units of recurrent networks show considerable amount of structural differentiation
[27] before learning. It means, that even in an untrained - randomly initialized recurrent
neural network activities of recurrent neurons can be grouped in clusters. [19, 20]. This
phenomenon can be explained by means of the Iterated Function System theory. IFS theory
was originally developed by Barnsley (Fractals Everywhere 1988) as a method of describing

the limit behavior of systems of transformations.

4.1 TIterated Function System

An iterated function system is a finite set of contraction transformations

Q:{wi\wi:X—>X,z'§n} (4.1)

Limit behavior of a single transformation can be a single point in the space. Limit set over
the union of transformations can be extremely complex with recursive structures. This limit
behavior of composite mapping is called the IFS attractor. IFS address is defined for every
point of an attractor. This address is the infinite sequence of transformations whose limit is
a point on an attractor when starting point is the entire space. An example of an IFS is set

of these three transformations over state space X = [0, 1]*:

wa(z,y) = (0.52 + 0.5,0.5y)
wp(z,y) = (0.5z,0.5y + 0.5) (4.2)
we(z,y) = (0.5z,0.5y)

16

Limit behavior of a single transformation is a point in the corner of the state space. Limit
behavior of the composition of all three transformations is a complex set representation known

as the Sierpinski triangle (figure 4.1).

B
e B
Be Bk
e e e B

0.0

1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.1: Sierpinski triange created by random iteration of transformations decribed by

equation 4.2.

4.2 Architectural bias of RNNs

Behavior of recurrent networks in symbolic processing can be explained by IFS theory. For

example the dynamics of SRN can be expressed by equation
S — (M8 + wi®), (4.3)

where f stands for activation function. M and W are matrices with recurrent and input

weights respectively. Having finite input alphabet this dynamics can be rewritten to
S = f(v;80). (4.4)

For each input vector 7 from the input alphabet A = {a1,...,a,} corresponding weight matrix
V; can be found. Both approaches for the next state S(t1) calculation are identical. When
an input symbol appears, corresponding weight matrix V; is applied to the current state
S® _ In other words, IFS transformations are represented by weight matrices V; and specific
input vector selects, which transformation is applied to the current state. Recurrent networks
initialized with small weights have similar behavior as IFSs. Interesting properties of IFS are

present in RNNs prior to learning. This phenomenon can be called architectural bias [27].

17

4.3 Properties of IFSs

Let us return to the notion of the address. Next IFS is a modification of the previous

one. The forth transformation was added whose attractor is the top right-hand corner of state

space:
wq(z,y) = (0.5z + 0.5,0.5y)
wp(z,y) = (0.5z,0.5y + 0.5) (45)
we(z,y) = (0.5, 0.5y)
wa(z,y) = (0.5z + 0.5,0.5y + 0.5)

Single transformation shrinks the entire image into one-forth sized copy of the original. A
position of a point is mostly determined by the last performed transformation. This last per-
formed transformation corresponds to the last symbol presented to the network. Next input
symbol will release corresponding transformation and again, whole state space is mapped into
a specific subspace. But its position within subspace is determined by the second last trans-
formation. With an infinite precision, current point in the state space reflects all performed
transformations, i.e. its position is determined by all input symbols. This notion is illustrated
in figure 4.2. An IFS address of a point within an IFS attractor is the infinite sequence of
indices of transformations, that map whole state space into the point. Hence, the indices of
IF'S address correspond to the input symbols. An IFS address is the inverse of string presented
to the network, the first index of IFS address correspond to the last symbol presented to the
network, the second index corresponds to the second last symbol, etc. A region of points
that share common prefix of their IFS addresses gets smaller with the length of the prefix.
Consequently, the longer the common suffix of input sequences, the nearer the corresponding

points in the state space of RNN are.

Consider the starting point z* = (0.5,0.5) and the input sequence S = bcecea . .. over the
input alphabet A = {a,b,c,d}. Each symbol corresponds to one transformation of IFS given
by set of transfromations Q@ = {wg,ws,w.,wq} described by equation 4.5. The sequence S
corresponds to concatenation of transformations ... (wg(we(we(we(we(wp(2))))))). Trajectory

of points z; is shown in figure 4.3.

The attractor of the composition of all four transformations is the whole state space. An
approximation to the IFS attractor is easy to construct. Random iteration of transformations
can produce attractor very rapidly. This spatial representation of points within the state space
is also called a chaos game. Random iteration of transformations corresponds to the random
sequence presented to the network. Resulting representation is shown in figure 4.4 (a). along
with the spatial representation of Laser sequence. While random sequence produces uniformly

covered state space, representation of Laser sequence shows some structure.

18

dpc ae}b bbd cda
X

bb | db | bd | dd / (/
b d \

cb ab cd ad

)}

bc dc ba da

I~~~ |

cC ac ca aa

(@) (b) (c)

Figure 4.2: Regions of points with common IFS address prefixes.

Laser data set is the sequence of differences between successive activations of a real laser
in chaotic regime [25]. The sequence was quantized to form symbolic sequence over four-
symbol alphabet A = {a,b,c,d}. Each symbol corresponds to one of IFS transformations
from Q = {wg,wp, we,wq}. Symbolic stream of quantized Laser activations corresponds to
concatenation of transformations specified by symbols. Resulting figure shows considerable

amount of clustering.

