6
Abstract data types

This opened my mindstarted to grasp what it means to use the tool known as algdbra
be damned if anyone had ever told me befover and again MrDupuy[the mathematics
teachel was making pompous sentences on the suylijatinot once would he say this
simple word it is adivision of labor which like any division of labor produces miragles
and allows the mind to concentrate all of its forces on just one side of glmjegtst one
of their qualities

What a difference it would have made for us if Blupuy had told usThis cheese is soft
or it is hard it is white it is blue it is old, it is young it is yours it is ming it is light or it
is heavyOf so many qualities let us consider only the welgfitatever that weight may ,be
let us call it A Now, without thinking of the weight any motet us apply to A everything
that we know of quantities

Such a simple thingret no one was saying it to us in that faraway province
StendhalThe Life of Henry Brulard1836.

For abstraction consists only in separating the perceptible qualities of hailieer from

other qualities or from the bodies to which they apgBrrors arise when this separation

is poorly done or wrongly applieghoorly done in philosophical questigrend wrongly
applied in physical and mathematical questiofis almost sure way to err in philosophy is

to fail to simplify enough the objects under stuhyd an infallible way to obtain defective
results in physics and mathematics is to view the objects as less composite than they are

Denis DiderotA Letter on the Blind for the Benefit of Those Who Can He.

I_ etting objects play the lead role in our software architectures requires that we descrit
them adequately. This chapter shows how.

You are perhaps impatient to dive into the depths of object technology and explor
the details of multiple inheritance, dynamic binding and other joys; then you may at first
look at this chapter as an undue delay since it is mostly devoted to the study of son
mathematical concepts (although all the mathematics involved is elementary).

But in the same way that even the most gifted musician will benefit from learning a
little music theory, knowing about abstract data types will help you understand and enjo
the practice of object-oriented analysis, design and programming, however attractive th
concepts might already appear without the help of the theory. Since abstract data typ

122 ABSTRACT DATA TYPES §6.1

establish the theoretical basis for the entire method, the consequences of the ideas
introduced in this chapter will be felt throughout the rest of this book.

There is more. As we will see at chapter end, these consequences actually extend
beyond the study of software proper, yielding a few principles of intellectual investigation
which one may perhaps apply to other disciplines.

6.1 CRITERIA

To obtain proper descriptions of objects, we need a method satisfying three conditions:
« The descriptions should be precise and unambiguous.

« They should be complete — or at least as complete as we want them in each case (we
may decide to leave some details out).

* They should not boverspecifyinc.

The last point is what makes the answer non-trivial. It is after all easy to be precise,
unambiguous and complete if we “spill the beans” by giving out all the details of the
objects’ representation. But this is usuatoo mucl information for the authors of
software elements that need to access the objects.

This observation is close to the comments that led to the notion of informe‘information Hid-
hiding. The concern there was that by providing a module’s source code (or, ing”, page 5.
generally, implementation-related elements) as the primary source of information fc
authors of software elements that rely on that module, we may drown them in a flood of
details, prevent them from concentrating on their own job, and hamper prospects of
smooth evolution. Here the danger is the same if we let modules use a certain data
structure on the basis of information that pertains to the structure’s representation rather
than to its essential properties.

6.2 IMPLEMENTATION VARIATIONS

To understand better why the need for abstract data descriptions is so crucial, let us
explore further the potential consequences of using physical representation as the basis for
describing objects.

A well-known and convenient example is the description of stack objects. A stack
object serves to pile up and retrieve other objects in a last-in, first-out (“LIFO”) manner,
the latest inserted element being the first one to be retrieved. The stack is a ubiquitous
structure in computing science and in many software systems; the typical compiler or
interpreter, for example, is peppered with stacks of many kinds.

Stacks, it must be said, are also ubiquitous in didactic presentations of abstract data types,
so much so that Edsger Dijkstra is said to have once quipped that “abstract data types are
a remarkable theory, whose purpose is to describe stacks”. Fair enough. But the notion of
abstract data type applies to so many more advanced cases in the rest of this book that |
do not feel ashamed of starting with this staple example. It is the simplest | know which
includes about every important idea about abstract data types.

