Modelling the effect of the missing fundamental with an attractor
neural network*

Lubica Benuskovay

Institute for Developmental Neuroscience, Vanderbilt University, Nashville, TN 37203

Abstract. In order to investigate the use of attractor neural networks (ANNSs) in modelling real phenomena of
human perception, we developed and tested the ANN model of spectrum-invariant pitch recognition that was
aimed at cortical mechanisms of pitch perception. Wetested the ANN model in computer experiments which
were arranged in a way compatible with the three pitch identification psychophysical experiments with human
subjects. The results of computer and actual experiments are qualitatively the same, and quantitatively they
depart at most by 10% which can be considered to be in good agreement. It is shown that the present ANN
model can provide an explanation for the different efficacies of lower and upper harmonics in conveying the
missing fundamental pitch percept, by means of one universal cortical mechanism. In my model, a complex
tone evokes the pattern of activity that consists of a particular combination of ’isofrequency’ stripes in the ANN
that represents the relevant part of the primary auditory cortex (AI). Recognition of the pitch is interpreted as
an auto-associative retrieval of the corresponding stripe-like template. The numbers of active neurons in the
stripes that represent lower frequencies are greater than the numbers of active neurons in the stripes for the
higher frequencies. Thus, when the network is presented with the frequency complex containing either lower
or higher harmonics, different efficacies of lower and upper harmonics in conveying the missing fundamental
pitch percept are manifested. The proposed ANN model can be easily generalized for the spectrum-invariant
recognition of unharmonic sounds, for instance speech.

1 Introduction

The study of stochastic nonlinear co-operative systems, for instance the Kirkpatrick and Sherrington models of
spin-glasses [1], has resulted in the emergence of a new paradigm in modelling the brain functions, the theory of
attractor (Hopfield) neural networks (ANNs) [2, 3]. During the past decade, theoretical analysis of ANNs has
made substantial progress [3]. Compared to the large volume of literature on theoretical investigations of ANNs
there is relatively little emphasis on studies of their biological or psychological plausibility. Several suggestive
analogies between ANN and biological computational processes have been made, for example, for olfaction [4,
5], visual processing [6], and hippocampus [7]. Since these models remain untested at the neurophysiological
level, the relevance of ANN to neurobiology is still unclear. By contrast, an exemption is the ANN model
of Kleinfeld and Sompolinsky [8] that is capable of generating cyclic sequences of states. When applied to
a small neural circuit of the mollusc Tritonia that controls the swim rhythm, the model accounted for the
experimentally observed output and for the mean operating characteristics of the individual neurons.
Wehave chosen the phenomena of musical pitch perception as one of the many possible instances where the
ANN model can be confronted with the results of actual experiments. In the real world, different frequencies
from the same source appear in different neural channels, divided in space and in time, and in addition similar
frequencies from different sources appear in the same neural channels, related in time and in space. From this
pattern, the auditory system must reconstruct the percepts of the individual sources. What are the mechanisms
which the auditory system use to accomplish this task? One of the ’tools’ which is used by auditory system
for this task is the mechanism of musical pitch perception. Pitch perception can be considered to be a labeling
process by which the auditory system collects certain frequencies and tags them with a pitch identifier, and
simultaneously collects another set of frequencies and tags them with another identifier, and so on [9]. The
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lowest frequency in the complex tone is called the fundamental frequency, fo [10]. The higher frequencies, that
are all integral multiples of fy, are called the harmonics or overtones of the fundamental frequency. The second
harmonic has a frequency fy X 2, the third harmonic has a frequency fo x 3, and so on. A tone’s height, pitch,
is determined by the tone’s fundamental frequency, and expressed as a note in musical notation. Sounds like
those produced by speech, slamming a door, or crumpling paper, are musically unharmonic, i.e. the higher
frequencies are not integral multiples of the sound lowest frequency. Although there is a dominant tendency
to fuse together harmonically related components into a single entity, for any complex sound, no matter how
unharmonic, there is some time duration short enough that the components will be integrated into a single
entity too. There are many puzzling phenomena in pitch perception but wewill deal only with one of them;
that is the effect of the missing fundamental, known also under other names — virtual pitch, periodicity pitch,
low pitch, musical pitch, or salient pitch [9]. The curious effect of the missing fundamental concerns the ability
of our auditory system to perceive pitches that correspond to the fundamental frequencies of complex tones
while those fundamentals are physically totally absent.

One of the most influential theories of pitch perception was the frequency detection theory of Helmholtz [11].
According to him, the cochlear spectrum analyzer maps the energy of the fundamental frequency tonotopically,
and pitch is associated with the spatial position of the fundamental frequency. If there is no fundamental
frequency present, the nonlinearities in the periphery will introduce it. It may seem that the peripheral
mechanisms are indeed responsible for the effect of the missing fundamental since there is a recent physiological
evidence that when the complex stimulus contains only upper harmonics, there are clear correlates of the
missing fundamental in the firing pattern of auditory nerve fibers [12] and in the neurons of the cochlear
nucleus [13].