Concatenation of random transformations represented by a random sequence over four
symbol alphabet results in the state space regularly covered by points. It is not the case
of Laser sequence. Similar subsequences correspond to points that are closer in the state
space. The longer the common suffix, the nearer the points are in the state space. Frequent

subsequences of longer length produce clusters.

This behavior has led to the idea described in [25]. Novel RNN architecture called IFSN

was proposed.

4.4 RNNs with IFS dynamics

Interesting properties of IFS are used in special types of architecture called IFSN [25].

RNN state part is not trained, recurrent weights are fixed.

Simple and useful notation was established. Consider sequence s = s18283... over finite

alphabet alphabet A = {w1,ws, ..., w4} of |A| symbols. N-block subsequence u = uqus ... up

19

First 6 symbols of Laser sequence: 1.0
bcccca

Starting point is (0.5,0.5).

(e}

%, =(0.5,0.5)

%, =, (,)=(0.25,0.75)

%, =, (%)=(0.125,0.375)
%, =0, (%,)= (0.0625,0.1875)
%, =0, (x;)=(0.03125,0.09375) G
%, = o, (%,)= (0.015625,0.046875) i}

%, =, (%)=(0.5078125,0.0234375) /_a\A
&,‘
0

0.5

0.0
0

Figure 4.3: Detailed dynamics in state space for first 6 symbols of Laser sequence.

within sequence s is represented as a set of points u(Z) = up(up—1(up—2(...(u1(Z))...))) and
7 € X, where X = [0,1]" is a multi-dimensional hypercube with dimension N = log(|A|).

u(X) = {u(Z)[z € X)}. Transformations wy,ws...,w 4| are
wi = kT + (1 —k)t;, (4.6)

what is the generalization of IFS described previously (equations 4.2 and 4.5). Parameter
k € (0,0.5] is a contraction coefficient and ¢; are corners of hypercube X, t; # ¢; for i # j.
Given a sequence s = s182... its chaos game representation CGR(s) is a sequence of points
CGR(s) = {s{(z*)}n>1 where sg = 8;Si+1...5; and T# = (0.5,...,0.5) is the center of state

space. Hence, figures 4.4 (a) and (b) are examples of CGRs of random and Laser sequences.

Now consider two sequences s = tv and p = guv that share common suffix v of length |v|.
End points of CGR(s) amd CGR(p) are s(Z*) and t(z*). The difference between them is:

s(@") - t(@*) = v(p(z")) — v(a(T*)) = k" (p(z*) — q(T")) (4.7)

This is a formal explanation of the claim intuitively explained in the section above. The
longer the common suffix v of the sequences, the closer the end points are. Subspace v(X) is
an N-dimensional hypercube of side length k! [25]. The longer the sequence v, the smaller

the region corresponding to v.

CGR represents statistical properties of the input sequence. Rigorous analysis can be
found in [22], where direct correspondence between statistical characterization of symbolic

sequences and multifractal characteristics was established.

20

100 A+———4— — 1.00
050 _ - .:. .' : - . ; | ﬁ;:, 050
025 4= .‘ - - - 0.25
0.00 e e e 0.00 4=~
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 4.4: Chaos game representations of sequence created of random symbols and Laser

sequence (by IFS represented by equation 4.5).

IFSN is a recurrent network whose recurrent part matches IFS described by equation 4.6.
Learning process is fast, less problematic and dynamics are easy to understand. It was also
introduced as an alternative to the problematic learning based on gradient descent [3]. In
some cases IFSN are comparable with RNNs. IFSN architecture proposed in [25] is shown in
figure 4.5 (a).

Other method used for symbolic sequence processing based on IFS dynamics was proposed.
This approach is called Fractal prediction machine (FPM, in figure 4.5 (b)) [29] and was used
for language modeling. Training sequence is presented to the FPM and activations of the
state units are recorded. The Next vector quantization over recorded activations is performed
to split data into classes. Each class is represented by the center vector. Points in the
classes correspond to ”similar” subsequences - subsequences with potentially long common
suffix. For each class, the next symbol probabilities are computed. Classes are regarded as
prediction contexts. Sliding over the training sequence one can calculate the probabilities of
desired responses with respect to which cluster the current state belongs to. Testing consists
of sliding over the test sequence and choosing response with the highest probability for the
FPM current state class. Yet again, very good results were obtained when comparing FPMs
and RNNs.

Formal description of other computing devices called dynamical automata was established
in [36, 37]. They are also based on fractal-like representations in the state space. This method

enables using fractal sets to organize infinite state computations in a bounded state space.

21

Predictive model

Clustering
R(t+1) H(t)

R(t) 1(t) [se-D | | 1V |

Figure 4.5: RNN architecture proposed for IFSN and fractal prediction machine (FPM).