§6.2 IMPLEMENTATION VARIATIONS 123

Three possible
representations
for a stack

Stack representations

Several possible physical representations exist for stacks:

capacity “Push” operation:
count:=count +1
count representatiorfcounf := x
(ARRAY_uP)
representatiof 1
capacity “Push” operation:
representatiorifreg] := x
(ARRAY_DOWN) free:=free — 1
free
representation 1

“Push” operation:
new(n)
previous n.item:= x

. n.previous:= last
previous

last:=n
D)

(LINKED) (— previous

The figure illustrates three of the most common representations. Each has been gi
a name for ease of reference:

* ARRAY_UF: represent a stack through an arrepresentatio and an integecount
whose value ranges from O (for an empty stackcapacity, the size of the array
representatio; stack elements are stored in the array at indices 1 coun.

* ARRAY_DOWN: like ARRAY_UP, but with elements stored from the end of the array
rather than from the beginning. Here the integer is cifree (it is the index of the
highest free array position, or O if all positions are occupied) and ranges fro
capacityfor an empty stack down to 0. The stack elements are stored in the array
indicescapacitydown tc free + 1.

* LINKED: a linked representation which stores each stack element in a cell with tv
fields: item representing the element, aprevious containing a pointer to the cell
containing the previously pushed element. The representation also lasi, &
pointer to the cell representing the top.

124 ABSTRACT DATA TYPES §6.2

Next to each representation, the figure shows a program extract (in Pascal-like
notation) giving the corresponding implementation for a basic stack operation: pushing an
elementx onto the top.

For the array representationsRrAY_UP and ARRAY_DOWN, the instructions
increase or decrease the top indicataruqtor free) and assigrnx to the corresponding
array element. Since these representations support stacks of atamastyelements,
robust implementations should include guards of the respective forms

if count< capacitythen ...
if free> Othen ...

which the figure omits for simplicity.

For LINKED, the linked representation, pushing an element requires four operations:
create a new celi (done here with Pascalisew procedure, which allocates space for a
new object); assigrnto the new cell’'stemfield; chain the new cell to the earlier stack top
by assigning to itpreviousfield the current value dfist; and updatéast so that it will
now be attached to the newly created cell.

Although these are the most frequently used stack representations, many others exist.
For example if you neetivo stacks of elements of the same type, and have only limited
space available, you may rely on a single array with two integer top markergas in
ARRAY_UP andfreeas inARRAY_DOWN; one of the stacks will grow up and the other will
grow down. The representation is full if and onlgdafunt= free.

capacity Head-to-head
Stack 2 representation
l for two stacks
free
T count
representation Stack 1
1

The advantage, of course, is to lessen the risk of running out of space: with two
arrays of capacity representing stacks underrAY_UP Or ARRAY_DOWN, you exhaust
the available space whenewsther stack reaches elements; with a single array of size
2n holding two head-to-head stacks, you run out whegdingbinedsize reache2n, a less
likely occurrence if the two stacks grow independently. (For any variable vakredg,
max(p + q) < max(p) + max(q).)

Each of these and other possible representations is useful in some cases. Choosing
one of them as “the” definition of stacks would be a typical case of overspecification. Why
should we considexrrRAY _UP, for example, more representative tharkep? The most
visible properties ohRRAY_UP — the array, the integerount the upper bound — are
irrelevant to an understanding of the underlying structure.

§6.2 IMPLEMENTATION VARIATIONS 125

The danger of overspecification

Why is it so bad to use a particular representation as specification?

“ABOUT SOFT- The results of the Lientz and Swanson maintenance study, which you may rec;
WARE MAINTE- give a hint. More than 17% of software costs was found to come from the need to take i
NANCE’, 1.3, page account changes of data formats. As was noted in the discussion, too many programs

17 closely tied to the physical structure of the data they manipulate. A method relying on
physical representation of data structures to guide analysis and design would not be lil
to yield flexible software.

So if we are to use objects or object types as the basis of our system architectu

we should find a better description criterion than the physical representation.
How long is a middle initial?
Lest stacks make us forget that, beyond the examples favored by computer scientists,
structures are ultimately connected with real-life objects, here is an amusing examy
taken from a posting on the Risks forucomp.risk Usenet newsgroup) of the dangers of
a view of data that is too closely dependent on concrete properties:

Risks forur, 10.74, My dear mother blesse(or perhaps curse) all of her children with two middle initig,ls

3 Jar. 199% Post- in my case “D” and “E”. This has caused me a good deal of tro.uble

ing by Darrell C.E.