However, there are several experimental findings that strongly undermine the idea about the peripheral
mechanisms being always responsible for the effect of the missing fundamental. First, the perception of
virtual pitch is here even when the intensities of harmonics are so low that they cannot convey difference tone
distortions [14], or second, when there is an external masking by other frequencies [15]. Third, very strong
argument against all theories which explain the perception of pitch of the missing fundamental as a peripheral
phenomenon comes from the work of Houtsma and Goldstein [16]. They showed that the corresponding musical
pitch can be generated only by two upper harmonics which are presented dichotically, i.e. each one of them
is delivered through a separate ear. However, each of them presented monotically leads to the corresponding
pure tone percept. It is clear that with the dichotic stimulus there is no possible way for the two components
to fall into the same peripheral (aural) channel. Therefore some recent theories of pitch perception [17-19]
propose central mechanisms which perform a template-matching process underlying the perception of the pitch
of a complex tone.

To this class of models belongs the hypothesis introduced and tested in my study; that the pitch recognition
is essentially an auto-associative recall from memory, in the sense of a cooperative re-creation of the network
activity configuration which represents the stored memory template for the given tone. Thus, memories are
meant to be perceptual templates for the complex tones that are stored in an ANN via the synaptic weight
matrix. The prescription for storage of patterns in ANN is a Hebb-like rule [20] that is the distribution
of efficacies of synaptic weights is a result of ’experience’ with particular set of patterns. Different sets of
patterns yield different distributions of efficacies. The ANN stores templates that can be retrieved when noisy
or incomplete version of original patterns are presented at the input. It is not unreasonable to assume that
sensory experience with various sounds results in the formation of templates for individual sounds on which
our perceptual recognition is based, and wewill show that this process can be modelled with ANN.

For this purpose, wewill design a network representation of musical tones that is in agreement with the
current neurobiological data as well as with the psychophysical experiments with human subjects. The model
will be tested by means of computer simulations and its performance will be quantitatively compared with the
results from actual psychophysical experiments evaluating the effect of the missing fundamental. It will be
argued that the present model can provide an explanation for the different efficacies of lower and upper har-
monics in conveying the missing fundamental pitch percept, by means of one universal mechanism that emerges
as a result of realistic tone representations in the auditory cortex. wewill also discuss the neurophysiological
experiments that can directly test the proposed model.



2 The model network

The neural network model which is used in computer simulations of the effect of the missing fundamental is
the stochastic ANN [3] modified for storage and retrieval of patterns with a low level of overall network activity
according to Amit et al. [21]. The basic description of the model ANN is as follows:

(1) In the network, there are N neurons and to each neuron a binary variable S; = £1, 4 = 1...N, is assigned.
S; represents the state (output) of the i** neuron. S; = 1 whenever a neuron is active at a given time instant,
and S; = —1 whenever it is inactive. The current state of the network is represented by N-dimensional binary
vector {S;} = (51,52, ..., SN).

(2) Each neuron is connected to every other. J;; denotes the efficacy of the synaptic input from the neuron j
on the neuron . J;; > 0 for an excitatory input, and J;; < 0 for an inhibitory input. A neuron does not have
a direct feedback, e.g. Ji; = 0.

(3) We will deal with non-orthogonal memory patterns in which the ratio of active vs. non-active neurons
is significantly lower than 50%. For such highly correlated or biased patterns wewill use the modification
proposed by Amit et al. [21]. Here, the prescription for synaptic efficacies J;; is the modified Hebb-like rule
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where N—dimensional binary vectors {&'} = (&}',&5...,&R), w = 1,...,p, represent chosen memory patterns,
and —1 < b < 1 is the bias parameter for which it holds

N
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(4) A global control on the dynamics of the network, which prevents too high or too low activity, is achieved
by imposing a finite energy cost on fluctuations away from the optimal mean level of activity [21]. Now an
energy function has a form
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Here the coefficient ¢ > 0 measures the strength with which this soft constraint is imposed. The overall

postsynaptic potential of the it neuron is
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If the constraint parameter g is large enough, the results become essentially independent of g. One can find [21]
that by the time g = 10, the asymptotic behavior is reached for all values of the bias b. In all my simulation,
weused the value of g = 12. The theoretical storage capacity a of network storing low activity patterns with
softly constrained dynamics is 0.12 < a < 0.18. The exact value depends on the value of b. Thus, the maximal
number of memory patterns which can be retrieved in the network with N neurons is p = aN.