22

Chapter 5

RNNs and Finite State Machines

Several researchers have explored behavior of RNNs for predicting successive elements of
a sequence [7, 26]. When a network is trained with strings from a particular regular grammar,
it can learn to become perfect finite state recognizer for the grammar. Let us take SRN
as a typical representative of the RNN architectures. It uses hidden units’ activations from
previous step together with current input symbol to form hidden patterns and to predict the
next symbol. In this way SRN seems to work as an finite-state automaton. It can be in
one of its internal configurations called ”"state”. State holds a contextual information, i.e. it
reflects past events. The next input symbol together with the current state are transformed
into the new state and the corresponding output symbol is released through the output layer.
Inferring underlying regular grammar from a set of examples has been studied in many works,
where various architectures and approaches have been used [7, 31, 39]. It was found, that
SRN can learn to behave as a finite-state automaton and also can create automaton-like state
representations within its context space (also called the state space). After successful learning,

the internal states are localized in separate clusters corresponding to automaton states.

5.1 Finite State Machines (FSMs) and Regular Grammars

Regular languages are one part of Chomsky hierarchy of languages [15]. They are generated
by regular grammars. A grammar is the 4-tuple G = {Vy, Vr, P, S} where Vy and Vr are
non-terminal and terminal symbols respectively, S € N is the starting symbol and P is a finite
set of production rules in form of « — 8 where « € V' and 8 € V*. All strings generated by
grammar G form language L(G).

23

Regular grammar G is grammar, where all production rules @ — § have form of A — «
or A — aB where A,B € N and a € T . All strings generated by regular grammar create
regular language L(G). With each regular language a finite-state automaton is associated.
This automaton M is the acceptor of language L. M accepts only strings of regular language
L , which is denoted by L(M) = L(G).

Deterministic finite-state automaton (FSA) is the 5-tuple M = {X, @, d, qo, F'} where X
is the finite input alphabet, @) is a finite set of automaton states, map 0 : @ x X — @ defines
state transitions in M, ¢y € @ is the initial state and F' € @ is a set of accepting states.
String x is accepted by M if an accepting state has been reached after string « was read by
automaton. Finite-state automaton can be also considered as a generator of regular language
L(M). FSAs are usually represented as directed graphs called state transition diagrams,
where edges correspond to state transitions. One variant of FSA will be called the stochastic
automaton. Each transition (edge of graph) is evaluated by the probability of the state
transition. Hence, stochastic automaton describes also some statistical properties of generated
language. Initial mealy automaton is the 6-tuple M = {X,Y, Q, 4§, \, qo, }, where Y is the finite
output alphabet and map A : Q X X — Y defines output function of M. Output symbol is

released when state transition occurs.

5.2 Grammatical Inference

Grammatical inference is the problem of inferring grammar from samples of strings of an

unknown regular language. Consider regular grammar:

G={{A,B,C, A},{s,a,b,c},P,C} (5.1)
P={A—sAB—sB,C—sC,A—bB,B— cC,C — aA}.

An example of string generated by G is x = abssscsssasbsscsabess ... SRN can be trained
for predicting the next symbol of string generated by the grammar G. Number of input and
output unit is given by the cardinality of the set of terminal symbols (thus 4 input and output
units were used), number of hidden units was set to 2. After each input symbol the error
between prediction computed by SRN and the actual successor was minimized by RTRL.
Figure 5.1 (a) shows the state space of an untrained SRN. 1000 symbols were presented to the
network. Four clusters around the center of state space correspond to the four symbols of an
input alphabet. Why this structural differentiation can be present in an untrained networks
was intuitively and also formally described in previous chapter. Figure 5.1 (b) shows a state

space of a SRN trained for prediction task. Also 1000 symbols were presented to the network.

24

Points are grouped within clusters in the corners of the state space. Extraction of finite
state automaton from the trained network can be performed. It would lead to the automaton

represented in figure 5.2 (a). This automaton fully describes the grammar G.

1.00

1.00

0.75
0.50 —

0.25 -

0.75
0.50 —

0.25 -

——— 0.00 +—————]——T——7——— .
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 5.1: State space of an untrained and trained SRN.

This was one example of grammatical inference. Simple grammar was recognized only by
presenting the SRN with generated string. Clusters corresponding to the automaton states
tend to move to the corners of the state space hypercube. SRN with only two hidden units
can imitate this three state automaton thus giving us the possibility to see its state space as

a 2D plot. Similar experiment with Reber grammar (figure 5.2 (b)) was described in [7].
oXe
r ON
b) a B X ‘e
° P o Vv
\Y
(&

Figure 5.2: Automaton associated with grammar described by equation 5.1 and well known

Reber grammar automaton.

25

Much effort has been devoted to the clustering and minimization technique to extract
finite state automaton that approximates the behavior from an trained recurrent network.
Relationship between the internal state representation and the stable behavior of RNN as an
automaton was examined [1, 8], complexity requirements of SRN implementing finite state
machines in [16]. The simplest techniques such as K-means clustering algorithm based on
expectation-minimization (EM) approach or hierarchical clustering proposed in [8] can be
successful as shown in the one of our experiments. More complex algorithms for rules extrac-

tion were introduced in [5, 9, 28].

