
6
Abstract data types
s
s

t

is

y are

scribe

plore
t first
 some

ng a
enjoy
ve the
 types
This opened my mind, I started to grasp what it means to use the tool known as algebra. I’ll
be damned if anyone had ever told me before: over and again Mr. Dupuy [the mathematics
teacher] was making pompous sentences on the subject, but not once would he say thi
simple word: it is a division of labor, which like any division of labor produces miracle,
and allows the mind to concentrate all of its forces on just one side of objects, on just one
of their qualities.

What a difference it would have made for us if Mr. Dupuy had told us: This cheese is sof
or it is hard; it is white, it is blue; it is old, it is young; it is yours, it is mine, it is light or it
is heavy. Of so many qualities let us consider only the weight. Whatever that weight may be,
let us call it A. Now, without thinking of the weight any more, let us apply to A everything
that we know of quantities.

Such a simple thing; yet no one was saying it to us in that faraway province…

Stendhal, The Life of Henry Brulard, 1836.

For abstraction consists only in separating the perceptible qualities of bodies, either from
other qualities, or from the bodies to which they apply. Errors arise when this separation
is poorly done or wrongly applied: poorly done in philosophical questions, and wrongly
applied in physical and mathematical questions. An almost sure way to err in philosophy
to fail to simplify enough the objects under study; and an infallible way to obtain defective
results in physics and mathematics is to view the objects as less composite than the.

Denis Diderot, A Letter on the Blind for the Benefit of Those Who Can See, 1749.

L etting objects play the lead role in our software architectures requires that we de
them adequately. This chapter shows how.

You are perhaps impatient to dive into the depths of object technology and ex
the details of multiple inheritance, dynamic binding and other joys; then you may a
look at this chapter as an undue delay since it is mostly devoted to the study of
mathematical concepts (although all the mathematics involved is elementary).

But in the same way that even the most gifted musician will benefit from learni
little music theory, knowing about abstract data types will help you understand and
the practice of object-oriented analysis, design and programming, however attracti
concepts might already appear without the help of the theory. Since abstract data

ABSTRACT DATA TYPES §6.1122

 ideas

extend
tion

ons:

se (we

cise,
f the

tion
more
r the
od of
cts of

 data
rather

let us
asis for

tack
ner,
uitous
ler or

s,
e
f
t I

“Information Hid-
ing”, page 51.
establish the theoretical basis for the entire method, the consequences of the
introduced in this chapter will be felt throughout the rest of this book.

There is more. As we will see at chapter end, these consequences actually
beyond the study of software proper, yielding a few principles of intellectual investiga
which one may perhaps apply to other disciplines.

6.1 CRITERIA

To obtain proper descriptions of objects, we need a method satisfying three conditi

• The descriptions should be precise and unambiguous.

• They should be complete — or at least as complete as we want them in each ca
may decide to leave some details out).

• They should not be overspecifying.

The last point is what makes the answer non-trivial. It is after all easy to be pre
unambiguous and complete if we “spill the beans” by giving out all the details o
objects’ representation. But this is usually too much information for the authors of
software elements that need to access the objects.

This observation is close to the comments that led to the notion of informa
hiding. The concern there was that by providing a module’s source code (or,
generally, implementation-related elements) as the primary source of information fo
authors of software elements that rely on that module, we may drown them in a flo
details, prevent them from concentrating on their own job, and hamper prospe
smooth evolution. Here the danger is the same if we let modules use a certain
structure on the basis of information that pertains to the structure’s representation
than to its essential properties.

6.2 IMPLEMENTATION VARIATIONS

To understand better why the need for abstract data descriptions is so crucial,
explore further the potential consequences of using physical representation as the b
describing objects.

A well-known and convenient example is the description of stack objects. A s
object serves to pile up and retrieve other objects in a last-in, first-out (“LIFO”) man
the latest inserted element being the first one to be retrieved. The stack is a ubiq
structure in computing science and in many software systems; the typical compi
interpreter, for example, is peppered with stacks of many kinds.

Stacks, it must be said, are also ubiquitous in didactic presentations of abstract data type
so much so that Edsger Dijkstra is said to have once quipped that “abstract data types ar
a remarkable theory, whose purpose is to describe stacks”. Fair enough. But the notion o
abstract data type applies to so many more advanced cases in the rest of this book tha
do not feel ashamed of starting with this staple example. It is the simplest I know which
includes about every important idea about abstract data types.

§6.2 IMPLEMENTATION VARIATIONS 123

 given

ay

from
ray at

 two
l

Three possible
representation
for a stack
Stack representations

Several possible physical representations exist for stacks:

The figure illustrates three of the most common representations. Each has been
a name for ease of reference:

• ARRAY_UP: represent a stack through an array representation and an integer count
whose value ranges from 0 (for an empty stack) to capacity, the size of the array
representation; stack elements are stored in the array at indices 1 up to count.

• ARRAY_DOWN: like ARRAY_UP, but with elements stored from the end of the arr
rather than from the beginning. Here the integer is called free (it is the index of the
highest free array position, or 0 if all positions are occupied) and ranges
capacity for an empty stack down to 0. The stack elements are stored in the ar
indices capacity down to free + 1.

• LINKED: a linked representation which stores each stack element in a cell with
fields: item representing the element, and previous containing a pointer to the cel
containing the previously pushed element. The representation also needs last, a
pointer to the cell representing the top.

s

representation

(ARRAY_UP)

“Push” operation:
count:= count + 1
representation [count] := xcount

capacity

1

representation

(ARRAY_DOWN)

“Push” operation:
representation [free] := x
free := free – 1

free

capacity

1

(LINKED)

“Push” operation:
new (n)
n● item := x
n●previous:= last
last := n

item

item

item

item

previous

previous

previous

previous

last

ABSTRACT DATA TYPES §6.2124

l-like
ng an

ions:
 a
p

s exist.
ited

ill

 two

e

oosing
 Why

Head-to-head
representation
for two stacks
Next to each representation, the figure shows a program extract (in Pasca
notation) giving the corresponding implementation for a basic stack operation: pushi
element x onto the top.

For the array representations, ARRAY_UP and ARRAY_DOWN, the instructions
increase or decrease the top indicator (count or free) and assign x to the corresponding
array element. Since these representations support stacks of at most capacity elements,
robust implementations should include guards of the respective forms

if count < capacity then …
if free > 0 then …

which the figure omits for simplicity.

For LINKED, the linked representation, pushing an element requires four operat
create a new cell n (done here with Pascal’s new procedure, which allocates space for
new object); assign x to the new cell’s item field; chain the new cell to the earlier stack to
by assigning to its previous field the current value of last; and update last so that it will
now be attached to the newly created cell.

Although these are the most frequently used stack representations, many other
For example if you need two stacks of elements of the same type, and have only lim
space available, you may rely on a single array with two integer top markers, count as in
ARRAY_UP and free as in ARRAY_DOWN; one of the stacks will grow up and the other w
grow down. The representation is full if and only if count = free.

The advantage, of course, is to lessen the risk of running out of space: with
arrays of capacity n representing stacks under ARRAY_UP or ARRAY_DOWN, you exhaust
the available space whenever either stack reaches n elements; with a single array of siz
2n holding two head-to-head stacks, you run out when the combined size reaches 2n, a less
likely occurrence if the two stacks grow independently. (For any variable values p and q,
max(p + q) ≤ max (p) + max (q).)

Each of these and other possible representations is useful in some cases. Ch
one of them as “the” definition of stacks would be a typical case of overspecification.
should we consider ARRAY_UP, for example, more representative than LINKED? The most
visible properties of ARRAY_UP — the array, the integer count, the upper bound — are
irrelevant to an understanding of the underlying structure.

representation
count

1

capacity

free

Stack 2

Stack 1

§6.2 IMPLEMENTATION VARIATIONS 125

ecall,
e into
ms are
n the
 likely

ctures,

ts, data
mple,
of

the
f data.
 which

k mail,
ull of
nium

 of the
reds of

“ABOUT SOFT-
WARE MAINTE-
NANCE”, 1.3, page
17.

Risks forum, 10.74,
3 Jan. 1993. Post-
ing by Darrell D.E.
Long: ``Dehuman-
ization by old
Cobol programs''.
Abbreviated.

See exercise E6.5,
page 161.

See page 18.
The danger of overspecification

Why is it so bad to use a particular representation as specification?

The results of the Lientz and Swanson maintenance study, which you may r
give a hint. More than 17% of software costs was found to come from the need to tak
account changes of data formats. As was noted in the discussion, too many progra
closely tied to the physical structure of the data they manipulate. A method relying o
physical representation of data structures to guide analysis and design would not be
to yield flexible software.

So if we are to use objects or object types as the basis of our system archite
we should find a better description criterion than the physical representation.

How long is a middle initial?

Lest stacks make us forget that, beyond the examples favored by computer scientis
structures are ultimately connected with real-life objects, here is an amusing exa
taken from a posting on the Risks forum (comp.risks Usenet newsgroup) of the dangers
a view of data that is too closely dependent on concrete properties:

My dear mother blessed (or perhaps cursed) all of her children with two middle initials,
in my case “D” and “E”. This has caused me a good deal of trouble.

It seems that TRW sells certain parts of your credit information, such as your name and
a demographic profile. I recently got a new credit card from Gottchalks and found to my
chagrin that my name had been truncated to “Darrell D. Long”. I went to the credit
manager and was assured that things would be fixed. Well, two things happened: I got a
new credit card, this time as “Darrell E. Long”, and TRW now has an annotation in my
file to the effect “File variation: middle initial is E”. Soon after this I start getting mail
for “Darrell E . Long” (along with the usual “Darrell Long” and “Darrell D. Long” and
the occasional “Darrell D. E. Long”).

I called up the credit bureau and it seems that the programmer who coded up the TRW
database decided that all good Americans are entitled to only one middle initial. As the
woman on the phone patiently told me “They only allocated enough megabytes (sic) in
the system for one middle initial, and it would probably be awfully hard to change”.

Aside from the typical example of technobabble justification (“megabytes”),
lesson here is the need to avoid tying software to the exact physical properties o
TRW’s system seems similar to those programs, mentioned in an earlier discussion,
“knew” that postal codes consist of exactly five digits.

The author of the message reproduced above was mainly concerned about jun
an unpleasant but not life-threatening event; the archives of the Risks forum are f
computer-originated name confusions with more serious consequences. The “mille
problem”, mentioned in the discussion of software maintenance, is another example
dangers of accessing data based on physical representation, this one with hund
millions of dollars’ worth of consequences.

ABSTRACT DATA TYPES §6.3126

ice of

their
 other
cusing
e may

s call

s to

et us

ck is
ns, for

 Then
he

r the
e data
ns
6.3 TOWARDS AN ABSTRACT VIEW OF OBJECTS

How do we retain completeness, precision and non-ambiguity without paying the pr
overspecification?

Using the operations

In the stack example, what unites the various representations in spite of all
differences is that they describe a “container” structure (a structure used to contain
objects), where certain operations are applicable and enjoy certain properties. By fo
not on a particular choice of representation but on these operations and properties, w
be able to obtain an abstract yet useful characterization of the notion of stack.

The operations typically available on a stack are the following:

• A command to push an element on top of a stack. Let us call that operation put.