(5) The network dynamics is asynchronous, i.e. at every time instant only one randomly chosen neuron
updates its state according to its current postsynaptic potential (4). A probabilistic rule for the i** neuron
state transition is expressed by the relation [3, 22]

1
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0 < T < 1 is the analog of temperature and represents the level of noise during neuronal relaxation. An
interpretation of stochastic asynchronous dynamics is as follows. Between generations of the two consecutive
action potentials at least an absolute refractory period, which is about 1-2 ms [23], has to pass. In the model,
the time interval At = 1-2 ms is divided into N subintervals in such a way that: At = N dt. At every time
instant 0t randomly chosen (with equal probability %) neuron updates its state according to the probabilistic
rule (5). Therefore there is a guarantee that every neuron pauses at least 1-2 ms (absolute refractory period)
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Figure 1: Examples of the complex tone representation that is employed in computer simulations of the effect
of the missing fundamental. The tone representation is a stripe-like pattern of activity with more neurons
representing low frequencies than representing high frequencies. ’'Isofrequency’ stripes are orthogonal to the
low-to-high frequency gradient. An asterisk means that the neuron in the ’isofrequency’ stripe is active while
blank means that the neuron is not active. The first four lines of asterisks on the left represent the fundamental
frequency 4-stripe. Each next tone from the scale is shifted to the right since it covers higher frequencies. Here
only part of the whole network is shown because of the available space. (a) Examples of the tone templates
used in computer simulations of the first two experiments, bias b = —0.580. (b) Examples of the tone templates
from the third experiment, bias b = —0.723.

between two consecutive generations of action potentials. At the same time during the time period of 1-2 ms
N neurons are updated.

(6) An evolution of the network is a sequence of its states in time. It is a trajectory in the state space going
through the vertices of N-dimensional hypercube with an overall number of 2V vertices. When the time
evolution of a stochastic network ends with oscillations around one memory state, it is interpreted as a recall
of the given pattern from memory. In this context the recall from memory is a process in which the network
re-creates the same pattern of its activity, that was repeatedly spread in it sometimes in the past during the
process of learning. Particular pattern of activity is inner representation of corresponding external stimulus.
An observable variable is the overlap m*(t) of the current state {S;(¢)} with individual memory states {&!'},
ie.,

N
mi(t) =+ S €S0, n=1..p. (6)
i=1

An overlap m* is a measure of proximity for two configurations in the state space. By following the time
evolution of overlaps, we follow the time evolution of the network. The memory states {¢!'} are the attractors
of the deterministic network without noise. In a stochastic network the configuration will oscillate around one
of the memory states, which is in the state space close to the initial configuration.



3 Design of the tone representation for the ANN

In the ANN model, the inner representation of any external stimulus corresponds to the pattern of activity of
the whole relevant neuron ensemble. In search of a particular geometry of the stored inner representations of
the tones, we must follow these conditions:

(1) Neurons in the modelled nervous structure must have many interconnections, monosynaptic and/or polysy-
naptic, since the auto-associative properties of ANN are based on the inter-connectivity of the elements.

(2) These synaptic connections must be plastic, i.e. they undergo changes in efficacy as a consequence of a
novel experience.

There is experimental evidence that experience with sounds leads to changes in synaptic efficacies of neurons
in several fields of auditory cortex and in one part of auditory thalamus of young and adult mammals [24].
Since we are able to memorize and recognize new sounds throughout the whole life like the animals do, it does
not seem unreasonable to extrapolate these findings to humans. Concerning inter-connectivity, neurons in any
part of the cerebral cortex have many short-range and long-range vertical and horizontal interconnections [23].
Local interconnections in the auditory thalamus might exist but at present they are not documented, thus
wetake into account that the two above conditions are met by the auditory cortex.

The frequency representations in the nuclei and cortex of the auditory system have been revealed by
determining the neurons’ tuning curves. The tuning curve expresses the relationship between the pure tone
frequency (i.e. the fundamental frequency alone) and the minimal sound pressure level (SPL) needed to
elicit a neuron’s response. The frequency at which each neuron has the lowest threshold is called the best
(characteristic) frequency of the neuron [10].

Microelectrode studies in the cat [25, 26] have revealed several tonotopic organizations in auditory cortex.
Best frequencies progress in an antero-posterior direction from low to high in the anterior area (A), from
high to low in the primary auditory area (AI), from low to high in the posterior area (P), and from low to
high in the ventroposterior (VP) area. Neurons with similar best frequencies within each of fields A, AI, P,
and VP define ’isofrequency’ stripes that are oriented orthogonal to the low-to-high best-frequency gradients.
In anesthetized animals, the vast majority of recorded neurons in areas Al and A (cortical layers III and
IV) appear to be narrowly tuned with short-latency responses. Long-latency, broadly-tuned (over several
octaves) responses are rarely encountered in these fields. The majority of neurons in fields P and VP are
also narrowly tuned and respond in somewhat longer minimum latencies compared to neurons in A and Al
Adjacent to these four primary auditory fields are other auditory responsive areas, including AIT where the
neurons have much broader tuning and longer response latencies than in AI. To summarize, fields A and Al in
auditory cortex exhibit specific characteristics (predominance of narrowly tuned neurons in a precise tonotopic
arrangement), field AII exhibits nonspecific characteristics (predominance of broadly tuned neurons and lack
of precise tonotopy), and areas P and VP exhibit both specific and nonspecific characteristics. Tonopic and
non-tonotopic fields of the auditory cortex have also been described in monkeys [27, 28].