26

Chapter 6

Beyond Finite State Representation

Previous chapter described recurrent neural networks working as finite-state machines in
order to create regular language representation. On the other hand, processing strings of
context-free languages requires a stack or a counter memory device. Next section shows, that

RNNs can learn to imitate push-down automatons.

6.1 RNN as Counters

One dimensional up-down counter for two symbols can be created using two maps:

wa(z) = (0.52 4+ 0.5)

6.1
wp(z) = (22 —1) (01

where z is the state variable and a and b are symbols for counting up and down respectively. A
sequence of inputs aaabbb will correspond to states: 0.75,0.875,0.9375,0.875,0.75,0.5 where
zo = 0.5 was the starting state. Counting up gradually increases the state variable x towards
the corner of state space £, = 1. With an infinite precision for state representation of counting
device every finite sequence of ¢ symbols is uniquely described by one point in the state space.
Counting down will gradually decrease state x in order to return to the original state ¢y = 0.5,

what indicates that the same number of b symbols was presented to the device.

This a™b™ task is the simplest context-free language requiring counting-like representation.
After the sequence of a symbols, the same number of b symbols follows. Grammar generating
this language could be

G ={{X},{a,b}, P, X}

(6.2)
P={X —ab,X — aXb}

27

Simple Recurrent Networks were trained for next symbol prediction in a¢™b™ strings with n
varying from 1 to 11 [31, 39]. Some networks that successfully learnt the task were able
to generalize prediction up to n = 16. An interesting oscillation dynamics of SRN can be

represented by an idealized solution:

0.5 0 0.5 —5
%=1 ([2.0 2.0] Aot [5 1] It) ’ (6.3)

where f stands for the piecewise-linear activation, X; is the state vector in time step ¢ and I;

is the input vector, a = [1,0] and b = [0, 1]. This solution can be rewritten to:

wa(z1,22) = f(0.52 + 0.5,0)

(6.4)
f(O, 2.’1)1 + 2.’1)2 - 1.0)

wp(z1,72)
Starting point is Tsiert = (0,0). A sequence of inputs aaabbb will correspond to states:
(0.5,0), (0.75,0), (0.875,0), (0,0.75), (0,0.5), (0,0). SRN works as an up-down counter. First
dimension variable z; is used for counting up the number of a symbol. The state is approach-
ing towards a fixed point of w,, what is an attractive point w°(Z) = (1,0) . This attractive
fixed point lies on stable manifold of saddle fixed point of w; transformation. The expansion
and contraction rates are inversely proportional. Figure 6.1 represents dynamics of trained
SRN. Stable and unstable manifolds of wy transformation’s saddle point are denoted by dashed

lines.

\ |
\ 1
FIX,=(0,1)

e {Q
Xstart:(()ao) FIXa:(1 ,0)

1 N

| N

Figure 6.1: Idealized representation of dynamics of trained SRN.

28

How the SRN can learn to process more complex context-free and context sensitive lan-
guages was studied in [30]. It is important to note that after extensive training process only

a portion of trained SRNs has developed good internal representation of these languages.

6.2 Chaotic RNN behavior

Some experiments show, that recurrent neural network can learn to acquire chaotic be-
havior. In [38], SRN without an input layer was trained as to reconstruct the target process
represented by stochastic finite state automaton. The results revealed the capability of RNN
to evolve towards chaos in order to mimic a target stochastic process. Internal RNN dynamics

proceeded from fixed point through limit cycling to chaos.

29

Chapter 7

Our Preliminary Research

7.1 Evolution of clusters in state space of SRN trained by
RTRL

7.1.1 Introduction

Next experiment investigates the evolution of performance of finite-context predictive mod-
els during learning. SRN was trained by Real Time Recurrent Learning algorithm for next
symbol prediction of symbols in strings randomly generated according to the Reber gram-
mar (figure 5.2) as described in [7]. Then predictive models were built upon the recurrent

activations of the 2nd-order version of Elman Simple Recurrent Network.

7.1.2 Experiment

The predictive models based on internal state vectors are constructed as follows. After each
training epoch, all synaptic weights are fixed and stored. Next, sliding through the training
sequence, for each symbol in the training data set, recurrent activations are recorded. Vector
quantization for given number of centers is performed over recorded activations. In predictive
models, the quantization centers are identified with predictive states. To calculate the state-
conditional probabilities, we associate with each center counters, one for each symbol from the
input alphabet. Sliding through the recurrent activations’ sequence, the closest center is found
for the current activation vector. Then next symbol is identified. For the closest center the

counter associated with the symbol is raised by one. After seeing the whole training sequence,

30

for each quantization center (prediction state) the conditional next-symbol probabilities are

calculated by normalization of counters.

On the test sequence the next-symbol probabilities are determined as follows: for time
step given the network state the actual symbol drives the network to a new recurrent acti-
vation vector. The closest quantization center is found and the next-symbol probabilities are

considered.

These predictive models based on activations of RNN units are also called neural prediction
machines (NPMs).