• A command to remove the stack’s top element, if the stack is not empty. Let u
it remove.

• A query to find out what the top element is, if the stack is not empty. Let us call it item.

• A query to determine whether the stack is empty. (This will enable client
determine beforehand if they can use remove and item.)

In addition we may need a creator operation giving us a stack, initially empty. L
call it make.

Two points may have caught your attention and will deserve more explanation later in
this chapter. First, the operation names may seem surprising; for the moment, just think
of put as meaning push, remove as meaning pop, and item as meaning top. Details
shortly (on the facing page, actually). Second, the operations have been divided into
three categories: creators, which yield objects; queries, which return information about
objects; and commands, which can modify objects. This classification will also require
some more comments.

In a traditional view of data structures, we would consider that the notion of sta
given by some data declaration corresponding to one of the above representatio
example (representation ARRAY_UP, Pascal-like syntax):

count: INTEGER

representation: array [1 ● ● capacity] of STACK_ELEMENT_TYPE

where capacity, a constant integer, is the maximum number of elements on the stack.
put, remove, item, empty and make would be routines (subprograms) that work on t
object structures defined by these declarations.

The key step towards data abstraction is to reverse the viewpoint: forget fo
moment about the representation; take the operations themselves as defining th
structure. In other words, a stack is any structure to which clients may apply the operatio
listed above.

§6.3 TOWARDS AN ABSTRACT VIEW OF OBJECTS 127

ach to
-side,
gents

ents,

; the

ot a
will
proach
e will
ation.

ou are
ave
ks may

ire to
tures

ory of
a

. For
 the
first-in,
ment

See “BEYOND
SOFTWARE”, 6.6,
page 147.
A laissez-faire policy for the society of modules

The method just outlined for describing data structures shows a rather selfish appro
the world of data structures: like an economist of the most passionate supply
invisible-hand, let-the-free-market-decide school, we are interested in individual a
not so much for what they are internally as for what they have to offer to each other. The
world of objects (and hence of software architecture) will be a world of interacting ag
communicating on the basis of precisely defined protocols.

The economic analogy will indeed accompany us throughout this presentation
agents — the software modules — are called suppliers and clients; the protocols will be
called contracts, and much of object-oriented design is indeed Design by Contract, the
title of a later chapter.

As always with analogies, we should not get too carried away: this work is n
textbook on economics, and contains no hint of its author’s views in that field. It
suffice for the moment to note the remarkable analogies of the abstract data type ap
to some theories of how human agents should work together. Later in this chapter w
again explore what abstract data types can tell us beyond their original area of applic

Name consistency

For the moment, let us get back to more immediate concerns, and make sure y
comfortable with the above example specification in all its details. If you h
encountered stacks before, the operation names chosen for the discussion of stac
have surprised or even shocked you. Any self-respecting computer scientist will know
stack operations under other names:

Why use anything else than the traditional terminology? The reason is a des
take a high-level view of data structures — especially “containers”, those data struc
used to keep objects.

Stacks are just one brand of container; more precisely, they belong to a categ
containers which we may call dispensers. A dispenser provides its clients with
mechanism for storing (put), retrieving (item) and removing (remove) objects, but without
giving them any control over the choice of object to be stored, retrieved or removed
example, the LIFO policy of stacks implies that you may only retrieve or remove
element that was stored last. Another brand of dispenser is the queue, which has a
first-out (FIFO) policy: you store at one end, retrieve and remove at the other; the ele

Common stack operation name Name used here

push put

pop remove

top item

new make

ABSTRACT DATA TYPES §6.3128

le of a
ices,

s and
trieval
 which
zes the

mers
sis for
 will
clear
ly be
(and

 the

aming
etail.

a may
ng time
 appear

opers
, many
 goal.

this
ing, I
 place
ource
o favor
rtized

 by
ystem
when
ng code
ve all

Chapter 26, in par-
ticular “CHOOS-
ING THE RIGHT
NAMES”, 26.2,
page 879.
that you retrieve or remove is the oldest one stored but not yet removed. An examp
container which is not a dispenser is an array, where you choose, through integer ind
the positions where you store and retrieve objects.

Because the similarities between various kinds of container (dispensers, array
others) are more important than the differences between their individual storage, re
and removal properties, this book constantly adheres to a standardized terminology
downplays the differences between data structure variants and instead emphasi
commonality. So the basic operation to retrieve an element will always be called item, the
basic operation to remove an element will always be called remove and so on.

These naming issues may appear superficial at first — “cosmetic”, as program
sometimes say. But do not forget that one of our eventual aims is to provide the ba
powerful, professional libraries of reusable software components. Such libraries
contain tens of thousands of available operations. Without a systematic and
nomenclature, both the developers and the users of these libraries would quick
swamped in a flood of specific and incompatible names, providing a strong
unjustifiable) obstacle to large-scale reuse.

Naming, then, is not cosmetic. Good reusable software is software that provides
right functionality and provides it under the right names.

The names used here for stack operations are part of a systematic set of n
conventions used throughout this book. A later chapter will introduce them in more d

How not to handle abstractions

In software engineering as in other scientific and technical disciplines, a seminal ide
seem obvious once you have been exposed to it, even though it may have taken a lo
to emerge. The bad ideas and the complicated ones (they are often the same) often
first; it takes time for the simple and the elegant to take over.

This observation is true of abstract data types. Although good software devel
have always (as a result of education or mere instinct) made good use of abstraction
of the systems in existence today were designed without much consideration of this

I once did a little involuntary experiment which provided a good illustration of
state of affairs. While setting up the project part of a course which I was teach
decided to provide students with a sort of anonymous marketplace, where they could
mock “for sale” announcements of software modules, without saying who was the s
of the advertisement. (The idea, which may or may not have been a good one, was t
a selection process based only on a precise specification of the modules’ adve
facilities.) The mail facility of a famous operating system commonly favored
universities seemed to provide the right base mechanism (why write a new mail s
just for a course project?); but naturally that mail facility shows the sender’s name
it delivers a message to its recipients. I had access to the source of the correspondi
— a huge C program — and decided, perhaps foolishly, to take that code, remo
references to the sender’s name in delivered messages, and recompile.

§6.4 FORMALIZING THE SPECIFICATION 129

vious
matic
ram
naïvely
but the
 again,
move
ain in
ead

beast
ed, in

stract
en the

needs

been

ration

d in
 mail

es the
ard,

ram,
ighly

a hole
now;

 use.
 terms

y how

 Writing MAIL_
MESSAGE is the
topic of exercise
E6.4, page 161.
Aided by a teaching assistant, I thus embarked on a task which seemed ob
enough although not commonly taught in software engineering courses: syste
program deconstruction. Sure enough, we quickly found the first place where the prog
accessed the sender’s name, and we removed the corresponding code. This, we
thought, would have done the job, so we recompiled and sent a test mail message;
sender’s name was still there! Thus began a long and surreal process: time and
believing we had finally found the last reference to the sender’s name, we would re
it, recompile, and mail a test message, only to find the name duly recorded once ag
its habitual field. Like the Hydra in its famous fight, the mailer kept growing a new h
every time we thought we had cut the last neck.

Finally, repeating for the modern era the earlier feat of Hercules, we slew the
for good; by then we had removed more than twenty code extracts which all access
some way or other, information about the message sender.

Although the previous sections have only got us barely started on our road to ab
data types, it should be clear by now that any program written in accordance with ev
most elementary concepts of data abstraction would treat MAIL_MESSAGE as a carefully
defined abstract notion, supporting a query operation, perhaps called sender, which
returns information about the message sender. Any portion of the mail program that
this information would obtain it solely through the sender query. Had the mail program
been designed according to this seemingly obvious principle, it would have
sufficient, for the purpose of my little exercise, to modify the code of the sender query.
Most likely, the software would also then have provided an associated command ope
set_sender to update sender information, making the job even easier.

What is the real moral of that little story (besides lowering the reader’s guar
preparation for the surprise mathematical offensive of the next section)? After all, the
program in question is successful, at least judging by its widespread use. But it typifi
current quality standard in the industry. Until we move significantly beyond that stand
the phrase “software engineering” will remain a case of wishful thinking.

Oh yes, one more note. Some time after my brief encounter with the mail prog
I read that certain network hackers had intruded into the computer systems of h
guarded government laboratories, using a security hole of that very mail program —
which was familiar, so the press reported, to all those in the know. I was not in the k
but, when I learned the news, I was not surprised.

6.4 FORMALIZING THE SPECIFICATION

The glimpse of data abstraction presented so far is too informal to be of durable
Consider again our staple example: a stack, as we now understand it, is defined in
of the applicable operations; but then we need to define these operations!

Informal descriptions as above (put pushes an element “on top of ” the stack, remove
pops the element “last pushed” and so on) do not suffice. We need to know precisel
these operations can be used by clients, and what they will do for them.

ABSTRACT DATA TYPES §6.4130

our

 the

g

y be

deas
ed by
et of

you
ill be
using

stract
cts
r the
odule

 make
ks, all

alled
f the

le in
An abstract data type specification will provide this information. It consists of f
paragraphs, explained in the next sections:

• TYPES.

• FUNCTIONS.

• AXIOMS.

• PRECONDITIONS.

These paragraphs will rely on a simple mathematical notation for specifying
properties of an abstract data type (ADT for short).

The notation — a mathematical formalism, not to be confused with the software
notation of the rest of this book even though for consistency it uses a similar syntactic
style — has no name and is not a programming language; it could serve as the startin
point for a formal specification language, but we shall not pursue this avenue here,
being content enough to use self-explanatory conventions for the unambiguous
specification of abstract data types.

Specifying types

The TYPES paragraph indicates the types being specified. In general, it ma
convenient to specify several ADTs together, although our example has only one, STACK.

By the way, what is a type? The answer to this question will combine all the i
developed in the rest of this chapter; a type is a collection of objects characteriz
functions, axioms and preconditions. If for the moment you just view a type as a s
objects, in the mathematical sense of the word “set” — type STACK as the set of all
possible stacks, type INTEGER as the set of all possible integer values and so on —
are not guilty of any terrible misunderstanding. As you read this discussion you w
able to refine this view. In the meantime the discussion will not be too fussy about
“set” for “type” and conversely.

On one point, however, you should make sure to avoid any confusion: an ab
data type such as STACK is not an object (one particular stack) but a collection of obje
(the set of all stacks). Remember what our real goal is: finding a good basis fo
modules of our software systems. As was noted in the previous chapter, basing a m
on one particular object — one stack, one airplane, one bank account — would not
sense. O-O design will enable us to build modules covering the properties of all stac
airplanes, all bank accounts — or at least of some stacks, airplanes or accounts.

An object belonging to the set of objects described by an ADT specification is c
an instance of the ADT. For example, a specific stack which satisfies the properties o
STACK abstract data type will be an instance of STACK. The notion of instance will carry
over to object-oriented design and programming, where it will play an important ro
explaining the run-time behavior of programs.

§6.4 FORMALIZING THE SPECIFICATION 131

ere:

.
ty; we

 of
bank
xcept
gers.

ious.
icity,
ere

 to
mple

l

s to a

st in

ly all

whose
unts.

ome

 from
g

See “Genericity”,
page 96.
The TYPES paragraph simply lists the types introduced in the specification. H

Our specification is about a single abstract data type STACK, describing stacks of
objects of an arbitrary type G.