Lonc: ““Dehuman- It seems that TRW sells certain parts of your credit inform, such as your name and

ization by old a demographic profil. | recently got a new credit card from Gottchalks and found to my
Cobol programs. chagrin that my name had been truncated to “Darre. Long”. | went to the credit
Abbreviatel manager and was assured that things would be . Well, two things happenc: | got a
new credit car, this time as “Darrell k. Long”, and TRW now has an annotation in my
See exercisE6.5, file to the effect “File variatio: middle initial is E". Soon after this | start getting mail
page 16.. for “Darrell E. Long” (along with the usual “Darrell Long” and “Darrell L. Long” and

the occasional Darrell D. E. Long”).

| called up the credit bureau and it seems that the programmer who coded up the TRW
database decided that all good Americans are entitled to only one middle. As the
woman on the phone patiently told me “They only allocated enough meg(sic) in

the system for one middle init, and it would probably be awfully hard to chant.je”

Aside from the typical example of technobabble justification (“megabytes”), th
lesson here is the need to avoid tying software to the exact physical properties of d
TRW's system seems similar to those programs, mentioned in an earlier discussion, wt
“knew” that postal codes consist of exactly five digits.

See pagilé. The author of the message reproduced above was mainly concerned about junk n
an unpleasant but not life-threatening event; the archives of the Risks forum are full
computer-originated name confusions with more serious consequences. The “milleni
problem”, mentioned in the discussion of software maintenance, is another example of
dangers of accessing data based on physical representation, this one with hundrec
millions of dollars’ worth of consequences.

126 ABSTRACT DATA TYPES §6.3

6.3 TOWARDS AN ABSTRACT VIEW OF OBJECTS

How do we retain completeness, precision and non-ambiguity without paying the price of
overspecification?

Using the operations

In the stack example, what unites the various representations in spite of all their
differences is that they describe a “container” structure (a structure used to contain other
objects), where certain operations are applicable and enjoy certain properties. By focusing
not on a particular choice of representation but on these operations and properties, we may
be able to obtain an abstract yet useful characterization of the notion of stack.

The operations typically available on a stack are the following:
* A command to push an element on top of a stack. Let us call that op¢ui. on

« A command to remove the stack’s top element, if the stack is not empty. Let us call
it removt.

< A query to find out whatthe top element is, if the stack is not empty. Let usitem.it

* A query to determine whether the stack is empty. (This will enable clients to
determine beforehand if they can removeanditerr.)

In addition we may need a creator operation giving us a stack, initially empty. Let us
call it make.

Two points may have caught your attention and will deserve more explanation later in
this chapter. First, the operation names may seem surprising; for the moment, just think
of pul as meaningust, remove as meanin¢pof, anditem as meaninctop. Details
shortly (on the facing page, actually). Second, the operations have been divided into
three categories: creators, which yield objects; queries, which return information about
objects; and commands, which can modify objects. This classification will also require
some more comments.

In a traditional view of data structures, we would consider that the notion of stack is
given by some data declaration corresponding to one of the above representations, for
example (representatiiarRrAY_UP, Pascal-like syntax):

coun: INTEGER
representatio: array [1 .. capacity] of STACK_ELEMENT_TYPE

wherecapacity, a constant integer, is the maximum number of elements on the stack. Then
pui, removs, item, empty and make would be routines (subprograms) that work on the
object structures defined by these declarations.

The key step towards data abstraction is to reverse the viewpoint: forget for the
moment about the representation; take the operations themselves as defining the data
structure. In other words, a steis any structure to which clients may apply the operations
listed above.

8§6.3 TOWARDS AN ABSTRACT VIEW OF OBJECTS 127

See'BEYOND
SOFTWARE”, 6.6,
page 147

A laissez-faire policy for the society of modules

The method just outlined for describing data structures shows a rather selfish approac
the world of data structures: like an economist of the most passionate supply-si
invisible-hand, let-the-free-market-decide school, we are interested in individual agel
not so much for what theare internally as for what thehave to offer to each other. The
world of objects (and hence of software architecture) will be a world of interacting agen
communicating on the basis of precisely defined protocols.

The economic analogy will indeed accompany us throughout this presentation; t
agents — the software modules — are casuppliers andclients; the protocols will be
called contracts, and much of object-oriented design is indDesign by Contray, the
title of a later chapter.