The subdivisions of auditory cortex vary from species to species [26-28]. The primary auditory cortex
(AI) has been identified in all mammalian species studied so far [29], and in all of them the representation
of frequencies is tonotopic. Neurons with similar best frequencies within AI define ’isofrequency’ stripes that
are oriented orthogonal to the low-to-high best-frequency gradients. Wewill use the representation of complex
tones equivalent to stripe patterns in which every stripe represents one range of frequencies. Neurons in the
‘isofrequency’ stripe will be active whenever the corresponding harmonic is present in the spectrum of a given
complex tone.

In the construction of particular stripe patterns for the complex tones, further important constraints has
to be taken into account.

(1) Spectra of the tones that are produced by various musical instruments are highly variable in the occurence
and relative intensity of their harmonics [30]. There is a general rule, that on average the intensity of a
harmonic decreases with the ordinal number of the harmonic. For instance, for the violine tone g=192 Hz
that has 30 harmonics in its spectrum, the relative intensity of individual harmonics higher than the ordinal
number 10, is less that 20% of the intensity of any of lower harmonics. In the case of piano tone ¢ = 128 Hz
which contains 14 harmonics, the same holds for harmonics higher than ordinal number 7, and so on.

(2) It is known from psychophysical experiments that accuracy of frequency (pitch) discrimination is a function
of frequency. There are individual differences, but in general it is a broad U-shaped dependency, which can be
measured very precisely. For instance, humans identify the frequency range of (200 & 1) Hz with the pitch of
the frequency equal to 200 Hz, the resolution for 800 Hz tone pitch is (800 & 2.4) Hz, and the resolution for
the 12,000 Hz tone pitch is (12000 & 84) Hz, and so on [31]. Since for the frequencies > 200 Hz the resolution



decreases as the frequency increases, the frequencies closer to the low border are called resolved and high
frequencies (several thousands of Hz) are called unresolved.

Difference in the psychophysical frequency resolution for the low and high frequencies can be related to
the cortical surface area devoted to low versus high frequencies. This distribution is known to vary among
species. It is interesting to note that in macaque monkey, it seems that low frequencies occupy more space
than high frequencies (A. Morel, personal communication). At present, the precise proportion of low versus
high frequencies cannot be evaluated in humans, although it is known that in human primary auditory cortex
(AI) there is a low-to-high frequency gradient, too [32].

From the viewpoint of the model and its tone representation, these psychophysical and biological relations
have an important consequence; that is the number of active neurons in the stripe that represents lower
frequencies will be greater than the number of active neurons in the stripe for the higher frequencies. This is a
result of both, relatively higher intensities of the lower harmonics of tones (and of naturally occuring sounds),
and relatively higher sensitivity to pitch discrimination in lower frequency regions. Higher intensities of lower
harmonics imply that more neurons are recruited to process the signal, and in turn more neurons devoted to
process particular frequency implies higher resolution. Examples of the complex tone representations that are
used in computer simulations of the effect of the missing fundamental are shown in figure 1.

4 Simulation of the effect of the missing fundamental

My computer experiments were arranged in a way which is compatible with the three pitch identification
psychophysical experiments of Houtsma and Smurzynski [33] and Goldstein et al. [34]. These psychophysical
studies deal with pitch identification for complex tones with many successive harmonics which lack the fun-
damental frequency. The question is raised whether the pitch percept of the missing fundamental is mediated
only by low-order resolved harmonics, or whether it can be also conveyed by high-order unresolved harmonics.

Pitch identification was studied as a function of (1) the ordinal number of the lowest harmonic in the
acoustic stimulus, and (2) the total number of the harmonics present in the stimulus. For both conditions,
the results of psychophysical experiments are presented as the percentage of correctly identified pitches by
human subjects. The results of computer simulations are presented as the percentage of correct retrievals of
the corresponding tone templates by the model ANN.

Wepresent the results obtained with such value of T which leads to the best quantitative agreement with
the empirical data. In the simulations of the first two experiments T' = 0.7, and in the simulation of the third
experiment 7' = 0.5. Other values of 0 < T < 1 lead to qualitative agreement with the empirical data, i.e. the
overall tendencies are preserved but quantitatively the data depart more than 10%.