Predictive model’s performance is evaluated by means of the normalized negative log-
likelihood NNL on the whole test sequence:

Silog Py
n b

NNL = (7.1)

where the base of the logarithm is the number of symbols |A| in the input/output alphabet
A. P, is the next-symbol probability chosen with respect of the closest quantization center
at time step i and the correct symbol (output symbol that should be predicted). The higher
the next correct-symbol probabilities the smaller is NNL, with NNL= 0 corresponding to the

100% correct next-symbol prediction.

The metric in vector quantization and nearest-center detection is Euclidean. Hierarchical
vector quantization inspired by [8] was used. The first activation vector becomes the first
quantization center. Given a certain number of centers, maximal cluster radius is iteratively
found. For every internal state vector in turn, we find the closest center. If their distance is
less than cluster radius, the vector belongs to the center. Otherwise, this vector becomes a
new center. Evolution of performance of predictive models built upon the activation of the
recurrent layer during training as a function of the amount of training and the number of

quantization centers in the recurrent state space is shown in figure 7.1.

We trained the networks on randomly generated strings. The activations of recurrent
neurons were reset to the same small random values at the beginning of each string. Before
training and after each 10000 symbols we evaluated the quality of the next-symbol prediction
by means of NNL. For the NNL calculation we used the test set of the length 20000 newly
generated symbols. The input and output had the dimension of 6 with the one-hot encoding
of symbols. “E” is equally coded as “B”. The values of parameters were set to: the number
of (recurrent) neurons to 6 and 8, learning rate and momentum to 0.03, and unipolar ‘0-1’
sigmoid activation parameter (slope) to 1.0. The initial (reset) activations of recurrent neurons
and initial weights were randomly generated from a uniform distribution over [-0.5, 0.5], for
both RNNs.

31

7.1.3 Results

NNL results for the next-symbol prediction of the RNN for 6 and 8 recurrent neurons are
shown in figure 7.1. NNL at time 0 expresses the prediction performance of an untrained
network. Length of training set means the total number of symbols over all training strings.
Center count means the number of quantization centers in the hierarchical vector quantization.
The lowest NNL matches the theoretically calculated NNL for the occurence of symbols in
Reber strings, e.g. 0.331.

RNN behaves as a kind of nonlinear IF'S consisting of a sequence of transformations that
map the state space represented by activations of recurrent neurons into separate subspaces
of the state space. This phenomenon is called architectural bias and was explained in details
in previous chapter. Each next state of an RNN, represented by the recurrent activations, is
mostly determined by the last performed transformation, e.g. by the last presented symbol
(input). Within the subspace belonging to the last transformation, the network state is deter-
mined by the last previous transformation, and thus by the last previous symbol (input). In
this way, the RNN “theoretically” codes an infinite time window to the past, e.g. its current
state uniquelly represents the history of inputs. The more distant the input is in the past
the less it determines the current RNN state. It turned out, that two subsequences with the
common suffix will correspond to the two states that are close to each other in the state space.
The longer the common suffix the smaller the distance between the corresponding states in

the state space.

a. Elman - 6 neurons b. Elman - 8 neurons

enter count

150000 30 150000
Length of training set 200000 Length of training set 200001

Figure 7.1: NNL results for the next-symbol prediction of the RNN for 6 and 8 recurrent

neurons.

All the Reber states are uniquely determined by each pair of symbols in the Reber string.

There are 20 of these pairs including the “SE” and “VE” pairs. Thus, even in the untrained

32

RNN, the 20 quantization centers obtained by means of the hierarchical clusterization de-
scribed above, correspond to the RNN states determined by the last 2 symbols. It means
that there is a unique mapping between the automaton states and the RNN states and the
prediction model gives the minimal possible NNL, in this case 0.331 (Figure fig:elmanresults).
In an untrained case, the individual states (recurrent activities) evoked by the last two sym-
bols are well separated in the state space. Given more than 20 (e.g. 25 or 30) quantization
centers, these recurrent activities can become split, due to the third last input. Therefore,
the quality of the next-symbol prediction does not get worse. The RNN is trained by RTRL,
thus the weights are updated after each symbol in turn. The errors that backpropagate from
the output layer cause the weights to modify in such a way that the recurrent activities which
ought to belong to the same automaton state get closer to each other step by step. They
get closer, thus reflecting the probability that the continuation of the sequence will be the
same. This movement may cause a temporary disturbance of the coding based on the last
pair of symbols as can be observed for the large number of quantization centers. After the
training, the network state reflects not only the history of inputs but, which is perhaps more
important, also the probability of a certain continuation. Each network state belongs to a
certain automaton state. It can be shown that the optimal prediction model can be created

with only 6 clusters in the state space (see also [7]).

7.2 Evolution of clusters in state space of BCM RNN

7.2.1 Introduction

In previously described experiment we were interested in evolution of performance of finite-
context predictive models built upon recurrent part of SRN. An interesting alternative to
supervised RTRL training is Bienenstock, Cooper and Munro (BCM) [4, 17] learning rule
adopted for RNNs [2]. BCM theory is with high correspondence with biological observations
[34]. Networks based on BCM theory were also successfully applied to real-life problems [2, 18].

Recent results of experiments with the chaotic time series are promising [23, 24]. In our
experiment RNN trained by the BCM rule processed strings from simple regular grammar
described by the Reber automaton (figure 5.2)[21].