As always with analogies, we should not get too carried away: this work is not
textbook on economics, and contains no hint of its author’s views in that field. It wi
suffice for the moment to note the remarkable analogies of the abstract data type apprc
to some theories of how human agents should work together. Later in this chapter we
again explore what abstract data types can tell us beyond their original area of applicati

Name consistency

For the moment, let us get back to more immediate concerns, and make sure you
comfortable with the above example specification in all its details. If you hav
encountered stacks before, the operation names chosen for the discussion of stacks
have surprised or even shocked you. Any-ssdpecting computer scientist will know
stack operations under other names:

Common stack operation name Name used here
push put

pop remove

top item

new make

Why use anything else than the traditional terminology? The reason is a desire
take a high-level view of data structures — especially “containers”, those data structu
used to keep objects.

Stacks are just one brand of container; more precisely, they belong to a category
containers which we may cadispenser. A dispenser provides its clients with a
mechanism for storin¢pui), retrieving iten) and removingremove) objects, but without
giving them any control over the choice of object to be stored, retrieved or removed. F
example, the LIFO policy of stacks implies that you may only retrieve or remove tr
element that was stored last. Another brand of dispenser is the queue, which has a firs
first-out (FIFO) policy: you store at one end, retrieve and remove at the other; the elem

128 ABSTRACT DATA TYPES §6.3

that you retrieve or remove is the oldest one stored but not yet removed. An example of a
container which inot a dispenser is an array, where you choose, through integer indices,
the positions where you store and retrieve objects.

Because the similarities between various kinds of container (dispensers, arrays and
others) are more important than the differences between their individual storage, retrieval
and removal properties, this book constantly adheres to a standardized terminology which
downplays the differences between data structure variants and instead emphasizes the
commonality. So the basic operation to retrieve an element will always beitem, the
basic operation to remove an element will always be cremov¢ and so on.

These naming issues may appear superficial at first — “cosmetic”, as programmers
sometimes say. But do not forget that one of our eventual aims is to provide the basis for
powerful, professional libraries of reusable software components. Such libraries will
contain tens of thousands of available operations. Without a systematic and clear
nomenclature, both the developers and the users of these libraries would quickly be
swamped in a flood of specific and incompatible names, providing a strong (and
unjustifiable) obstacle to large-scale reuse.

Naming, then, inot cosmetic. Good reusable software is software that provides the
right functionality and provides it under the right names.

The names used here for stack operations are part of a systematic set of nchapter26, in par-

conventions used throughout this book. A later chapter will introduce them in more deicular “CHOOS-
ING THE RIGHT
NAMES”, 26.2,

How not to handle abstractions
page 872

In software engineering as in other scientific and technical disciplines, a seminal idea may
seem obvious once you have been exposed to it, even though it may have taken a long time
to emerge. The bad ideas and the complicated ones (they are often the same) often appear
first; it takes time for the simple and the elegant to take over.

This observation is true of abstract data types. Although good software developers
have always (as a result of education or mere instinct) made good use of abstraction, many
of the systems in existence today were designed without much consideration of this goal.

| once did a little involuntary experiment which provided a good illustration of this
state of affairs. While setting up the project part of a course which | was teaching, |
decided to provide students with a sort of anonymous marketplace, where they could place
mock “for sale” announcements of software modules, without saying who was the source
of the advertisement. (The idea, which may or may not have been a good one, was to favor
a selection process based only on a precise specification of the modules’ advertized
facilities.) The mail facility of a famous operating system commonly favored by
universities seemed to provide the right base mechanism (why write a new mail system
just for a course project?); but naturally that mail facility shows the sender’s name when
it delivers a message to its recipients. | had access to the source of the corresponding code
— a huge C program — and decided, perhaps foolishly, to take that code, remove all
references to the sender’'s name in delivered messages, and recompile.

8§6.4 FORMALIZING THE SPECIFICATION 129

Writing MAIL_
MESSAG is the
topic of exercise
E6.4, page 1€1

Aided by a teaching assistant, | thus embarked on a task which seemed obvi
enough although not commonly taught in software engineering courses: systeme
programdeconstruction. Sure enough, we quickly found the first place where the progra
accessed the sender’'s name, and we removed the corresponding code. This, we na
thought, would have done the job, so we recompiled and sent a test mail message; bu
sender’'s name was still there! Thus began a long and surreal process: time and ac
believing we had finally found the last reference to the sender’s name, we would remc
it, recompile, and mail a test message, only to find the name duly recorded once agai
its habitual field. Like the Hydra in its famous fight, the mailer kept growing a new heg
every time we thought we had cut the last neck.