4.1 The first experiment

For the comparison of real data with the result of computer simulations, it is necessary to give a short summary
of the design of psychophysical experiments. In the first experiment of Houtsma and Smurzynski [33], four
musically experienced subjects listened to complex tones comprising only upper harmonics. Subjects had to
identify the note they heard by pressing the appropriate key on a keyboard. The missing fundamental of the
presented harmonic complexes was one out of seven possible frequencies: 211.9, 224.5, 237.9, 252.0, 267.0,
282.9, and 299.7 Hz. Pitch identification runs were made for the conditions in which the lowest harmonic
number n(h) was changed from n(h) = 7 through n(h) = 19 in increments of three. The complexes contained
11 successive harmonics of equal amplitude. For each value of n(h) five runs of 63 trials were taken for each
subject, e.g. the total number of trials for every lowest harmonic number was 315.

A 30-dB SPL pink-noise signal formed a constant background to the tones that were raised 20 dB above it.
If we hold a pure tone’s frequency constant and increase its amplitude a, the tone’s loudness increases. The

following equation converts the root mean square pressure, p = \/LE’ into the quantity called sound pressure

level (SPL) that is measured in decibels, dB [35]:

SPL = 20log (pﬁo) dB . (7)

Here, pp = 2- 107> N/m? is a reference pressure which is close to the threshold for hearing in the frequency
range 1,000-4,000 Hz. The sound energy W = p?. Let W; and W, represent two values of sound energy, such
that W; = Wy x 100. Then, according to equation (7), the difference between SPL; and SPL, is equal to 20



dB. In pink noise, the mean square pressure, p(f), is inversely proportional to the center frequency f of the
given octave, i.e, p?(f) = %, where K is a constant. One octave is a band of frequencies from fy to 2 x fo.
When we calculate the integral SPL for each octave band, we find out that the band SPL for successsive
octave bands is equal to Kin2, and therefore independent of the center frequency f [36]. Thus, in the ANN
comprised of the ’isofrequency’ stripes, the pink noise will be introduced as random activation of neurons with
the uniform distribution across the frequencies.

The ANN used in my computer simulation (described in section 2) has N = 500 neurons, that comprise a
grid of 100 ’isofrequency’ stripes with 5 neurons in each of the stripes (see figure 1(a)). There are seven memory
patterns, with the fundamental frequencies equal to the tones employed in the psychophysical experiment. Each
of the complex tones memory templates is comprised of the fundamental frequency 4-stripe and 29 successive
harmonic stripes. The network is small and therefore it can capture general properties of frequency resolution,
in the sense of different discrimination sensitivity for different frequencies, only qualitatively. In particular,
the stripe resolution in the frequency range 304-1499 Hz is 40 Hz, for the range 1500-3896 Hz it is 82 Hz, for
3897-5888 Hz it is 128 Hz, and for 5888-10240 Hz it is 256 Hz. These numbers have been chosen arbitralily
so that the network size is manageble and the tone patterns are represented in such a way that the two
successive harmonics in one tone pattern do not overlap. In addition to decreasing frequency resolution for the
stripes representing higher frequencies, the number of active neurons representing high frequencies is relatively
smaller than the number of neurons representing lower frequencies. This is captured in a following way (see
figure 1(a)): the harmonics with the ordinal number from 2 to 6 are represented by 5 active neurons in the
corresponding frequency stripe, harmonics No. 7-11 have 4 (randomly chosen) active neurons, harmonics
No. 12-14 have 2 active neurons, harmonic No. 15 has only 1 neuron active, No. 16 has 4 active neurons,
No. 17. has 3 active neurons, and harmonics above ordinal number 17 have 2 active neurons in the stripe.
These particular numbers have been chosen arbitralily so that the results of the computer simulation fit the
experimental data also quantitatively. The fundamental frequency is an exception — it is represented by 20
active neurons in 4 stripes. This is because the fundamental frequency presented alone as a pure tone, yields
the percept of corresponding pitch. In the ANN model, the presentation of the fundamental frequency alone
must evoke neural activity of the whole template in 100% of cases, and therefore the initial overlap of the input
with the corresponding memory state must be big. In the frame of this model, pitch is represented by the
whole memory template, and not by the fundamental frequency alone. Simulations of the template retrieval
when the fundamental frequency was presented alone indeed yield 100% correct retrieval.

In the criterion for the correct retrieval of the tone template three conditions must be met simultaneously:
(1) The overlap between the final network state (after 10 neuronal relaxations) and the desired tone template
is the largest compared to the overlaps with all other tone templates.

(2) The overlap between the activity retrieved at the place of the missing fundamental 4-stripe is the largest
compared to overlaps with other missing fundamental 4-stripes.
(3) The final overlap with the desired fundamental 4-stripe is greater than 0.25.

Conditions 1 and 2 follow logically from the notion that pitch identification is an associative recall of
the corresponding template. The third condition has been added arbitralily so that the number of correct
identifications fits the numbers observed experimentally.