Genericity

In STACK [G], G denotes an arbitrary, unspecified type. G is called a formal generic
parameter of the abstract data type STACK, and STACK itself is said to be a generic ADT
The mechanism permitting such parameterized specifications is known as generici
already encountered a similar concept in our review of package constructs.

It is possible to write ADT specifications without genericity, but at the price
unjustified repetition. Why have separate specifications for the types “stack of
accounts”, “stack of integers” and so on? These specifications would be identical e
where they explicitly refer to the type of the stack elements — bank accounts or inte
Writing them, and then performing the type substitutions manually, would be ted
Reusability is desirable for specifications too — not just programs! Thanks to gener
we can make the type parameterization explicit by choosing some arbitrary name, h G,
to represent the variable type of stack elements.

As a result, an ADT such as STACK is not quite a type, but rather a type pattern;
obtain a directly usable stack type, you must obtain some element type, for exa
ACCOUNT, and provide it as actual generic parameter corresponding to the forma
parameter G. So although STACK is by itself just a type pattern, the notation

STACK [ACCOUNT]

is a fully defined type. Such a type, obtained by providing actual generic parameter
generic type, is said to be generically derived.

The notions just seen are applicable recursively: every type should, at lea
principle, have an ADT specification, so you may view ACCOUNT as being itself an
abstract data type; also, a type that you use as actual generic parameter to STACK (to
produce a generically derived type) may itself be generically derived, so it is perfect
right to use

STACK [STACK [ACCOUNT]]

specifying a certain abstract data type: the instances of that type are stacks,
elements are themselves stacks; the elements of these latter stacks are bank acco

As this example shows, the preceding definition of “instance” needs s
qualification. Strictly speaking, a particular stack is an instance not of STACK (which, as
noted, is a type pattern rather than a type) but of some type generically derived
STACK, for example STACK [ACCOUNT]. It is convenient, however, to continue talkin

TYPES
• STACK [G]

ABSTRACT DATA TYPES §6.4132

his

rd

ass
ed to

ations
prime
ut by

a
voke
 line

s on
 the

uch

 the
h
ries).

 Chapter 10 and
appendix B.
about instances of STACK and similar type patterns, with the understanding that t
actually means instances of their generic derivations.

Similarly, it is not quite accurate to talk about STACK being an ADT: the correct
term is “ADT pattern”. For simplicity, this discussion will continue omitting the wo
“pattern” when there is no risk of confusion.

The distinction will carry over to object-oriented design and programming, but there we
will need to keep two separate terms:

•The basic notion will be the class; a class may have generic parameters.

•Describing actual data requires types. A non-generic class is also a type, but a generic cl
is only a type pattern. To obtain an actual type from a generic class, we will ne
provide actual generic parameters, exactly as we derive the ADT STACK[ACCOUNT]
from the ADT pattern STACK.

Later chapters will explore the notion of genericity as applied to classes, and how to
combine it with the inheritance mechanism.

Listing the functions

After the TYPES paragraph comes the FUNCTIONS paragraph, which lists the oper
applicable to instances of the ADT. As announced, these operations will be the
component of the type definition — describing its instances not by what they are b
what they have to offer.

Below is the FUNCTIONS paragraph for the STACK abstract data type. If you are
software developer, you will find the style familiar: the lines of such a paragraph e
the declarations found in typed programming languages such as Pascal or Ada. The
for new resembles a variable declaration; the others resemble routine headers.

Each line introduces a mathematical function modeling one of the operation
stacks. For example function put represents the operation that pushes an element onto
top of a stack.

Why functions? Most software people will not naturally think of an operation s
as put as a function. When the execution of a software system applies a put operation to
a stack, it will usually modify that stack by adding an element to it. As a result, in
above informal classification of commands, put was a “command” — an operation whic
may modify objects. (The other two categories of operations were creators and que

FUNCTIONS

• put: STACK [G] × G → STACK [G]

• remove: STACK [G] STACK [G]

• item: STACK [G] G

• empty: STACK [G] → BOOLEAN

• new: STACK [G]

→

→

§6.4 FORMALIZING THE SPECIFICATION 133

ell-
 more
t of the
imply
unlike
.

re the
 for
input
e

nd

n

n

t

of the
s the

le of
;
cution
tack.
s to

dying

See also “The im-
perative and the ap
plicative”, page
351.

Applying the
put function
An ADT specification, however, is a mathematical model, and must rely on w
understood mathematical techniques. In mathematics the notion of command, or
generally of changing something, does not exist as such; computing the square roo
number 2 does not modify the value of that number. A mathematical expression s
defines certain mathematical objects in terms of certain other mathematical objects:
the execution of software on a computer, it never changes any mathematical object

Yet we need a mathematical concept to model computer operations, and he
notion of function yields the closest approximation. A function is a mechanism
obtaining a certain result, belonging to a certain target set, from any possible
belonging to a certain source set. For example, if R denotes the set of real numbers, th
function definition

square_plus_one: R → R
square_plus_one (x) = x2 + 1 (for any x in R)

introduces a function square_plus_one having R as both source and target sets, a
yielding as result, for any input, the square of the input plus one.

The specification of abstract data types uses exactly the same notion. Operatioput,
for example, is specified as

put: STACK [G] × G → STACK [G]

which means that put will take two arguments, a STACK of instances of G and an instance
of G, and yield as a result a new STACK [G]. (More formally, the source set of functio
put is the set STACK [G] × G, known as the cartesian product of STACK [G] and G; this
is the set of pairs <s, x> whose first element s is in STACK [G] and whose second elemen
x is in G.) Here is an informal illustration:

With abstract data types, we only have functions in the mathematical sense
term; they will produce neither side effects nor in fact changes of any kind. This i
condition that we must observe to enjoy the benefits of mathematical reasoning.

When we leave the ethereal realm of specification for the rough-and-tumb
software design and implementation, we will need to reintroduce the notion of change
because of the performance overhead, few people would accept a software exe
environment where every “push” operation on a stack begins by duplicating the s
Later we will examine the details of the transition from the change-free world of ADT
the change-full world of software development. For the moment, since we are stu
how best to specify types, the mathematical view is the appropriate one.

-

 (,)put =

(stack) (stack)(element)

ABSTRACT DATA TYPES §6.4134

on of

re on

ally
below
pped.

(true

uces

ow in
ribe
 use

re

licity.
itten
t

r into

ore
The role of the operations modeled by each of the functions in the specificati
STACK is clear from the previous discussion:

• Function put yields a new stack with one extra element pushed on top. The figu
the preceding page illustrates put (s, x) for a stack s and an element x.

• Function remove yields a new stack with the top element, if any, popped; like put,
this function should yield a command (an object-changing operation, typic
implemented as a procedure) at design and implementation time. We will see
how to take into account the case of an empty stack, which has no top to be po

• Function item yields the top element, if any.

• Function empty indicates whether a stack is empty; its result is a boolean value
or false); the ADT BOOLEAN is assumed to have been defined separately.

• Function new yields an empty stack.

The FUNCTIONS paragraph does not fully define these functions; it only introd
their signatures — the list of their argument and result types. The signature of put is

STACK [G] × G → STACK [G]

indicating that put accepts as arguments pairs of the form <s, x> where s is an instance of
STACK [G] and x is an instance of G, and yields as a result an instance of STACK [G]. In
principle the target set of a function (the type that appears to the right of the arr
signature, here STACK [G]) may itself be a cartesian product; this can be used to desc
operations that return two or more results. For simplicity, however, this book will only
single-result functions.

The signature of functions remove and item includes a crossed arrow instead of
the standard arrow used by put and empty. This notation expresses that the functions a
not applicable to all members of the source set; it will be explained in detail below.

The declaration for function new appears as just

new: STACK

with no arrow in the signature. This is in fact an abbreviation for

new: → STACK

introducing a function with no arguments. There is no need for arguments since new must
always return the same result, an empty stack. So we just remove the arrow for simp
The result of applying the function (that is to say, the empty stack) will also be wr
new, an abbreviation for new (), meaning the result of applying new to an empty argumen
list.

Function categories

The operations on a type were classified informally at the beginning of this chapte
creators, queries and commands. With an ADT specification for a new type T, such as
STACK [G] in the example, we can define the corresponding classification in a m

→

§6.4 FORMALIZING THE SPECIFICATION 135

,

 of

is

 ADT
st-in-
 this

 the
 fully

 which
DT?

e of
 and

t us
al
rigorous way. The classification simply examines where T appears, relative to the arrow
in the signature of each function:

• A function such as new for which T appears only to the right of the arrow is a creator
function. It models an operation which produces instances of T from instances of
other types — or, as in the case of a constant creator function such as new, from no
argument at all. (Remember that the signature of new is considered to contain an
implicit arrow.)

• A function such as item and empty for which T appears only on the left of the arrow
is a query function. It models an operation which yields properties of instances
T, expressed in terms of instances of other types (BOOLEAN and the generic
parameter G in the examples).

• A function such as put or remove for which T appears on both sides of the arrow
a command function. It models an operation which yields new instances of T from
existing instances of T (and possibly instances of other types).

An alternative terminology calls the three categories “constructor”, “accessor” and
“modifier”. The terms retained here are more directly related to the interpretation of ADT
functions as models of operations on software objects, and will carry over to class
features, the software counterparts of our mathematical functions.

The AXIOMS paragraph

We have seen how to describe a data type such as STACK through the list of functions
applicable to its instances. The functions are known only through their signatures.

To indicate that we have a stack, and not some other data structure, the
specification as given so far is not enough. Any “dispenser” structure, such as a fir
first-out queue, will also satisfy it. The choice of names for the operations makes
particularly clear: we do not even have stack-specific names such as push, pop or top to
fool ourselves into believing that we have defined stacks and only stacks.

This is not surprising, of course, since the FUNCTIONS paragraph declared
functions (in the same way that a program unit may declare a variable) but did not
define them. In a mathematical definition such as the earlier example

square_plus_one: R → R

square_plus_one (x) = x2 + 1 (for any x in R)

the first line plays the role of the signature declaration, but there is also a second line
defines the function’s value. How do we achieve the same for the functions of an A

Here we should not use an explicit definition in the style of the second lin
square_ plus_one’s definition, because it would force us to choose a representation —
this whole discussion is intended to protect us from representation choices.

Just to make sure we understand what an explicit definition would look like, le
write one for the stack representation ARRAY_UP as sketched above. In mathematic
terms, choosing ARRAY_UP means that we consider any instance of STACK as a pair

ABSTRACT DATA TYPES §6.4136

re.

on

otto
.

must
an
rties

. To

Figure page 123.

The political branch
specializes in class-
action suits.

Applying the
put function
<count, representation>, where representation is the array and count is the number of
pushed elements. Then an explicit definition of put is (for any instance x of G):

put (<count, representation>, x) = <count + 1, representation [count+1: x]>

where the notation a [n: v] denotes the array obtained from a by changing the value of the
element at index n so that it is now v, and keeping all other elements, if any, as they a

This definition of function put is just a mathematical version of the implementati
of the put operation sketched in Pascal notation, next to representation ARRAY_UP, in the
picture of possible stack representations at the beginning of this chapter.