7.2.2 Experiment

Prediction models were created and evaluated in the same manner as in previous experi-

ment in order to be able to compare the results. The same quantization algorithm was used.

33

Recurrent BCM networks were trained and prediction models were created on the same
data sets as described in previous experiment. The values of parameters were set to: the
number of (recurrent) neurons to 8 and 12, learning rate to 0.001, and unipolar ‘0-1’ sigmoid

activation parameter (slope) of 0.4 was used.

7.2.3 Results

The BCM RNN behaves also like a kind of IFS, albeit different from the previous one
because of the lateral inhibition. In this case, we can also obtain the optimal prediction
with a large number of quantization centers (e.g. 25) for the predictive model built upon
the untrained network (figure 7.2). Then the weights are modified after each presentation of
input according to the BCM rules for the recurrent network [2]. Recurrent neurons become
sensitive to particular statistical characteristics of the input set and they become selective only
to individual last symbols. Thus we are not able to observe the improvement of prediction for

the number of quantization centers smaller than 20.

//////%///

//////

20

Figure 7.2: NNL results for the next-symbol prediction of the BCM RNN for 8 and 12 recurrent

neurons.

7.3 Processing Language Structures by SRN

7.3.1 Introduction

Various problems related to different aspects of human or animal behavior are often mod-
eled by neural networks. At the firs glance, the aim is not to obtain a connectionist model
with "perfect” properties as in technically oriented domains. Researchers are seeking for mod-

els with high correspondence to real life problems. In cognitive science community RNN are

34

often used for language processing. Recently, connectionist networks were used for processing
complex recursive structures represented by recursive languages directly inspired by Chomsky
[6]. Levels of embedding of recursive structures that RNN was able to process was in corre-
spondence with human ability to process recursive structures. Qur aim was to point out the
existence of the architectural bias in RNN and to show its importance by comparing results

of NPM created from untrained and trained networks.

7.3.2 Experiment

We used three data sets described by [6]. Three artificial languages representing different
types of recursion were created. They were composed of symbols representing four grammatical
categories: singular nouns, singular verbs, plural nouns and plural verbs. Each language used
in [6] involves one of three complex recursions taken from Chomsky, interleaved with right-
branching recursions (RBR). The latter is generated by a simple iterative process to obtain
constructions like: Py Py Sy Sy, where P stands for plural, S for singular, N for noun and V

for verb category. The three complex recursions are:

1. Counting recursion (CR): {}, NV, NNVV,NNNVVYV, ..., while ignoring singulars and

plurals.

2. Center-embedding recursion (CER): {}, ..., SN PN Py Sy, PxSnSy Py, Example: "the

boy girls like runs”.

3. Identity (cross-dependency) recursion (IR): {},..., SN PnSy Py, PNSnyPy Sy, Exam-
ple: "the boy girls runs like”.

Thus, our three benchmark recursive languages were: CRandRBR, CERandRBR, IRan-
dRBR. Each language had 16 word vocabulary with 4 words from each category, i.e. 4 singular
nouns, 4 singular verbs, 4 plural nouns and 4 plural verbs. The RNN had 17 input and output
units, where each unit represented one word or the end of sentence mark. There were 10
hidden and 10 recurrent neurons. The networks were trained in 10 training runs starting from
different random weight initializations (from [—0.5,0.5]). The training set of each language
consisted of 5000 sentences and the test set of 500 novel sentences. One half of each set was
comprised of RBR constructions and another half of appropriate complex recursions. Depths
of embedding ranged from 0 to 3, with the following distributions: depth 0 — 15 %, depth
1-275 %, depth 2 — 7 %, depth 3 — 0.5 % (together 50 %). The mean sentence length was

approximately 4.7 words.

35

7.3.3 Results

In figure 7.3 we show the mean (across 10 training runs) normalized (per symbol) negative
log likelihoods (NNL) achieved on the test set by FPMs, RNNs and the corresponding NPMs.
In the 2-D plots, we also show the corresponding standard deviations. Standard deviations in

the 3-D plots are not shown, but generally are less than 5 % of the mean value.

RNN output on recursive languages FPM on recursive languages

CERandRBR —s— " CERandRBR —s—
CRandRBR —*— CRandRBR —*—
11} IRandRBR -4 1 L1t IRandRBR - 1

2 2 0.9
4 z
0.8
0.7
0.6 S S S S SO SR
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Epoch Codebook size

Figure 7.3: NNLs achieved on Christiansen and Chater recursion data sets by RNNs and
FPMs.

36

NPM on CRandRBR NPM on CRandRBR

Figure 7.4: NNLs achieved on Christiansen and Chater recursion data sets by NPMs.

The importance of architectural bias is clearly visible. While NNL based on outputs of
SRN (figure 7.3 (a)) followed significant improvement during training, NNL for NPM for given
number of clusters remain almost still during training (figure 7.4) despite small improvements
in first 10 epochs of training. FPM or NPM are closely related to variable memory length
Markov models (VLMM) [32]. While Markov models use fixed memory depth for all pre-
diction contexts, VLMMs use flexible memory length depending on context’s importance.