The computer simulations were done for 6 inputs, i.e. complexes of 11 harmonics with the lowest harmonic
number n(h) being equal to 7, 10, 13, 16, or 19, like it was done in the actual experiment. For every lowest
harmonic number 315 runs of retrieval were ran. The network reaches equilibrium fast, so that after 10
relaxations the average final overlap with the corresponding memory pattern does not improve.

Figure 2 illustrates the input state of the neural network and the last state in the sequence of 10 network
state transitions. The signal with SPL that is 20 dB above the SPL of another signal has the energy that is
100 times bigger. Thus, the input contains also randomly activated neurons, distributed uniformly across the
frequencies since they are supposed to represent the pink noise. The number of randomly activated neurons is
proportional to the ratio between the energy of the signal and the energy of the pink noise. Figure 3 illustrates
the evolution of the overlaps (see equation 6) between the current network state and all the memory states
during the tone retrieval which is illustrated in figure 2.

Interpretation of the time it takes to identify the pitch, depends on what we consider to be a length of the
time interval At in asynchronous dynamics. In the case At is equal to the absolute refractory period (1-2 ms)
then the retrieval of pitch is achieved, on average, 5—10 ms after arrival of the stimulus to the network, what
corresponds to 5 neuronal relaxations. If At is equal to the relative refractory period then the retrieval time
would be approximately ten times longer, e.g. 50-100 ms. This can be considered as a sufficiently short time
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Figure 2: Example of the tone retrieval in the first experiment. An asterisk means that the neuron in the
isofrequency’ stripe is active while blank means that the neuron is not active. (a) Input state of the network is
the activity evoked by the frequencies corresponding to 11 harmonics (7-17) from tone No. 1, plus pink noise
that activates neurons randomly (see text). (b) Final state of the network after 10 relaxations corresponds to
the whole template of tone No. 1. The ANN has N = 500 neurons, and the temperature in neuronal relaxation
is T'=10.7. The coeflicient of the soft constraint on relaxation dynamics is g = 12.
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Figure 3: Evolution of the overlaps between the current network state and all the memory patterns during
the retrieval of tone No. 1 as illustrated in figure 2. (a) Evolution of overall overlaps. (b) Evolution of partial
overlaps corresponding to that part of the representation which covers fundamental frequencies showing that
the activity in the fundamental 4-stripe is also retrieved.
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Figure 4: Identification of the pitch of the missing fundamental as a function of the lowest harmonic number
n(h) for the results of actual experiment and my computer simulation from the first experiment. The input
stimulus always contains 11 successive harmonics but the ordinal number of the lowest harmonic, n(h), varies
from 7 to 19 in increment of 3. Each point is the average of 315 trials, i.e. 45 trials for each of the seven tones.
The ANN has N = 500 neurons, the temperature in neuronal relaxation is T' = 0.7, and g = 12.

for accomplishing perceptual task.

Figure 4 shows the percent of correct pitch identification plotted against the lowest harmonic number
n(h) as it was obtained in the computer simulations and in the actual experiment. From the plot of the
experimental results [33] wetook the average values of those two subjects which participated also in the second
experiment (M.H. and J.S.). The results of the actual and computer experiments are in a good quantitative
agreement. They show the sharp and monotonic score drop in the region of the lowest harmonic number
between n(h) = 7 and n(h) = 13. This implies that for complexes containing low-order harmonics, the salience
of the fundamental pitch percept degrades when harmonic order increases (i.e., when less and less aurally
resolved harmonics are present). The performance does not degrade all the way down to the chance level
(equal to 14%) as harmonic order n(h) increases. Instead it reaches an asymptotic level well above chance that
is independent of harmonic order.

4.2 The second experiment

The aim of the second pitch identification experiment of Houtsma and Smurzynski [33] was to examine the effect
of the number of harmonics in the frequency complex on the salience of the pitch of the missing fundamental.
The experimental procedure was the same as the one used in the first experiment, except that the total number,
m, of successive harmonics in each sound varied. The lowest harmonic number n(h) was kept fixed at the
values of n(h) = 10 and then of 16. The results of actual and computer experiment are shown in figure 5.

Figure 5 shows the percent of correct pitch identification plotted against the total number of harmonics,
m. As we can see, there is a good quantitative agreement between the experimental and simulated results.
The main feature of the data is that performance improves with increasing the number of components m in
the sound, until it reaches an asymptote when adding more harmonics does not improve the performance. For
higher harmonics starting with n(h) = 16, the curves are shifted towards the region of lower percentage of
correct identification.