But this is not what we want; “Free us from the yoke of representations!”, the m
of the Object Liberation Front and its military branch (the ADT brigade), is also ours

Because any explicit definition would force us to select a representation, we
turn to implicit definitions. We will refrain from giving the values of the functions of
ADT specification; instead we will state properties of these values — all the prope
that matter, but those properties only.

The AXIOMS paragraph states these properties. For STACK it will be:

The first two axioms express the basic LIFO (last-in, first-out) property of stacks
understand them, assume we have a stack s and an instance x, and define s' to be put (s, x),
that is to say the result of pushing x onto s. Adapting an earlier figure:

AXIOMS

For any x: G, s: STACK [G],

A1 • item (put (s, x)) = x

A2 • remove (put (s, x)) = s

A3 • empty (new)

A4 • not empty (put (s, x))

(,)= put

 s' s x

§6.4 FORMALIZING THE SPECIFICATION 137

d

the
se to

lting
 on

g that

ble
t what

 are
tions.

ons

tions’
tually

 their
efine

re the

ies to
thout

ntary
ess.

“More on implicit-
ness”, page 149.
Here axiom A1 tells us that the top of s' is x, the last element that we pushed; an
axiom A2 tells us that if we remove the top element from s', we get back the stack s that
we had before pushing x. These two axioms provide a concise description of
fundamental property of stacks in pure mathematical terms, without any recour
imperative reasoning or representation properties.

Axioms A3 and A4 tell us when a stack is empty and when it is not: a stack resu
from the creator function new is empty; any stack resulting from pushing an element
an existing stack (empty or not) is non-empty.

These axioms, like the others, are predicates (in the sense of logic), expressin
a certain property is always true for every possible value of s and x. Some people prefer
to read A3 and A4 in the equivalent form

under which you may also view them, informally at least, as defining function empty by
induction on the size of stacks.

Two or three things we know about stacks

ADT specifications are implicit . We have encountered two forms of implicitness:

• The ADT method defines a set of objects implicitly, through the applica
functions. This was described above as defining objects by what they have, no
they are. More precisely, the definition never implies that the operations listed
the only ones; when it comes to a representation, you will often add other opera

• The functions themselves are also defined implicitly: instead of explicit definiti
(such as was used for square_plus_one, and for the early attempt to define put by
reference to a mathematical representation), we use axioms describing the func
properties. Here too there is no claim of exhaustiveness: when you even
implement the functions, they will certainly acquire more properties.

This implicitness is a key aspect of abstract data types and, by implication, of
future counterparts in object-oriented software construction — classes. When we d
an abstract data type or a class, we always talk about the type or class: we simply list the
properties we know, and take these as the definition. Never do we imply that these a
only applicable properties.

Implicitness implies openness: it should always be possible to add new propert
an ADT or a class. The basic mechanism for performing such extensions wi
damaging existing uses of the original form is inheritance.

The consequences of this implicit approach are far-reaching. The “suppleme
topics” section at the end of this chapter will include more comments about implicitn

For any x: G, s: STACK [G]

A3' • empty (new) = true

A4' • empty (put (s, x)) = false

ABSTRACT DATA TYPES §6.4138

und to
ble to

ns as

lue

ssed
how to

 a
s
acity
ints.
ct

cting
also a
e

ust
aph.

Exercise E6.9,
page 162.
Partial functions

The specification of any realistic example, even one as basic as stacks, is bo
encounter the problems of undefined operations: some operations are not applica
every possible element of their source sets. Here this is the case with remove and item: you
cannot pop an element from an empty stack; and an empty stack has no top.

The solution used in the preceding specification is to describe these functio
partial. A function from a source set X to a target set Y is partial if it is not defined for all
members of X. A function which is not partial is total. A simple example of partial
function in standard mathematics is inv, the inverse function on real numbers, whose va
for any appropriate real number x is

inv (x) =

Because inv is not defined for x = 0, we may specify it as a partial function on R, the
set of all real numbers:

inv: R R

To indicate that a function may be partial, the notation uses the crossed arrow ; the
normal arrow → will be reserved for functions which are guaranteed to be total.

The domain of a partial function in X Y is the subset of X containing those
elements for which the function yields a value. Here the domain of inv is R – { 0} , the set
of real numbers other than zero.

The specification of the STACK ADT applied these ideas to stacks by declaring put
and item as partial functions in the FUNCTIONS paragraph, as indicated by the cro
arrow in their signatures. This raises a new problem, discussed in the next section:
specify the domains of these functions.

In some cases it may be desirable to describe put as a partial function too; this is
necessary to model implementations such as ARRAY_UP and ARRAY_DOWN, which only
support a finite number of consecutive put operations on any given stack. It is indeed
good exercise to adapt the specification of STACK so that it will describe bounded stack
with a finite capacity, whereas the above form does not include any such cap
restriction. This is a new use for partial functions: to reflect implementation constra
In contrast, the need to declare item and remove as partial functions reflected an abstra
property of the underlying operations, applicable to all representations.

Preconditions

Partial functions are an inescapable fact of software development life, merely refle
the observation that not every operation is applicable to every object. But they are
potential source of errors: if f is a partial function from X to Y, we are not sure any mor
that the expression f (e) makes sense even if the value of e is in X: we must be able to
guarantee that the value belongs to the domain of f.

For this to be possible, any ADT specification which includes partial functions m
specify the domain of each of them. This is the role of the PRECONDITIONS paragr

For STACK, the paragraph will appear as:

1
x---

→
→

→

§6.4 FORMALIZING THE SPECIFICATION 139

’s

f
),

arious
n:
where, for each function, the require clause indicates what conditions the function
arguments must satisfy to belong to the function’s domain.

The boolean expression which defines the domain is called the precondition of the
corresponding partial function. Here the precondition of both remove and item expresses
that the stack argument must be non-empty. Before the require clause comes the name o
the function with dummy names for arguments (s for the stack argument in the example
so that the precondition can refer to them.

Mathematically, the precondition of a function f is the characteristic function of the
domain of f. The characteristic function of a subset A of a set X is the total function
ch: X → BOOLEAN such that ch (x) is true if x belongs to A, false otherwise.

The complete specification

The PRECONDITIONS paragraph concludes this simple specification of the STACK
abstract data type. For ease of reference it is useful to piece together the v
components of the specification, seen separately above. Here is the full specificatio

PRECONDITIONS
• remove (s: STACK [G]) require not empty (s)

• item (s: STACK [G]) require not empty (s)

ADT specification of stacks
TYPES

• STACK [G]

FUNCTIONS
• put: STACK [G] × G → STACK [G]

• remove: STACK [G] STACK [G]

• item: STACK [G] G

• empty: STACK [G] → BOOLEAN

• new: STACK [G]

AXIOMS
For any x: G, s: STACK [G]

A1 • item (put (s, x)) = x

A2 • remove (put (s, x)) = s

A3 • empty (new)

A4 • not empty (put (s, x))

PRECONDITIONS
• remove (s: STACK [G]) require not empty (s)

• item (s: STACK [G]) require not empty (s)

→
→

ABSTRACT DATA TYPES §6.4140

e the
ation
tack in
tacks.

scribe
usual

tation

s

ls us

plify

w us
s to

s the
atical

n

to
Nothing but the truth

The power of abstract data type specifications comes from their ability to captur
essential properties of data structures without overspecifying. The stack specific
collected on the preceding page expresses all there is to know about the notion of s
general, excluding anything that only applies to some particular representations of s
All the truth about stacks; yet nothing but the truth.

This provides a general model of computation with data structures. We may de
complex sequences of operations by mathematical expressions enjoying the
properties of algebra; and we may view the process of carrying out the compu
(executing the program) as a case of algebraic simplification.

In elementary mathematics we have been taught to take an expression such a

cos2 (a – b) + sin2 (a + b – 2 × b)

and apply the rules of algebra and trigonometry to simplify it. A rule of algebra tel
that we may simplify a + b – 2 × b into a – b for any a and b; and a rule of trigonometry
tells us that we can simplify cos2 (x) + sin2 (x) into 1 for any x. Such rules may be
combined; for example the combination of the two preceding rules allow us to sim
the above expression into just 1.

In a similar way, the functions defined in an abstract data type specification allo
to construct possibly complex expressions; and the axioms of the ADT allow u
simplify such expressions to yield a simpler result. A complex stack expression i
mathematical equivalent of a program; the simplification process is the mathem
equivalent of a computation, that is to say, of executing such a program.

Here is an example. With the specification of the STACK abstract data type as give
above, we can write the expression

item (remove (put (remove (put (put (
remove (put (put (put (new, x1), x2), x3)),
item (remove (put (put (new, x4), x5)))), x6)), x7)))

Let us call this expression stackexp for future reference. It is perhaps easier
understand stackexp if we define it in terms of a sequence of auxiliary expressions:

s1 = new
s2 = put (put (put (s1, x1), x2), x3)
s3 = remove (s2)

s4 = new
s5 = put (put (s4, x4), x5)

s6 = remove (s5)

y1 = item (s6)
s7 = put (s3, y1)

s8 = put (s7, x6)
s9 = remove (s8)

§6.4 FORMALIZING THE SPECIFICATION 141

the
ents

cally:

ch as
ult
 the

e

and
 the
he

 data
This
state,
n the

Stack
manipulations
s10 = put (s9, x7)

s11 = remove (s10)

stackexp = item (s11)

Whichever variant of the definition you choose, it is not hard to follow
computation of which stackexp is a mathematical model: create a new stack; push elem
x1, x2, x3, in this order, on top of it; remove the last pushed element (x3), calling s3 the
resulting stack; create another empty stack; and so on. Or you can think of it graphi

You can easily find the value of such an ADT expression by drawing figures su
the above. (Here you would find x4.) But the theory enables you to obtain this res
formally, without any need for pictures: just apply the axioms repeatedly to simplify
expression until you cannot simplify any further. For example:

• Applying A2 to simplify s3, that is to say remove (put (put (put (s1, x1), x2), x3)),
yields put (put (s1, x1), x2)). (With A2, any consecutive remove-put pair cancels out.)

• The same axiom indicates that s6 is put (s4, x4); then we can use axiom A1 to deduc
that y1, that is to say item (put (s4, x4)), is in fact x4, showing that (as illustrated by
the arrow on the above figure) s7 is obtained by pushing x4 on top of s3.

And so on. A sequence of such simplifications, carried out as simply
mechanically as the simplifications of elementary arithmetic, yields the value of
expression stackexp, which (as you are invited to check for yourself by performing t
simplification process rigorously) is indeed x4.

This example gives a glimpse of one of the main theoretical roles of abstract
types: providing a formal model for the notion of program and program execution.
model is purely mathematical: it has none of the imperative notions of program
variables whose values may change in time, or execution sequencing. It relies o
standard expression evaluation techniques of ordinary mathematics.

 s2 s3 s1

 x4

 x5

 x1

 x2

 x3

 s5 s6

 x1

 x2

 x4

s7 = put (s3, y1)

 (empty)
 s7

 x1

 x2

 x4

(also: s9, s11)

ABSTRACT DATA TYPES §6.5142

ctures

cture,

path?

ypes,

tation

gun in

ysis,

ally

. The

. The

ing

For a

spects

 you

ll be
6.5 FROM ABSTRACT DATA TYPES TO CLASSES

We have the starting point of an elegant mathematical theory for modeling data stru

and in fact, as we just saw, programs in general. But our subject is software archite

not mathematics or even theoretical computing science! Have we strayed from our

Not by much. In the search for a good modular structure based on object t

abstract data types provide a high-level description mechanism, free of implemen

concerns. They will lead us to the fundamental structures of object technology.