Finally, repeating for the modern era the earlier feat of Hercules, we slew the be
for good; by then we had removed more than twenty code extracts which all accessec
some way or other, information about the message sender.

Although the previous sections have only got us barely started on our road to abstt
data types, it should be clear by now that any program written in accordance with even
most elementary concepts of data abstraction wouldMAIL MESSAG as a carefully
defined abstract notion, supporting a query operation, perhaps ende, which
returns information about the message sender. Any portion of the mail program that ne
this information would obtain it solely through tsende query. Had the mail program
been designed according to this seemingly obvious principle, it would have be
sufficient, for the purpose of my little exercise, to modify the code osende query.
Most likely, the software would also then have provided an associated command opera
set_sende to update sender information, making the job even easier.

What is the real moral of that little story (besides lowering the reader’s guard
preparation for the surprise mathematical offensive of the next section)? After all, the m
program in question is successful, at least judging by its widespread use. But it typifies
current quality standard in the industry. Until we move significantly beyond that standal
the phrase “software engineering” will remain a case of wishful thinking.

Oh yes, one more note. Some time after my brief encounter with the mail progra
| read that certain network hackers had intruded into the computer systems of higl
guarded government laboratories, using a security hole of that very mail program — a h
which was familiar, so the press reported, to all those in the know. | was not in the kna
but, when | learned the news, | was not surprised.

6.4 FORMALIZING THE SPECIFICATION

The glimpse of data abstraction presented so far is too informal to be of durable u
Consider again our staple example: a stack, as we now understand it, is defined in te
of the applicable operations; but then we need to define these operations!

Informal descriptions as abovpui pushes an element “on top of” the steremove
pops the element “last pushed” and so on) do not suffice. We need to know precisely f
these operations can be used by clients, and what they will do for them.

130 ABSTRACT DATA TYPES §6.4

An abstract data type specification will provide this information. It consists of four
paragraphs, explained in the next sections:

* TYPES.

* FUNCTIONS.

* AXIOMS.

« PRECONDITIONS.

These paragraphs will rely on a simple mathematical notation for specifying the
properties of an abstract data type (ADT for short).

The notation — a mathematical formalism, not to be confused with the software
notation of the rest of this book even though for consistency it uses a similar syntactic
style — has no name and is not a programming language; it could serve as the starting
point for a formalspecificatior language, but we shall not pursue this avenue here,
being content enough to use self-explanatory conventions for the unambiguous
specification of abstract data types.

Specifying types

The TYPES paragraph indicates the types being specified. In general, it may be
convenient to specify several ADTs together, although our example has onSTACE.

By the way, what is a type? The answer to this question will combine all the ideas
developed in the rest of this chapter; a type is a collection of objects characterized by
functions, axioms and preconditions. If for the moment you just view a type as a set of
objects, in the mathematical sense of the word “set” — STACK as the set of all
possible stacks, typINTEGEF as the set of all possible integer values and so on — you
are not guilty of any terrible misunderstanding. As you read this discussion you will be
able to refine this view. In the meantime the discussion will not be too fussy about using
“set” for “type” and conversely.

On one point, however, you should make sure to avoid any confusion: an abstract
data type such ¢STACK is not an object (one particular stack) but a collection of objects
(the set of all stacks). Remember what our real goal is: finding a good basis for the
modules of our software systems. As was noted in the previous chapter, basing a module
on one particular object — one stack, one airplane, one bank account — would not make
sense. O-O design will enable us to build modules covering the properties of all stacks, all
airplanes, all bank accounts — or at least of some stacks, airplanes or accounts.

An object belonging to the set of objects described by an ADT specification is called
aninstance of the ADT. For example, a specific stack which satisfies the properties of the
STACH abstract data type will be an instanc<STACE. The notion of instance will carry
over to object-oriented design and programming, where it will play an important role in
explaining the run-time behavior of programs.

8§6.4 FORMALIZING THE SPECIFICATION 131

See“Genericity”,
page 96

The TYPES paragraph simply lists the types introduced in the specification. Here

TYPES
« STACK[G]

Our specification is about a single abstract data STACI, describing stacks of
objects of an arbitrary tygG.