4.3 The third experiment

The effect of the number of harmonics m in the frequency complex on the salience of the pitch of the missing
fundamental for different ordinal numbers of the lowest harmonic n(h), was investigated also by Goldsteinet
al. [34]. Listener (N.H.) was presented with eight frequency complexes without the fundamental frequencies
and had to identify the pitch he heard. The missing fundamental of these 8 sounds were at 240, 250, 266.7,
281.25, 320, 337.5, 360, and 375 Hz. There was no background noise. Each run included 50 runs for each of
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Figure 5: Identification of the pitch of the missing fundamental as a function of the number of harmonics m
for the results of actual experiment and my computer simulation from the second experiment. The ordinal
number of the lowest harmonic is fixed, but the number of harmonics, m, in the stimulus varies. The upper
pair of curves corresponds to n(h) = 10 and the bottom pair of curves corresponds to n(h) = 16. Each point
is the average from 315 trials. The ANN has N = 500 neurons, the temperature in neuronal relaxation is
T =0.7, and g = 12.

the eight notes. Percents of correct pitch identification with complex tones comprising two or three successive
harmonics are shown in figure 6, together with the results of my computer simulations.

For simulation of this experiment new tone templates had to be developed. First, because the used
values of the missing fundamental frequencies differed from the values used in Houtsma’s and Smurzynski’s
experiments. Second, the performance for the corresponding total numbers of harmonics, e.g. m = 2,3, and
the corresponding lowest harmonic number, e.g. n(h) = 10, in the second and third experiment differ. In the
frame of the present ANN model, this difference implies different tone templates. This is not unreasonable,
because the subject participating in the third experiment was not the same as any of those in the first two
experiments, and they might have had different tone templates reflecting individual differences in musical
experience.

Examples of these memory templates are shown in figure 1(b). The network has 455 neurons in 91 stripes
with total of 5 neurons in one stripe. There are 8 tone templates each comprised of a fundamental frequency
stripe with 20 active neurons, and 21 harmonics in which the number of active neurons decreases with increasing
ordinal number of harmonic. There are two neurons active in the stripes corresponding to the harmonics No.
2-3, 5 active neurons for the No. 4-5, 4 active neurons for No. 6-7, 3 active neurons for No. 8-9, 2 active
neurons for No. 89, and 1 active neuron for the harmonics with the ordinal number greater than 9. The
resolution decreases with increasing frequency in such a way that in the interval 375-1499 Hz the resolution is
60 Hz, in the interval 1500-3896 Hz the resolution is 80 Hz, for 3897-5888 Hz it is 120 Hz, and for 5889-10240
Hz it is equal to 256 Hz. All these numbers have been chosen arbitralily so that the network size is manageble,
the two successive harmonics in one tone pattern do not overlap, and the templates lead to the quantitative
fit with the experimental results.

Criterion for the correct tone template recall was the same as the criterion used in the previous two
computer simulations. Simulations were run for the same values of n(h) and m as were used in the actual
experiment. There is a good quantitative agreement between the experimental and simulated results. The
data show that the performance is better for mm = 3 than for m = 2, i.e. the pitch identification improves
with increasing number of components in the sound. For both values of m, the performance is better for the
complexes that begin with the lower harmonic number n(h).
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Figure 6: Identification of the pitch of the missing fundamental as a function of the lowest harmonic number
n(h) for the two numbers of harmonics, m = 2 and m = 3 for the results of actual experiment and my computer
simulation from the third experiment. Each point is the average from 400 trials, i.e. 50 trials for each of the
eight tones. The ANN has NV = 455 neurons, the temperature in neuronal relaxation is T'= 0.5, and g = 12.

5 Discussion

Houtsma and Smurzynski [33] pointed out that the results of the first psychophysical experiment, represented
in figure 4, suggest a behaviorally based separation of a complex tone’s harmonics: those of low order and
those of high order, with the separation somewhere between the 10t* and 13* harmonic. According to them
this separation might imply either two distinct and separate pitch mechanisms in the auditory system, one
for aurally resolved frequencies [17, 18] and the second for unresolved frequencies [37]; or a single mechanism
that performs differently for these two kinds of frequencies [38]. An explanation offered by the present ANN
model is that there is one cortical mechanism and the differences in its behavior emerge as the consequence of
the characteristics of the tone inner representation. Namely, the ’strength’ in representation for the resolved
and unresolved harmonics differs. The quality of retrieval in terms of the magnitude of the final overlap is
proportional to the initial overlap between the input and the corresponding tone template. Thus, the bigger
part of the representation devoted to the resolved harmonics conveys the pitch stronger. Second, the frequency
resolution in the stripe representation of tones decreases with the ordinal number of harmonics. Therefore
there are relatively large overlaps between the representations of individual tones themselves, in that template
region which covers unresolved frequencies (see figure 1). Both factors worsen the retrieval of the desired tone
template when only high frequencies are presented.

Houtsma and Smurzynski [33] explain the results illustrated in figure 5 (the second experiment) in terms
of Goldstein [17] optimum processor theory of pitch perception. According to it, the more harmonics are
present in the sound, the less statistical uncertainty exists about the corresponding missing fundamental. The
explanation for the general improvement of pitch identification with increasing number of components in terms
of the ANN model is similar. Because in this model the pitch perception is an auto-associative recall from
memory, the bigger the fragment of memory present at the input the better retrieval from memory.