Classes

ADTs will serve as the direct basis for the modules that we need in the search be

chapter 3. More precisely, an object-oriented system will be built (at the level of anal

design or implementation) as a collection of interacting ADTs, partially or tot

implemented. The basic notion here is class:

So to obtain a class we must provide an ADT and decide on an implementation

ADT is a mathematical concept; the implementation is its computer-oriented version

definition, however, states that the implementation may be partial; the follow

terminology separates this case from that of a fully implemented class:

To obtain an effective class, you must provide all the implementation details.

deferred class, you may choose a certain style of implementation but leave some a

of the implementation open. In the most extreme case of “partial” implementation

may refrain from making any implementation decision at all; the resulting class wi

fully deferred, and equivalent to an ADT.

Definition: class

A class is an abstract data type equipped with a possibly partial
implementation.

Definition: deferred, effective class

A class which is fully implemented is said to be effective. A class which is
implemented only partially, or not at all, is said to be deferred. Any class is
either deferred or effective.

§6.5 FROM ABSTRACT DATA TYPES TO CLASSES 143

 Three

nd

f
hese
may

d of
icians.

: the

out;
f the
.

dd
How to produce an effective class

Consider first the case of effective classes. What does it take to implement an ADT?
kinds of element will make up the resulting effective class:

E1 • An ADT specification (a set of functions with the associated axioms a
preconditions, describing the functions’ properties).

E2 • A choice of representation.

E3 • A mapping from the functions (E1) to the representation (E2) in the form of a set
of mechanisms, or features, each implementing one of the functions in terms o
the representation, so as to satisfy the axioms and preconditions. Many of t
features will be routines (subprograms) in the usual sense, although some
also appear as data fields, or “attributes”, as explained in the next chapters.

For example, if the ADT is STACK, we may choose as representation (step E2) the
solution called ARRAY_UP above, which implements any stack by a pair

<representation, count>

where representation is an array and count an integer. For the function implementations (E3)
we will have features corresponding to put, remove, item, empty and new, which achieve the
corresponding effects; for example we may implement put by a routine of the form

put (x: G) is
-- Push x onto stack.
-- (No check for possible stack overflow.)

do
count:= count + 1
representation [count] := x

end

The combination of elements obtained under E1, E2 and E3 will yield a class, the
modular structure of object technology.

The role of deferred classes

For an effective class, all of the implementation information (E2, E3 above) must be
present. If any of it is missing, the class is deferred.

The more deferred a class, the closer it is to an ADT, gussied up in the kin
syntactic dress that will help seduce software developers rather than mathemat
Deferred classes are particularly useful for analysis and for design:

• In object-oriented analysis, no implementation details are needed or desired
method uses classes only for their descriptive power.

• In object-oriented design, many aspects of the implementation will be left
instead, a design should concentrate on high-level architectural properties o
system — what functionalities each module provides, not how it provides them

• As you move your design gradually closer to a full implementation, you will a
more and more implementation properties until you get effective classes.

ABSTRACT DATA TYPES §6.5144

ented
ous
e well
o serve

 form
e who
 trying
t, to
ing the
record.

rve to
-level
ey role
ware

ill at
whose

dules
at was
 and

See the mention of
vagueness in the
middle of page 52.

The ADT view
of a module
under
information
hiding
But the role of deferred classes does not stop there, and even in a fully implem
system you will often find many of them. Some of that role follows from their previ
applications: if you started from deferred classes to obtain effective ones, you may b
inspired to keep the former as ancestors (in the sense of inheritance) to the latter, t
as a living memory of the analysis and design process.

Too often, in software produced with non-object-oriented approaches, the final
of a system contains no record of the considerable effort that led to it. For someon
is asked to perform maintenance — extensions, ports, debugging — on the system,
to understand it without that record is as difficult as it would be, for a geologis
understand a landscape without having access to the sedimentary layers. Keep
deferred classes in the final system is one of the best ways to maintain the needed

Deferred classes also have purely implementation-related uses. They se
classify groups of related types of objects, provide some of the most important high
reusable modules, capture common behaviors among a set of variants, and play a k
(in connection with polymorphism and dynamic binding) in guaranteeing that the soft
architecture remains decentralized and extendible.

The next few chapters, which introduce the basic object-oriented techniques, w
first concentrate on effective classes. But keep in mind the notion of deferred class,
importance will grow as we penetrate the full power of the object-oriented method.

Abstract data types and information hiding

A particularly interesting consequence of the object-oriented policy of basing all mo
on ADT implementations (classes) is that it provides a clear answer to a question th
left pending in the discussion of information hiding: how do we select the public
private features of a module — the visible and invisible parts of the iceberg?

Secret part:

• Choice of representation (E2)

• Implementation of functions
by features (E3)

Public part:
ADT specification (E1)

§6.5 FROM ABSTRACT DATA TYPES TO CLASSES 145

lear:

erms
unter
es of

actical,

listic

or, to

ds. For

tack.

n this
jects.

op —

are
will
cks,
If the module is a class coming from an ADT as outlined above, the answer is c
of the three parts involved in the transition, E1, the ADT specification, is public; E2 and
E3, the choice of representation and the implementation of the ADT functions in t
of this representation, should be secret. (As we start building classes we will enco
a fourth part, also secret: auxiliary features needed only for the internal purpos
these routines.)

So the use of abstract data types as the source of our modules gives us a pr
unambiguous guideline for applying information hiding in our designs.

Introducing a more imperative view

The transition from abstract data types to classes involves an important sty
difference: the introduction of change and imperative reasoning.

As you will remember, the specification of abstract data types is change-free,
use a term from theoretical computing science, applicative. All features of an ADT are
modeled as mathematical functions; this applies to creators, queries and comman
example the push operation on stacks is modeled by the command function

put: STACK [G] × G → STACK [G]

specifying an operation that returns a new stack, rather than changing an existing s

Classes, which are closer to the world of design and implementation, abando
applicative-only view and reintroduce commands as operations that may change ob

For example, put will appear as a routine which takes an argument of type G (the
formal generic parameter), and modifies a stack by pushing a new element on t
instead of producing a new stack.

This change of style reflects the imperative style that prevails in softw
construction. (The word “operational” is also used as synonym for “imperative”.) It
require the corresponding change in the axioms of ADTs. Axioms A1 and A4 of sta
which appeared above as

will yield, in the imperative form, a clause known as a routine postcondition, introduced
by the keyword ensure in

A1 • item (put (s, x)) = x

A4 • not empty (put (s, x))

ABSTRACT DATA TYPES §6.5146

f an
rtions

ing
 started

 led to
r basis
w to
a types
 of data

d basis

e final
es can
ishes

es are
ules.

ery
 and
ed to

“THE ADT CON-
NECTION”, 11.10,
page 373.
put (x: G) is

-- Push x on top of stack

require

… The precondition, if any …
do

… The appropriate implementation, if known …
ensure

item = x

not empty

end

Here the postcondition expresses that on return from a call to routine put, the value
of item will be x (the element pushed) and the value of empty will be false.

Other axioms of the ADT specification will yield a clause known as the class
invariant . Postconditions, class invariants and other non-applicative avatars o
ADT’s preconditions and axioms will be studied as part of the discussion of asse
and Design by Contract.

Back to square one?

If you followed carefully, starting with the chapter on modularity, the line of reason
that led to abstract data types and then classes, you may be a little puzzled here. We
with the goal of obtaining the best possible modular structures; various arguments
the suggestion that objects, or more precisely object types, would provide a bette
than their traditional competitors — functions. This raised the next question: ho
describe these object types. But when the answer came, in the form of abstract dat
(and their practical substitutes, classes), it meant that we must base the description
on… the applicable functions! Have we then come full circle?

No. Object types, as represented by ADTs and classes, remain the undispute
for modularization.

It is not surprising that both the object and function aspects should appear in th
system architecture: as noted in the previous chapter, no description of software issu
be complete if it misses one of these two components. What fundamentally distingu
object-oriented methods from older approaches is the distribution of roles: object typ
the undisputed winners when it comes to selecting the criteria for building mod
Functions remain their servants.

In object-oriented decomposition, no function ever exists just by itself: ev
function is attached to some object type. This carries over to the design
implementation levels: no feature ever exists just by itself; every feature is attach
some class.

§6.6 BEYOND SOFTWARE 147

 at the
kbone

 at a
f any
eping
nical

 ADT

fully

 or

d

eflect

ould
stead
hat I

call it

olor
rket;
oking
should

See page 116 for the
original definition.
Object-oriented software construction

The study of abstract data types has given us the answer to the question asked
beginning of this chapter: how to describe the object types that will serve as the bac
of our software architecture.

We already had a definition of object-oriented software construction: remaining
high level of generality, it presented the method as “basing the architecture o
software system on modules deduced from the types of objects it manipulates”. Ke
that first definition as the framework, we can now complement it with a more tech
one:

This will be our working definition. Its various components are all important:

• The basis is the notion of abstract data type.

• For our software we need not the ADTs themselves, a mathematical notion, but
implementations, a software notion.

• These implementations, however, need not be complete; the “possibly partial”
qualification covers deferred classes — including the extreme case of a
deferred class, where none of the features is implemented.

• A system is a collection of classes, with no one particularly in charge — no top
main program.

• The collection is structured thanks to two inter-class relations: client an
inheritance.

6.6 BEYOND SOFTWARE

As we are completing our study of abstract data types it is worth taking a moment to r
on the significance of this notion outside of its immediate intended application area.

What the ADT approach tells us is that a successful intellectual investigation sh
renounce as futile any attempt at knowing things from the inside, and concentrate in
on their usable properties. Do not tell me what you are; tell me what you have — w
can get out of you. If we need a name for this epistemological discipline, we should
the principle of selfishness.

If I am thirsty, an orange is something I can squeeze; if I am a painter, it is c
which might inspire my palette; if I am a farmer, it is produce that I can sell at the ma
if I am an architect, it is slices that tell me how to design my new opera house, overlo
the harbor; but if I am none of these, and have no other use for the orange, then I
not talk about it, as the concept of orange does not for me even exist.

Object-oriented software construction (definition 2)

Object-oriented software construction is the building of software systems as
structured collections of possibly partial abstract data type implementations.

ABSTRACT DATA TYPES §6.7148

m of
 or the
apter,
thors,
had a
reat
ique,

ng to
ment.

lmost
direct

ld.

tware
nitive
inting.
tion,
ich of

ts in the
erse.

of the
ts, for
ing

y has
ucture,
tween
and so
tions

tware
 will

in the
your

er of
ssion
hich
The principle of selfishness — you are but what you have — is an extreme for
an idea that has played a central role in the development of science: abstraction,
importance of separating concerns. The two quotations at the beginning of this ch
each in its own remarkable way, express the importance of this idea. Their au
Diderot and Stendhal, were writers rather than scientists, although both obviously
good understanding of the scientific method (Diderot was the living fire behind the G
Encyclopedia, and Stendhal prepared for admission into the École Polytechn
although in the end he decided that he could do better things with his life). It is striki
see how both quotations are applicable to the use of abstraction in software develop

Yet there is more than abstraction to the principle of selfishness: the idea, a
shocking at first, that a property is not worth talking about unless it is useful in some
way to the talker.