Genericity

In STACK[G], G denotes an arbitrary, unspecified ty|G is called aformal generic
parameter of the abstract data ty|STACK andSTACk itself is said to be a generic ADT.
The mechanism permitting such parameterized specifications is known as genericity;
already encountered a similar concept in our review of package constructs.

It is possible to write ADT specifications without genericity, but at the price of
unjustified repetition. Why have separate specifications for the types “stack of ba
accounts”, “stack of integers” and so on? These specifications would be identical exc
where they explicitly refer to the type of the stack elements — bank accounts or intege
Writing them, and then performing the type substitutions manually, would be tediou
Reusability is desirable for specifications too — not just programs! Thanks to generici
we can make the type parameterization explicit by choosing some arbitrary nar G, here

to represent the variable type of stack elements.

As aresult, an ADT such iSTACk is not quite a type, but rather a type pattern; to
obtain a directly usable stack type, you must obtain some element type, for exam
ACCOUNT, and provide it aactual generic paramete corresponding to the formal
parameteG. So althougtSTACEis by itself just a type pattern, the notation

STACK[ACCOUN]

is a fully defined type. Such a type, obtained by providing actual generic parameters t
generic type, is said to tgenerically derivec.

The notions just seen are applicable recursively: every type should, at least
principle, have an ADT specification, so you may vViACCOUNT as being itself an
abstract data type; also, a type that you use as actual generic paranSTACF (to
produce a generically derived type) may itself be generically derived, so it is perfectly
right to use

STACK[STACK[ACCOUNT]

specifying a certain abstract data type: the instances of that type are stacks, wh
elements are themselves stacks; the elements of these latter stacks are bank account

As this example shows, the preceding definition of “instance” needs sornr
qualification. Strictly speaking, a particular stack is an instance rSTACK (which, as
noted, is a type pattern rather than a type) but of some type generically derived fr
STACE, for exampleSTACK[ACCOUNT]. It is convenient, however, to continue talking

132 ABSTRACT DATA TYPES §6.4

about instances cSTACH and similar type patterns, with the understanding that this
actually means instances of their generic derivations.

Similarly, it is not quiteaccurate to talk abolSTACK being an ADT: the correct
term is “ADT pattern”. For simplicity, this discussion will continue omitting the word
“pattern” when there is no risk of confusion.

The distinction will carry over to object-oriented design and programming, but there we
will need to keep two separate terms:

*The basic notion will be thclass; a class may have generic parameters.

*Describing actual data requirtypes. A non-generic class is also a type, but a generic class
is only a type pattern. To obtain an actual type from a generic class, we will need to
provide actual generic parameters, exactly as we derive the STACK[ACCOUN]
from the ADT patterrSTACE.
Later chapters will explore the notion of genericity as applied to classes, and how to ChapterlQ and
combine it with the inheritanceechanism. appendixB.

Listing the functions

After the TYPES paragraph comes the FUNCTIONS paragraph, which lists the operations
applicable to instances of the ADT. As announced, these operations will be the prime
component of the type definition — describing its instances not by what they are but by
what they have to offer.

Below is the FUNCTIONS paragraph for tSTACk abstract data type. If you are a
software developer, you will find the style familiar: the lines of such a paragraph evoke
the declarations found in typed programming languages such as Pascal or Ada. The line
for new resembles a variable declaration; the others resemble routine headers.

FUNCTIONS
* put: STACK[G] x G - STACK[G]
e remove STACK[G] +» STACK[G]
e item: STACK[G] » G
* empt: STACK[G] -~ BOOLEAN
* new. STACK[G]

Each line introduces a mathematical function modeling one of the operations on
stacks. For example functiqput represents the operation that pushes an element onto the

top of a stack.

Why functions? Most software people will not naturally think of an operation such
asput as a function. When the execution of a software system appput operation to
a stack, it will usually modify that stack by adding an element to it. As a result, in the
above informal classification of commanpuiwas a “command” — an operation which
may modify objects. (The other two categories of operations were creators and queries).

8§6.4 FORMALIZING THE SPECIFICATION 133

See als¢“The im-

An ADT specification, however, is a mathematical model, and must rely on well

perative and the ap-understood mathematical techniques. In mathematics the notion of command, or m

plicative”, page
351

Applying the
pul function

generally of changing something, does not exist as such; computing the square root of
number 2 does not modify the value of that number. A mathematical expression sim|
defines certain mathematical objects in terms of certain other mathematical objects: unl
the execution of software on a computer, it never changes any mathematical object.