Improvements of NPMs during first 10 epoch of training will be object of future research.

37

Chapter 8

Future Work

In our preliminary experiments we observed behavior of recurrent network trained by the
BCM algorithm on regular language strings. BCM RNN did not create automaton-like state
representation of regular grammar. Instead BCM neurons became selective to input symbols
and attractive fixed points dynamics present also in an untrained RNN was dominant. On the
other hand, BCM RNNs trained on other symbolic sequences seemed to build more interesting
internal dynamics valuable for NPM creation [23, 24]. These results should be reconsidered
and experiments reevaluated with respect to architectural bias of RNN. If more than attractive
fixed point dynamics is present, its usefulness should be experimentally shown and explained
if possible. Extraction and understanding of rules from trained neural networks is not a trivial

task.

RNNs can acquire variety of dynamical behaviors. RNNs can successfully solve simple
tasks by creating automaton-like finite state representation or infinite state counting devices.
But training RNNs on complex sequences seems to be difficult. Our preliminary experiments
revealed the importance of architectural bias in RNN. But NPMs on trained RNNs seemed to
organize the state space ”a little bit better” than FPMs or NPMs on untrained RNNs. Where
did this even small improvement came from? Yet again, deeper analysis of internal dynamics

should be performed.

Importance of the architectural bias is omnipresent throughout this work. Fractal-like
behavior of attractive fixed point dynamics can be intuitively understood. New RNN archi-
tectures and devices based on this IFS dynamics (fractal prediction machine, neural prediction
machine [22, 25, 29]) were already proposed and it seems that they may offer valuable insight
into some problems studied by connectionist cognitive science community. Spatial representa-

tion of device’s state space reflects statistical properties of underlying input sequence. Points

38

in the state space also represent history of inputs. Both these properties encourage a practical
application of devices based on fractal representation. Real life technical problems surely re-
quire computational inexpensive means of representing the past. Similar approaches already
exist (VLMM [32]), maybe others can be found, studied and potential improvements can be

suggested. We also want to explore this direction.

39

Chapter 9

Conclusion

Feed-forward neural networks are successfully used in many non-temporal tasks. Spatio-
temporal tasks require some sort of memory for holding temporal context. Recurrent networks
were introduced to handle such types of problems. Recurrent connections are used to give a

context information for actual input processing.

Recurrent neural networks can have different behaviors from dynamical point of view.
This work described some types of RNN behavior. Dynamics of RNNs initialized with small
weights is based on attractive fixed points of transformations corresponding to different inputs.
Properties of spatial representations of RNN state space were intuitively and also formally
explained. RNNs can acquire regular languages through training process. Then RNNs behave
as finite state machines, i.e. the internal states of RNN can be identified with the states of
finite state automaton describing the regular grammar. Finally RNNs can also acquire context
free languages and context sensitive languages. They can learn to construct mechanisms such

as counting in order to mimic behavior of lower level grammars.

Our preliminary experiments were described. They are oriented towards architectural bias
of RNNs and interesting unsupervised variant of learning algorithm based on Bienenstock,

Cooper and Munro [2, 4].

Last chapter tries to offer potential problems for further work, namely several directions
of investigation of evolution of dynamics of RNNs during training when trained on real life

tasks.

40

Bibliography

[1]

2]

3]

[4]

[5]

[6]

7]

(8]

[9]

[10]

[11]

K. Arai and R. Nakano. Stable behavior in a recurrent network for a finite state machine.
Neural Networks, 13:667-680, 2000.

C. M. Bachman, S.A. Musman, D. Luong, and A. Shultz. Unsupervised BCM projection
pursuit algorithms for classification of simulated radar presentations. Neural Networks,
7:709-728, 1994.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157-166, 1994.

E. L. Bienenstock, L. N. Cooper, and P. W. Munro. Theory for the development of neuron
selectivity: orientation specificity and binocular interaction in visual cortex. Journal of
Neuroscience, 2(1):32-48, 1982.

A. D. Blair and J. B. Pollack. Analysis of dynamical recognizers. Neural Computation,
9(5):1127-1142, 1997.

M.H. Christiansen and N. Chater. Toward a connectionist model of recursion in human

linguistic performance. Cognitive Science, 23:417-437, 1999.

A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland. Finite state automata and

simple recurrent networks. Neural Computation, 1(3):372-381, 1989.

S. Das and R. Das. Induction of discrete state-machine by stabilizing a continuous recur-

rent network using clustering. Computer Science and Informatics, 21(2):35-40, 1991.

S. Das and M. Mozer. Dynamic on-line clustering and state extraction: An approach to
symbolic learning. Neural Networks, 11(1):53-64, 1998.

J. L. Elman. Finding structure in time. Cognitive Science, 14:179-211, 1990.

F. A. Gers, J. Schmidhuber, and F. A. Cummins. Learning to forget: Continual prediction
with LSTM. Neural Computation, 12(10):2451-2471, 2000.

41

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S. Haykin. Neural Networks-A Comprehensive Foundation. Prentice-Hall, Upper Sadle
River, New Jersey 07458, 1994.