This suggests a more general observation as to the intellectual value of our fie

Over the years many articles and talks have claimed to examine how sof
engineers could benefit from studying philosophy, general systems theory, “cog
science”, psychology. But to a practicing software developer the results are disappo
If we exclude from the discussion the generally applicable laws of rational investiga
which enlightened minds have known for centuries (at least since Descartes) and wh
course apply to software science as to anything else, it sometimes seems that exper
disciplines mentioned may have more to learn from experts in software than the rev

Software builders have tackled — with various degrees of success — some
most challenging intellectual endeavors ever undertaken. Few engineering projec
example, match in complexity the multi-million line software projects commonly be
launched nowadays. Through its more ambitious efforts the software communit
gained precious insights on such issues and concepts as size, complexity, str
abstraction, taxonomy, concurrency, recursive reasoning, the difference be
description and prescription, language, change and invariants. All this is so recent
tentative that the profession itself has not fully realized the epistemological implica
of its own work.

Eventually someone will come and explain what lessons the experience of sof
construction holds for the intellectual world at large. No doubt abstract data types
figure prominently in the list.

6.7 SUPPLEMENTARY TOPICS

The view of abstract data types presented so far will suffice for the uses of ADTs
rest of this book. (To complement it, doing the exercises will help you sharpen
understanding of the concept.)

If, as I hope, you have been conquered by the elegance, simplicity and pow
ADTs, you may want to explore a few more of their properties, even though the discu
of object-oriented methods will not use them directly. These supplementary topics, w
may be skipped on first reading, are presented in the next few pages:

§6.7 SUPPLEMENTARY TOPICS 149

re on

cts an

DT

ming

e of

 one
as

ascal

he
• Implicitness and its relationship to the software construction process.

• The difference between specification and design.

• The differences between classes and records.

• Potential alternatives to the use of partial functions.

• Deciding whether a specification is complete or not.

The bibliographical references to this chapter point to more advanced literatu
abstract data types.

More on implicitness

The implicit nature of abstract data types and classes, discussed above, refle
important problem of software construction.

One may legitimately ask what difference there is between a simplified A
specification, using the function declarations

x: POINT → REAL
y: POINT → REAL

and the record type declaration which we may express in a traditional program
language such as Pascal under the form

type
POINT =

record
x, y: real

end

At first sight, the two definitions appear equivalent: both state that any instanc
type POINT has two associated values x and y, of type REAL. But there is a crucial if
subtle difference:

• The Pascal form is closed and explicit: it indicates that a POINT object is made of
the two given fields, and no other.

• The ADT function declarations carry no such connotation. They indicate that
may query a point about its x and its y, but do not preclude other queries — such
a point’s mass and velocity in a kinematics application.

From a simplified mathematical perspective, you may consider that the above P
declaration is a definition of the mathematical set POINT as a cartesian product:

POINT REAL × REAL

where means “is defined as”: this defines POINT fully. In contrast, the ADT
specification does not explicitly define POINT through a mathematical model such as t
cartesian product; it just characterizes POINT implicitly by listing two of the queries
applicable to objects of this type.

=∆

=∆

ABSTRACT DATA TYPES §6.7150

, you
th
oints
 the

rence
lysis

ween
is

mine
eople

se the

ween

ove
er to
ented,
deed,
l but
ented
at to

plicit
than
us to

See “The clouds
and the precipice”,
page 905.
If at some stage you think you are done with the specification of a certain notion
may want to move it from the implicit world to the explicit world by identifying it wi
the cartesian product of the applicable simple queries; for example you will identify p
with <x, y> pairs. We may view this identification process as the very definition of
transition from analysis and specification to design and implementation.

Specification versus design

The last observation helps clarify a central issue in the study of software: the diffe
between the initial activities of software development — specification, also called ana
— and later stages such as design and implementation.

The software engineering literature usually defines this as the difference bet
“defining the problem” and “building a solution”. Although correct in principle, th
definition is not always directly useful in practice, and it is sometimes hard to deter
where specification stops and design begins. Even in the research community, p
routinely criticize each other on the theme “you advertize notation x as a specification
language, but what it really expresses is designs”. The supreme insult is to accu
notation of catering to implementation; more on this in a later chapter.

The above definition yields a more precise criterion: to cross the Rubicon bet
specification and design is to move from the implicit to the explicit; in other words:

The subsequent transition — from design to implementation — is simply the m
from one explicit form to another: the design form is more abstract and clos
mathematical concepts, the implementation form is more concrete and computer-ori
but they are both explicit. This transition is less dramatic than the preceding one; in
it will become increasingly clear in the pages that follow that object technology al
removes the distinction between design and implementation. With good object-ori
notations, what our computers directly execute (with the help of our compilers) is wh
the non-O-O world would often appear as designs.

Classes versus records

Another remarkable property of object technology, also a result of the focus on im
definition, is that you can keep your descriptions implicit for a much longer period
with any other approach. The following chapters will introduce a notation enabling
define a class under the form

class POINT feature

x, y: REAL

end

Definition: transition from analysis (specification) to design

To go from specification to design is to identify each abstraction with the
cartesian product of its simple queries.

§6.7 SUPPLEMENTARY TOPICS 151

spite
from
 at any

hen

n: the
ces of
 that

hile
ject
will

 that
ict the

rows is
ication
ible to

, and
duce
.

See “The Open-
Closed principle”,
page 57.
This looks suspiciously close to the above Pascal record type definition. But in
of appearances the class definition is different: it is implicit! The implicitness comes
inheritance; the author of the class or (even more interestingly) someone else may
time define a new class such as

class MOVING_POINT inherit
POINT

feature
mass: REAL
velocity: VECTOR [REAL]

end

which extends the original class in ways totally unplanned for by the initial design. T
a variable (or entity, to use the terminology introduced later) of type POINT, declared as

p1: POINT

may become attached to objects which are not just of type POINT but also of any
descendant type such as MOVING_POINT. This occurs in particular through
“polymorphic assignments” of the form

p1 := mp1

where mp1 is of type MOVING_POINT.

These possibilities illustrate the implicitness and openness of the class definitio
corresponding entities represent not just points in the narrow sense of direct instan
class POINT as initially defined, but, more generally, instances of any eventual class
describes a concept derived from the original.

The ability to define software elements (classes) that are directly usable w
remaining implicit (through inheritance) is one of the major innovations of ob
technology, directly answering the Open-Closed requirement. Its full implications
unfold progressively in the following chapters.

Not surprisingly for such a revolutionary concept, the realm of new possibilities
it opens still scares many people, and in fact many object-oriented languages restr
openness in some way. Later chapters will mention examples.

Alternatives to partial functions

Among the techniques of this chapter that may have caused you to raise your eyeb
its use of partial functions. The problem that it addresses is inescapable: any specif
needs to deal with operations that are not always defined; for example, it is imposs
pop an empty stack. But is the use of partial functions the best solution?

It is certainly not the only possible one. Another technique that comes to mind
is indeed used by some of the ADT literature, is to make the function total but intro
special error values to denote the results of operations applied to impossible cases

For every type T, this method introduces a special “error” value; let us write it ωT.
Then for any function f of signature

f: … Input types … → T

ABSTRACT DATA TYPES §6.7152

er

tness.
nduly

eneric
rs.

asic
al set
s of

 value
nt”
n

 the
ve any
 all it
nd the

ation
ck.

ery
ding

at the
may
ems.
it specifies that any application of f to an object for which the corresponding comput
operation may not be executed will produce the value ωT.

Although usable, this method leads to mathematical and practical unpleasan
The problem is that the special values are rather bizarre animals, which may u
disturb the lives of innocent mathematical creatures.

Assume for example that we consider stacks of integers — instances of the g
derivation STACK [INTEGER], where INTEGER is the ADT whose instances are intege
Although we do not need to write the specification of INTEGER completely for this
discussion, it is clear that the functions defining this ADT should model the b
operations (addition, subtraction, “less than” and the like) defined on the mathematic
of integers. The axioms of the ADT should be consistent with ordinary propertie
integers; typical among these properties is that, for any integer n:

[Z1]
n + 1 ≠ n

Now let n be the result of requesting the top of an empty stack, that is to say, the
of item (new), where new is an empty stack of integers. With the “special error eleme
approach, n must be the special value ωINTEGER. What then is the value of the expressio
n + 1? If the only values at our disposal are normal integers and ωINTEGER, then we ought
to choose ωINTEGER as the answer:

ωINTEGER + 1 = ωINTEGER

This is the only acceptable choice: any other value for ωINTEGER + 1, that is to say,
any “normal” integer q, would mean in practical terms that after we attempt to access
top of an empty stack, and get an error value as a result, we can miraculously remo
trace of the error, simply by adding one to the result! This might have passed when
took to erase the memory of a crime was a pilgrimage to Santiago de Compostela a
purchase of a few indulgences; modern mores and computers are not so lenient.

But choosing ωINTEGER as the value of n + 1 when n is ωINTEGER violates the above

Z1 property. More generally, ωINTEGER + p will be ωINTEGER for any p. This means we

must develop a new axiom system for the updated abstract data type (INTEGER enriched
with an error element), to specify that every integer operation yields ωINTEGER whenever

any one of its arguments is ωINTEGER. Similar changes will be needed for every type.

The resulting complication seems unjustifiable. We cannot change the specific
of integers just for the purpose of modeling a specific data structure such as the sta

With partial functions, the situation is simpler. You must of course verify, for ev
expression involving partial functions, that the arguments satisfy the correspon
preconditions. This amounts to performing a sanity check — reassuring yourself th
result of the computation will be meaningful. Having completed this check, you
apply the axioms without further ado. You need not change any existing axiom syst

§6.7 SUPPLEMENTARY TOPICS 153

ple of
ication
ho are

e end
have

ation

ue of
hat it
ome

equally

ent”
udes

ents

eness
 we

 is a
d in
les of
n be
 more

s us

f the
y
 For
Is my specification complete?

Another question may have crossed your mind as you were reading the above exam
abstract data type specification: is there is any way to be sure that such a specif
describes all the relevant properties of the objects it is intended to cover? Students w
asked to write their first specifications (for example when doing the exercises at th
of this chapter) often come back with the same question: when do I know that I
specified enough and that I can stop?

In more general terms: does a method exist to find out whether an ADT specific
is complete?

If the question is asked in this simple form, the answer is a plain no. This is tr
formal specifications in general: to say that a specification is complete is to claim t
covers all the needed properties; but this is only meaningful with respect to s
document listing these properties and used as a reference. Then we face one of two
disappointing situations:

• If the reference document is informal (a natural-language “requirements docum
for a project, or perhaps just the text of an exercise), this lack of formality precl
any attempt to check systematically that the specification meets all the requirem
described in that document.

• If the reference document is itself formal, and we are able to check the complet
of our specification against it, this merely pushes the problem further: how do
ascertain the completeness of the reference document itself?