Yet we need a mathematical concept to model computer operations, and here
notion of function yields the closest approximation. A function is a mechanism fc
obtaining a certain result, belonging to a certain target set, from any possible inf
belonging to a certain source set. For exampIR denotes the set of real numbers, the
function definition

square_plus_orrR - R

square_plus_on(x) = x* + 1 (for anyx in R)
introduces a functiorsquare_plus_or having R as both source and target sets, and
yielding as result, for any input, the square of the input plus one.

The specification of abstract data types uses exactly the same notion. Ogpui,tion
for example, is specified as

put: STACK[G] x G — STACKIG]

which means theput will take two arguments, STACkof instances oG and an instance
of G, and yield as a result a neSTACK[G]. (More formally, the source set of function
puiis the seSTACK[G] x G, known as thicartesian productof STACK[G] andG; this

is the set of pair<s, x> whose first elemerdis in STACK[G] and whose second element
xis in G.) Here is an informal illustration:

JUN

(=)

(stach) (elemen): (stack)

With abstract data types, we only have functions in the mathematical sense of -
term; they will produce neither side effects nor in fact changes of any kind. This is tl
condition that we must observe to enjoy the benefits of mathematical reasoning.

When we leave the ethereal realm of specification for the rough-and-tumble
software design and implementation, wél weed to reintroduce the notion of change;
because of the performance overhead, few people would accept a software execu
environment where every “push” operation on a stack begins by duplicating the sta
Later we will examine the details of the transition from the change-free world of ADTs t
the change-full world of software development. For the moment, since we are studyi
how best to specify types, the mathematical view is the appropriate one.

134 ABSTRACT DATA TYPES §6.4

The role of the operations modeled by each of the functions in the specification of
STACEF is clear from the previous discussion:

» Functionputyields a new stack with one extra element pushed on top. The figure on
the preceding page illustratput (s, x) for a stacks and an elemerx.

* Functionremove yields a new stack with the top element, if any, popped;puiz
this function should yield a command (an object-changing operation, typically
implemented as a procedure) at design and implementation time. We will see below
how to take into account the case of an empty stack, which has no top to be popped.

* Functioniterr yields the top element, if any.

* Functionempt indicates whether a stack is empty; its result is a boolean value (true
or false); the ADTBOOLEAN is assumed to have been defined separately.

* Functionnew yields an empty stack.

The FUNCTIONS paragraph does not fully define these functions; it only introduces
their signatures — the list of their argument and result types. The signatuput is

STACK[G] x G — STACK[G]

indicating thaput accepts as arguments pairs of the f<is, x> wheres is an instance of
STACK[G] andx is an instance G, and yields as a result an instanc«<STACK[G]. In
principle the target set of a function (the type that appears to the right of the arrow in
signature, herSTACK[G]) may itself be a cartesian product; this can be used to describe
operations that return two or more results. For simplicity, however, this book will only use
single-result functions.

The signature of functiorremove anditerr includes a crossed arro+ instead of
the standard arrow used putandempt. This notation expresses that the functions are
not applicable to all members of the source set; it will be explained in detail below.

The declaration for functionew appears as just

new. STACK
with no arrow in the signature. This is in fact an abbreviation for

new. - STACK

introducing a function with no arguments. There is no need for argumentnew must
always return the same result, an empty stack. So we just remove the arrow for simplicity.
The result of applying the function (that is to say, the empty stack) will also be written
new, an abbreviation fcnew(), meaning the result of applyinewto an empty argument

list.

Function categories

The operations on a type were classified informally at the beginning of this chapter into
creators, queries and commands. With an ADT specification for a newT, such as
STACK]JG] in the example, we can define the corresponding classification in a more

8§6.4 FORMALIZING THE SPECIFICATION 135

rigorous way. The classification simply examines wiT appears, relative to the arrow,
in the signature of each function:

¢ A function such anew for whichT appears only to the right of the arrow icreator
function. It models an operation which produces instanceT from instances of
other types — or, as in the case of a constant creator function snew, from no
argument at all. (Remember that the signaturnewis considered to contain an
implicit arrow.)

A function such aiterr andempt for whichT appears only on the left of the arrow
is aquery function. It models an operation which yields properties of instances o
T, expressed in terms of instances of other tyBOOLEAN and the generic
parameteG in the examples).