J. Hertz, A. Krough, and R. G. Palmer. Introduction to the theory of neural computation.
Addison-Wesley, 1991.

J. Hochreiter and J. Schmidhuber. Long short term memory. Neural Computation,
9(8):1735-1780, 1997.

J. E. Hopcroft and J. D. Ulman. Formal languages and their relations to automata.
Addison-Wesley, 1969.

B. G. Horne and D. R. Hush. Bounds on the complexity of recurrent neural network
implementations of finite state machines. Neural Networks, 9(2):243-252, 1996.

N. Intrator and L.N. Cooper. Objective function formulation of the BCM theory of visual
cortical plasticity: statistical connections, stability conditions. Neural Networks, 5:3-17,
1992.

N. Intrator and J. I. Gold. Three-dimensional object recognition of gray level images:

The usefulness of distinguishing features. Neural Computation, 5:61-74, 1993.

J.F. Kolen. The origin of clusters in recurrent neural network state space. In Proceedings
from the Sizteenth Annual Conference of the Cognitive Science Society, pages 508-513.
Hillsdale, NJ: Lawrence Erlbaum Associates, 1994.

J.F. Kolen. Recurrent networks: state machines or iterated function systems? In M. C.
Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, and A.S. Weigend, editors, Proceed-
ings of the 1993 Connectionist Models Summer School, pages 203-210. Erlbaum Asso-
ciates, Hillsdale, NJ, 1994.

M. Cernansky and L. Befiuskova. Finite-state reber automaton and the recurrent neural
networks trained in supervised and unsupervised manner. In H. Bischof Lecture Notes in
Computer Science 2130. G. Dorffner and K. Hornik (Eds), editors, Artificial Neural Net-
works - ICANN’2001, pages 737-742. Springer-Verlag, 1998.

P. Tifio. Spatial representation of symbolic sequences through iterative function system.
IEEFE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans,
29(4):386-392, 1999.

P. Tino, M. Stanéik, and L. Beniuskovd. Building predictive models on complex symbolic

sequences via a first-order recurrent BCM network with lateral inhibition. In P. Sin¢ak and

42

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. Vascak, editors, Quo Vadis Computational Intelligence? New Trends and Approaches
in Computational Intelligence, pages 42-50. Physica-Verlag, Heidelberg, 2000.

P. Tino, M. Stanéik, and L. Befiuskovd. Building predictive models on complex symbolic
sequences with a second-order recurrent BCM network with lateral inhibition. In Proc.
Int. Joint Conf. Neural Networks, pages 265-270, 2000.

P. Tino and G. Dorffner. Recurrent neural networks with iterated function systems

dynamics. In International ICSC/IFAC Symposium on Neural Computation, 1998.

P. Tio and J. Sajda. Laearning and extracting initial mealy automata with a modular
neural network model. Neural Computation, 7(4):822-844, 1995.

P. Tifio, M. Cerfiansky, and L. Befiuskovd. Markovian architectural bias of recurrent
neural networks. Submitted to 2nd Euro-International Symposium on Computational
Intelligence, June 16 - 19, 2002, Kosice, Slovakia., 2002.

C. W. Omlin and C. L. Giles. Extraction of rules from discrete-time recurrent neural
networks. Neural Networks, 9(1):41-51, 1996.

S. Parfitt, P. Tino, and G. Dorffner. Graded gramaticality in prediction fractal machines.

In Advances in Neural Information Processing Systems 12, pages 52-58, 2000.

P. Rodriguez. Simple recurrent networks learn contex-free and contex-sensitive languages
by counting. Neural Computation, 13:2093-2118, 2001.

P. Rodriguez, J. Wiles, and J. L. Elman. A recurrent neural network that learns to count.
Connection Science, 11:5-40, 1999.

D. Ron, Y. Singer, and N. Tishby. The power of amnesia. Machine Learning, 25, 1996.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by
error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition. Vol. I: Foundations, pages
318-362. Bradford Books/MIT Press, Cambridge, MA., 1986.

H. Shouval, N. Intrator, and L. Cooper. BCM network develops orientation selectivity and
ocular dominance from natural scenes environment. Neural Computation, 37(23):3339—
3342, 1997.

H. T. Siegelmann and E. D. Sontag. Turing computability with neural nets. Applied
Mathematics Letters, 4(6):77-80, 1991.

43

[36]

[37]

[38]

[39]

[40]

W. Tabor. Dynamical automata. Technical Report TR98-1694, Department of Psychol-
ogy, Uris Hall, Cornell University, Itaca, NY14853, July, 20 1998.

W. Tabor. Fractal encoding of context free grammars in connectionist networks. Ezpert
Systems: The International Journal of Knowledge Engineering and Neural Networks,
17(1):41-56, 2000.

J. Tani and N. Fukurama. Embedding a grammatical description in deterministic chaos:

an experiment in recurrent neural learning. Biological Cybernetics, 72:365-370, 1995.

J. Wiles and J. Elman. Learning to count without a counter: A case study of dynamics
and activation landscapes in recurrent networks. In Proceedings of the Seventeenth Annual

Conference of the Cognitive Science Society, pages 482 — 487, 1995.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural Computation, 1:270-280, 1989.

44