In its trivial form, then, the completeness question is uninteresting. But there
more useful notion of completeness, derived from the meaning of this wor
mathematical logic. For a mathematician, a theory is complete if its axioms and ru
inference are powerful enough to prove the truth or falsity of any formula that ca
expressed in the language of the theory. This meaning of completeness, although
limited, is intellectually satisfying, since it indicates that whenever the theory let
express a property it also enables us to determine whether the property holds.

How do we transpose this idea to an ADT specification? Here the “language o
theory” is the set of all the well-formed expressions, those expressions which we ma
build using the ADT’s functions, applied to arguments of the appropriate types.
example, using the specification of STACK and assuming a valid expression x of type G,
the following expressions are well-formed:

new
put (new, x)
item (new) -- If this seems strange, see comments on the next page.
empty (put (new, x))
stackexp -- The complex expression defined on page 140.

ABSTRACT DATA TYPES §6.7154

y

l
,

ral
r and
sion,
en, the
ct),

ies all
ming

nder
e has

ut the
DT

ts are
perty,
that the
s:

The “queries” in
our example, return-
ing a result of type
other than STACK,
are item and empty.
See “Function cate-
gories”, page 134.
The expressions put (x) and put (x, new), however, are not well-formed, since the
do not abide by the rules: put always requires two arguments, the first of type STACK [G]
and the second of type G; so put (x) is missing an argument, and put (x, new) has the wrong
argument types.

The third example in the preceding box, item (new), does not describe a meaningfu
computation since new does not satisfy the precondition of item. Such an expression
although well-formed, is not correct. Here is the precise definition of this notion:

Do not confuse “correct” with “well-formed”. Well-formedness is a structu
property, indicating whether all the functions in an expression have the right numbe
types of arguments; correctness, which is only defined for a well-formed expres
indicates whether the expression defines a meaningful computation. As we have se
expression put (x) is not well-formed (and so it is pointless to ask whether it is corre
whereas the expression item (new) is well-formed but not correct.

An expression well-formed but not correct, such as item (new), is similar to a
program that compiles (because it is built according to the proper syntax and satisf
typing constraints of the programming language) but will crash at run time by perfor
an impossible operation such as division by zero or popping an empty stack.

Of particular interest for completeness, among well-formed expressions, are query
expressions, those whose outermost function is a query. Examples are:

empty (put (put (new, x1), x2))
item (put (put (new, x1), x2))
stackexp -- See page 140

A query expression denotes a value which (if defined) belongs not to the ADT u
definition, but to another, previously defined type. So the first query expression abov
a value of type BOOLEAN; the second and third have values of type G, the formal generic
parameter — for example INTEGER if we use the generic derivation STACK[INTEGER].

Query expressions represent external observations that we may make abo
results of a certain computation involving instances of the new ADT. If the A
specification is useful, it should always enable us to find out whether such resul
defined and, if so, what they are. The stack specification appears to satisfy this pro
at least for the three example expressions above, since it enables us to determine
three expressions are defined and, by applying the axioms, to determine their value

empty (put (put (new, x1), x2)) = False
item (put (put (new, x1), x2)) = x2
stackexp = x4

Definition: correct ADT expression

Let f (x1, …, xn) be a well-formed expression involving one or more functions
on a certain ADT. This expression is correct if and only if all the xi are
(recursively) correct, and their values satisfy the precondition of f, if any.

§6.7 SUPPLEMENTARY TOPICS 155

gest a
at
f any

ally

se
es (in

h
plete.

rtant
 when
good
rite
of of

uch a

to be
 more
Transposed to the case of arbitrary ADT specifications, these observations sug
pragmatic notion of completeness, known as sufficient completeness, which expresses th
the specification contains axioms powerful enough to enable us to find the result o
query expression, in the form of a simple value.

Here is the precise definition of sufficient completeness. (Non-mathematic
inclined readers should skip the rest of this section.)

In S2, expression e is of the form f (x1, …, xn) where f is a query function, such as

empty and item for stacks. S1 tells us that e has a value, but this is not enough; in this ca
we also want to know what the value is, expressed only in terms of values of other typ
the STACK example, values of types BOOLEAN and G). If the axioms are strong enoug
to answer this question in all possible cases, then the specification is sufficiently com

Sufficient completeness is a useful practical guideline to check that no impo
property has been left out of a specification, answering the question raised above:
do I know I can stop looking for new properties to describe in the specification? It is
practice to apply this check, at least informally, to any ADT specification that you w
— starting with your answers to the exercises of this chapter. Often, a formal pro
sufficient correctness is possible; the proof given below for the STACK specification
defines a model which can be followed in many cases.

As you may have noted, S2 is optimistic in talking about “the” value of e: what if the
axioms yield two or more? This would make the specification useless. To avoid s
situation we need a further condition, known from mathematical logic as consistency:

The two properties are complementary. For any query expression we want
able to deduce exactly one value: at least one (sufficient completeness), but no
than one (consistency).

Definition: sufficient completeness

An ADT specification for a type T is sufficiently complete if and only if the
axioms of the theory make it possible to solve the following problems for any
well-formed expression e:

S1 • Determine whether e is correct.

S2 • If e is a query expression and has been shown to be correct under S1,
express e’s value under a form not involving any value of type T.

Definition: ADT consistency

An ADT specification is consistent if and only if, for any well-formed query
expression e, the axioms make it possible to infer at most one value for e.

ABSTRACT DATA TYPES §6.7156

are not

al, an
n an

n is

 the
ally
t the
be

 valid
 an

 not

ctions

 the
nces of

 Non-mathematically
inclined readers may
skip to “KEY CON-
CEPTS INTRO-
DUCED IN THIS
CHAPTER”, 6.8,
page 159
Proving sufficient completeness

(This section and the rest of this chapter are supplementary material and its results
needed in the rest of the book.)

The sufficient completeness of an abstract data type specification is, in gener
undecidable problem. In other words, no general proof method exists which, give
arbitrary ADT specification, would tell us in finite time whether or not the specificatio
sufficiently complete. Consistency, too, is undecidable in the general case.

It is often possible, however, to prove the sufficient completeness and
consistency of a particular specification. To satisfy the curiosity of mathematic
inclined readers, it is interesting to prove, as a conclusion to this chapter, tha
specification of STACK is indeed sufficiently complete. The proof of consistency will
left as an exercise.

Proving the sufficient completeness of the stack specification means devising a
rule addressing problems S1 and S2 above; in other words the rule must enable us, for
arbitrary stack expression e:

S1 •To determine whether e is correct.

S2 • If e is correct under S1 and its outermost function is item or empty (one of the two
query functions), to express its value in terms of BOOLEAN and G values only,
without any reference to values of type STACK [G] or to the functions of
STACK’s specification.

It is convenient for a start to consider only well-formed expressions which do
involve any of the two query functions item and empty — so that we only have to deal with
expressions built out of the functions new, put and remove. This means that only problem
S1 (determining whether an expression is defined) is relevant at this stage. Query fun
and S2 will be brought in later.

The following property, which we must prove, yields a rule addressing S1:

Here the “weight” of an expression represents the number of elements in
corresponding stack; it is also the difference between the number of nested occurre
put and remove. Here is the precise definition of this notion:

Weight Consistency rule

A well-formed stack expression e, involving neither item nor empty, is
correct if and only if its weight is non-negative, and any subexpression of e
is (recursively) correct.

§6.7 SUPPLEMENTARY TOPICS 157

ect if
has at

tation,
is stage

ency
 two

sted
 earlier

t
le and

ons of

rom
Informally, the Weight Consistency rule tells us that a stack expression is corr
and only if the expression and every one of its subexpressions, direct or indirect,
least as many put operations (pushing an element on top) as it has remove operations
(removing the top element); if we view the expression as representing a stack compu
this means that we never try to pop more than we have pushed. Remember that at th
we are only concentrating on put and remove, ignoring the queries item and empty.

This intuitively seems right but of course we must prove that the Weight Consist
rule indeed holds. It will be convenient to introduce a companion rule and prove the
rules simultaneously:

The proof uses induction on the nesting level (maximum number of ne
parentheses pairs) of the expression. Here again, for ease of reference, are the
axioms applying to function empty:

An expression e with nesting level 0 (no parentheses) may only be of the form new;
so its weight is 0, and it is correct since new has no precondition. Axiom A3 indicates tha
empty (e) is true. This takes care of the base step for both the Weight Consistency ru
the Zero Weight rule.

For the induction step, assume that the two rules are applicable to all expressi
nesting level n or smaller. We must prove that they apply to an arbitrary expressione of
nesting level n + 1. Since for the time being we have excluded the query functions f
our expressions, one of the following two forms must apply to e:

Definition: weight

The weight of a well-formed stack expression not involving item or empty is
defined inductively as follows:

W1 • The weight of the expression new is 0.

W2 • The weight of the expression put (s, x) is ws + 1, where ws is the
weight of s.

W3 • The weight of the expression remove (s) is ws — 1, where ws is the
weight of s.

Zero Weight rule

Let e be a well-formed and correct stack expression not involving item or
empty. Then empty (e) is true if and only if e has weight 0.

STACK AXIOMS
For any x: G, s: STACK [G]

A3 • empty (new)

A4 • not empty (put (s, x))

ABSTRACT DATA TYPES §6.7158

n-
n-
se. In
t

:

must

me
 the

ssion
E1 • e = put (s, x)

E2 • e = remove (s)

where x is of type G, and s has nesting level n. Let ws be the weight of s.

In case E1, since put is a total function, e is correct if and only if s is correct, that is
to say (by the induction hypothesis) if and only if s and all its subexpressions have no
negative weights. This is the same as saying that e and all its subexpressions have no
negative weights, and so proves that the Weight Consistency rule holds in this ca
addition, e has the positive weight ws + 1, and (by axiom A4) is not empty, proving tha
the Zero Weight rule also holds.

In case E2, expression e is correct if and only if both of the following conditions hold

EB1 • s and all its subexpressions are correct.

EB2 • not empty (s) (this is the precondition of remove).

Because of the induction hypothesis, condition EB2 means that ws, the weight of s, is
positive, or, equivalently, that ws – 1, the weight of e, is non-negative. So e satisfies the
Weight Consistency rule. To prove that it also satisfies the Zero Weight rule, we
prove that e is empty if and only if its weight is zero. Since the weight of s is positive, s
must contain at least one occurrence of put, which also appears in e. Consider the
outermost occurrence of put in e; this occurrence is enclosed in a remove (since e has a
remove at the outermost level). This means that a subexpression of e, or e itself, is of the
form

remove (put (stack_expression, g_expression))

which axiom A2 indicates may be reduced to just stack_expression. Performing this
replacement reduces the weight of e by 2; the resulting expression, which has the sa
value as e, satisfies the Zero Weight rule by the induction hypothesis. This proves
induction hypothesis for case E2.

The proof has shown in passing that in any well-formed and correct expre
which does not involve the query functions item and empty we may “remove every
remove”, that is to say, obtain a canonical form that involves only put and new, by
applying axiom A2 wherever possible. For example, the expression

put (remove(remove (put (put (remove (put (put (new, x1), x2)), x3), x4))), x5)

has the same value as the canonical form

put (put (new, x1), x5)

For the record, let us give this mechanism a name and a definition:

Canonical Reduction rule
Any well-formed and correct stack expression involving neither item nor
empty has an equivalent “canonical” form that does not involve remove (that
is to say, may fsonly involve new and put). The canonical form is obtained
by applying the stack axiom A2 as many times as possible.