In the case of the third experiment (figure 6), the accuracy of predictions generated by the ANN model
is comparable with the predictions obtained by the optimum processor theory of Goldstein et al. [34]. In
terms of the ANN model the explanation is again simple, e.g. the bigger the fragment of memory present at
the input the better is retrieval from memory. The differences between the results from the second and third
experiment for m = 2,3, and the lowest harmonic number n(h) = 10, are attributed to the differences in the
tone representations (see figure 1). Namely, worse performance in the third experiment is a consequence of
more sparse activity representing harmonics above the ordinal number 10, compared with templates used in
the first and second experiments.
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Like the optimum processor theory of Goldstein [17] and the virtual pitch theory of Terhardt [18], the
ANN model is based on the premise that perception is a template-matching process. Unlike these mathe-
matical models, the ANN model bears strongly on templates that are constructed in accordance with the
known neurobiological data for representation of sound frequencies in the primary auditory cortex (AI). When
modelling psychophysical experiments that involved different subjects, different tone representations had to
be developed. This is not surprising since individual experiences with sounds differ, and so must the inner
representation. To capture this more realistically, tone templates should be different for each tone and not
only for each individual. As opposed to strictly mathematical optimum theories, the ANN model explains the
spectrum-invariant pitch recognition in neurobiological terms, and therefore can offer a basis for designing and
interpretation of biological experiments that may directly help in elucidating the actual neural mechanisms
that we use in hearing.

Related to the present ANN model is the connectionist neural network for chord classification of Laden and
Keefe [19] that also performs matching of templates in the process of simulation of pitch perception. This feed-
forward network is able to classify chords well above the chance level also in the case of the missing fundamental
or when other harmonics are missing. However, for the connectionist model, the strict quantitative comparison
with experimental results has not been done. There is also a difference in how the connectionist model explains
the spectrum-invariant pitch perception; pitch identification is a result of generalization from incomplete input
by means of hierarchical bottom-up connections, which modify according to the back-propagation algorithm.
On the contrary, the ANN model implies that there is a filling-in process in the primary sensory cortex. When
only a part of the harmonic complex is present, neuronal activity would appear at the place of the missing
fundamental representation in the primary auditory cortex. At present it is possible to test directly this
prediction by means of a biological experiment in which the neuronal activity is measured at the ’isofrequency’
stripe representing the missing fundamental while the dichotic stimulus consists only of two upper harmonics
in order to eliminate the spectral cues conveyed from periphery. The appearance or absence of activity would
directly proved or disproved the proposed model. Although, the geometry of the tone representation is based
on the data that hold for the primary auditory cortex, it must be admitted that other geometries could also
serve the role of the tone template. Therefore, similar experiments should be carried on in parallel on other
auditory structures, like other cortical auditory areas and auditory thalamus, in order to see whether and
where the filling-in process actually happens.

At present, there is some experimental evidence in favor of the proposed ANN model. In one study,
properties of neurons in AT of adult Japanese monkeys were evaluated in response to combinations of successive
higher harmonics without the fundamental frequency fo [39]. The same neuron responded both to its best
frequency fo and to the combinations of successive higher harmonics derived from its fy, but not to any of
these harmonics presented individually. However, since the frequency complexes were presented monotically,
the introduction of the energy corresponding to the missing fy by the spectral cues in the periphery cannot be
excluded. In another study, Langner et al. [40] performed the measurments of neuromagnetic fields (NMFs)
of human auditory cortex in response to complex tones lacking the fundamental frequency. A special synthesis
of the tones to minimize the spectral cues was employed. They found that the source of NMF moved to the
regions of lower frequencies which were not present in the stimulus. The third line of evidence comes from
the studies of patients following bilateral lesions of auditory cortex. Bharucha et al. [41] found that the
identification of the pitch of two-harmonic complex tones was significantly worse when the fundamental f, was
missing in the stimulus (65%) than when fy was present (92%). The authors conclude that normal recognition
of virtual pitch relies on the integrity of the primary auditory cortex. However, in the chronic stage following
ischemic stroke, it seems that non-primary cortical areas and /or subcortical structures are sufficient to account
for above-chance performance (65%).

To conclude, it is important to mention that the proposed ANN model for spectrum-invariant pitch recog-
nition can be applied also to invariant recognition of unharmonic sounds; for instance speech. Humans are
able to recognize words pronounced with different accents and at different cadence in terms of frequencies. In
speach, each syllable is an unharmonic frequency complex that activates particular combination of frequency
stripes in the primary auditory cortex. Any harmonic or unharmonic sound can form template that serves as
a basis for spectrum-invariant pattern recognition.
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