§6.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 159

s that

count

ess and

ined

en the

h

f all

d the
 rule

, for a

 and

 than

 and
nd are

de a
ating
ent.
This takes care of the proof of sufficient completeness but only for expression
do not involve any of the query functions, and consequently for property S1 only (checking
the correctness of an expression). To finish the proof, we must now take into ac
expressions that involve the query functions, and deal with problem S2 (finding the values
of these query expressions). This means we need a rule to determine the correctn
value of any well-formed expression of the form f (s), where s is a well-formed expression
and f is either empty or item.

The rule and the proof of its validity use induction on the nesting level, as def
above. Let n be the nesting level of s. If n is 0, s can only be new since all the other
functions require arguments, and so would have at least one parenthesis pair. Th
situation is clear for both of the query functions:

• empty (new) is correct and has value true (axiom A3).

• item (new) is incorrect since the precondition of item is not empty (s).

For the induction step, assume that s has a nesting depth n of one or more. If any
subexpression u of s has item or empty as its outermost function, then u has a depth of at
most n – 1, so the induction hypothesis indicates that we can determine whetheru is
correct and, if it is, obtain the value of u by applying the axioms. By performing all suc
possible subexpression replacements, we obtain for s a form which involves no stack
function other than put, remove and new.

Next we may apply the idea of canonical form introduced above to get rid o
occurrences of remove, so that the resulting form of s may only involve put and new. The
case in which s is just new has already been dealt with; it remains the case for whichs is
of the form put (s', x). Then for the two expressions under consideration:

• empty (s) is correct, and axiom A3 indicates that the value of this expression is false.

• item (s) is correct, since the precondition of item is precisely not empty (s); axiom
A1 indicates that the value of this expression is x.

This concludes the proof of sufficient completeness since we have now prove
validity of a set of rules — the Weight Consistency rule and the Canonical Reduction
— enabling us to ascertain whether an arbitrary stack expression is correct and
correct query expression, to determine its value in terms of BOOLEAN and G values only.

6.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• The theory of abstract data types (ADT) reconciles the need for precision
completeness in specifications with the desire to avoid overspecification.

• An abstract data type specification is a formal, mathematical description rather
a software text. It is applicative, that is to say change-free.

• An abstract data type may be generic and is defined by functions, axioms
preconditions. The axioms and preconditions express the semantics of a type a
essential to a full, unambiguous description.

• To describe operations which are not always defined, partial functions provi
convenient mathematical model. Every partial function has a precondition, st
the condition under which it will yield a result for any particular candidate argum

ABSTRACT DATA TYPES §6.9160

on an

ocess of

ess,
.

type

le to
often
ation

stract
ctness
n
otes

any
ed by

 the
r their

sulting

ations

have

e in

ning

licit
was
arate
• An object-oriented system is a collection of classes. Every class is based
abstract data type and provides a partial or full implementation for that ADT.

• A class is effective if it is fully implemented, deferred otherwise.

• Classes should be designed to be as general and reusable as possible; the pr
combining them into systems is often bottom-up.

• Abstract data types are implicit rather than explicit descriptions. This implicitn
which also means openness, carries over to the entire object-oriented method

• No formal definition exists for the intuitively clear concept of an abstract data
specification being “complete”. A rigorously defined notion, sufficient
completeness, usually provides the answer. Although no method is possib
ascertain the sufficient completeness of an arbitrary specification, proofs are
possible for specific cases; the proof given in this chapter for the stack specific
may serve as a guide for other examples.

6.9 BIBLIOGRAPHICAL NOTES

A few articles published in the early nineteen-seventies made the discovery of ab
data types possible. Notable among these are Hoare’s paper on the “proof of corre
of data representations” [Hoare 1972a], which introduced the concept of abstractio
function, and Parnas’s work on information hiding mentioned in the bibliographical n
to chapter 3.

Abstract data types, of course, go beyond information hiding, although m
elementary presentations of the concept stop there. ADTs proper were introduc
Liskov and Zilles [Liskov 1974]; more algebraic presentations were given in [M 1976]
and [Guttag 1977]. The so-called ADJ group (Goguen, Thatcher, Wagner) explored
algebraic basis of abstract data types, using category theory. See in particula
influential article [Goguen 1978], published as a chapter in a collective book.

Several specification languages have been based on abstract data types. Two re
from the work of the ADJ group are CLEAR [Burstall 1977] [Burstall 1981] and OBJ-2
[Futatsugi 1985]. See also Larch by Guttag, Horning and Wing [Guttag 1985]. ADT ideas
have influenced formal specification languages such as Z in its successive incarn
[Abrial 1980] [Abrial 1980a] [Spivey 1988] [Spivey 1992] and VDM [Jones 1986]. The
notion of abstraction function plays a central role in VDM. Recent extensions to Z
established a closer link to object-oriented ideas; see in particular Object Z [Duke 1991]
and further references in chapter 11.

The phrase “separation of concerns” is central in the work of Dijkstra; se
particular his “Discipline of Programming” [Dijkstra 1976].

The notion of sufficient completeness was first published by Guttag and Hor
(based on Guttag’s 1975 thesis) in [Guttag 1978].

The idea that going from specification to design means switching from the imp
to the explicit by identifying an ADT with the cartesian product of its simple queries
suggested in [M 1982] as part of a theory for describing data structures at three sep
levels (physical, structural, implicit).

§E6.1 EXERCISES 161

polar
 point.

ularly
ers; it
 game
r than

sit”,

ter’s
just

of a

stract
e sure
odel

See “How long is a
middle initial?”,
page 125.
EXERCISES

E6.1 Points

Write a specification describing the abstract data type POINT, modeling points in plane
geometry. The specification should cover the following aspects: cartesian and
coordinates; rotation; translation; distance of a point to the center; distance to another

E6.2 Boxers

Members of the Association Dijonnaise des Tapeventres, a boxing league, reg
compete in games to ascertain their comparative strength. A game involves two box
either results in a winner and a loser or is declared a tie. If not a tie, the outcome of a
is used to update the ranking of players in the league: the winner is declared bette
the loser and than any boxer b such that the loser was previously better than b. Other
comparative rankings are left unchanged.

Specify this problem as a set of abstract data types: ADT_LEAGUE, BOXER, GAME.
(Hint : do not introduce the notion of “ranking” explicitly, but model it by a function better
expressing whether a player is better than another in the league.)

E6.3 Bank accounts

Write an ADT specification for a “bank account” type with operations such as “depo
“withdraw”, “current balance”, “holder”, “change holder”.

How would you add functions representing the opening and closing of an account? (Hint :
these are actually functions on another ADT.)

E6.4 Messages

Consider an electronic mail system with which you are familiar. In light of this chap
discussion, define MAIL_MESSAGE as an abstract data type. Be sure to include not
query functions but also commands and creators.

E6.5 Names

Devise a NAME abstract data type taking into account the different components
person’s name.

E6.6 Text

Consider the notion of text, as handled by a text editor. Specify this notion as an ab
data type. (This statement of the exercise leaves much freedom to the specifier; mak
to include an informal description of the properties of text that you have chosen to m
in the ADT.)

ABSTRACT DATA TYPES §E6.7162

 in the
essed

n
and

cribe
ction;

 those
ification

ADT
tions

 ones.)
s, and
hy,
ss.

“Ordering and O-
O development”,
page 111.
E6.7 Buying a house

Write an abstract data type specification for the problem of buying a house, sketched
preceding chapter. Pay particular attention to the definition of logical constraints, expr
as preconditions and axioms in the ADT specification.

E6.8 More stack operations

Modify the ADT specification of stacks to account for operations count (returning the
number of elements on a stack), change_top (replacing the top of the stack by a give
element) and wipe_out (remove all elements). Make sure to include new axioms
preconditions as needed.

E6.9 Bounded stacks

Adapt the specification of the stack ADT presented in this chapter so that it will des
stacks of bounded capacity. (Hint: introduce the capacity as an explicit query fun
make put partial.)

E6.10 Queues

Describe queues (first-in, first-out) as an abstract data type, in the style used for STACK.
Examine closely the similarities and differences. (Hint : the axioms for item and remove
must distinguish, to deal with put (s, x), the cases in which s is empty and non-empty.)

E6.11 Dispensers

(This exercise assumes that you have answered the previous one.)

Specify a general ADT DISPENSER covering both stack and queue structures.

Discuss a mechanism for expressing more specialized ADT specifications such as
of stacks and queues by reference to more general specifications, such as the spec
of dispensers. (Hint : look at the inheritance mechanism studied in later chapters.)

E6.12 Booleans

Define BOOLEAN as an abstract data type in a way that supports its use in the
definitions of this chapter. You may assume that equality and inequality opera
(= and≠) are automatically defined on every ADT.

E6.13 Sufficient completeness

(This exercise assumes that you have answered one or more of the preceding
Examine an ADT specification written in response to one of the preceding exercise
try to prove that it is sufficiently complete. If it is not sufficiently complete, explain w
and show how to correct or extend the specification to satisfy sufficient completene

E6.14 Consistency

Prove that the specification of stacks given in this chapter is consistent.

	6 6 Abstract data types
	6.1 CRITERIA
	6.2 IMPLEMENTATION VARIATIONS
	Stack representations
	Three possible representations for a stack
	Head-to-head representation for two stacks

	The danger of overspecification
	How long is a middle initial?

	6.3 TOWARDS AN ABSTRACT VIEW OF OBJECTS
	Using the operations
	A laissez-faire policy for the society of modules
	Name consistency
	How not to handle abstractions

	6.4 FORMALIZING THE SPECIFICATION
	Specifying types
	Genericity
	Listing the functions
	Applying the put function

	Function categories
	The AXIOMS paragraph
	Applying the put function

	Two or three things we know about stacks
	Partial functions
	Preconditions
	The complete specification
	ADT specification of stacks

	Nothing but the truth
	Stack manipulations

	6.5 FROM ABSTRACT DATA TYPES TO CLASSES
	Classes
	Definition: class
	Definition: deferred, effective class

	How to produce an effective class
	The role of deferred classes
	Abstract data types and information hiding
	The ADT view of a module under information hiding

	Introducing a more imperative view
	Back to square one?
	Object-oriented software construction
	Object-oriented software construction (definition ...

	6.6 BEYOND SOFTWARE
	6.7 SUPPLEMENTARY TOPICS
	More on implicitness
	Specification versus design
	Definition: transition from analysis (specificatio...

	Classes versus records
	Alternatives to partial functions
	Is my specification complete?
	Definition: correct ADT expression
	Definition: sufficient completeness
	Definition: ADT consistency

	Proving sufficient completeness
	Weight Consistency rule
	Definition: weight
	Zero Weight rule
	STACK AXIOMS
	Canonical Reduction rule

	6.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	6.9 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E6.1 Points
	E6.2 Boxers
	E6.3 Bank accounts
	E6.4 Messages
	E6.5 Names
	E6.6 Text
	E6.7 Buying a house
	E6.8 More stack operations
	E6.9 Bounded stacks
	E6.10 Queues
	E6.11 Dispensers
	E6.12 Booleans
	E6.13 Sufficient completeness
	E6.14 Consistency