A function such aputorremov« for which T appears on both sides of the arrow is
acommand functior. It models an operation which yields new instanceT: from
existing instances (T (and possibly instances of other types).

LTI

An alternative terminology calls the three categories “constructor”, “accessor” and
“modifier”. The terms retained here are more directly related to the interpretation of ADT
functions as models of operations on software objects, and will carry over to class
features, the software coerparts of our matheatical functions.

The AXIOMS paragraph

We have seen how to describe a data type suSTACK through the list of functions
applicable to its instances. The functions are known only through their signatures.

To indicate that we have a stack, and not some other data structure, the Al
specification as given so far is not enough. Any “dispenser” structure, such as a first-
first-out queue, will also satisfy it. The choice of names for the operations makes tt
particularly clear: we do not even have stack-specific names swpust, pof or top to
fool ourselves into believing that we have defined stacks and only stacks.

This is not surprising, of course, since the FUNCTIONS paragraph declared t
functions (in the same way that a program unit may declare a variable) but did not fu
define them. In a mathematical definition such as the earlier example

square_plus_or:R - R
square_plus_on(x) = X2+ 1 (for anyx in R)

the first line plays the role of the signature declaration, but there is also a second line wt
defines the function’s value. How do we achieve the same for the functions of an ADT

Here we should not use an explicit definition in the style of the second line «
square_plus_or's definition, because it would force us to choose a representation — ar
this whole discussion is intended to protect us from representation choices.

Just to make sure we understand what an explicit definition would look like, let
write one for the stack representatiArRrRAY _UP as sketched above. In mathematical
terms, choosin(ARRAY_UP means that we consider any instanceSTACF as a pair

136 ABSTRACT DATA TYPES §6.4

<coun, representatio>, whererepresentatio is the array ancoun is the number of
pushed elements. Then an explicit definitiorput is (for any instancx of G):

put(<coun, representatio>, x) = <count + J, representatiorfcount+1: x]>

where the notatic a[n: v] denotes the array obtained fr@ by changing the value of the
element at inden so that it is now, and keeping all other elements, if any, as they are.

This definition of functiorput is just a mathematical version of the implementatiFigure pagel22.
of the put operation sketched in Pascal notation, next to represenAarRRAY_UP, in the
picture of possible stack representations at the beginning of this chapter.

But this is not what we want; “Free us from the yoke of representations!”, the nThe political branch

of the Object Liberation Front and its military branch (the ADT brigade), is also oursspecializes in class-
action suit:;

Because any explicit definition would force us to select a representation, we must
turn toimplicit definitions. We will refrain from giving the values of the functions of an
ADT specification; instead we will state properties of these values — all the properties
that matter, but those properties only.

The AXIOMS paragraph states these propertiesSTACE it will be:

AXIOMS
For anyx: G, s: STACK[G],
Al eitem(put(s, X)) = X
A2+ remove (put (s, X)) =s
A3+ empt (new)
A4 « not empty (put (s, X))

The first two axioms express the basic LIFO (last-in, first-out) property of stacks. To
understand them, assume we have a < and an instancx, and defin s'to beput(s, x),
that is to say the result of pushix ontos. Adapting an earlier figure:

Applying the
put function

:put(,

S X

OO

8§6.4 FORMALIZING THE SPECIFICATION 137

“More on implicit-
ness”, page 149

Here axiom Al tells us that the top s'is x, the last element that we pushed; and
axiom A2 tells us that if we remove the top element fs', we get back the stass that
we had before pushinx. These two axioms provide a concise description of the
fundamental property of stacks in pure mathematical terms, without any recourse
imperative reasoning or representation properties.

Axioms A3 and A4 tell us when a stack is empty and when it is not: a stack resultir
from the creator functionew is empty; any stack resulting from pushing an element or
an existing stack (empty or not) is non-empty.

These axioms, like the others, are predicates (in the sense of logic), expressing
a certain property is always true for every possible valis andx. Some people prefer
to read A3 and A4 in the equivalent form

For anyx: G, s: STACK[G]
A3'e empt(new) = true

A4’ empty(put (s, x)) = false

under which you may also view them, informally at least, as defining funempt by
induction on the size of stacks.

Two or three things we know about stacks

ADT specifications arimplicit . We have encountered two forms of implicitness:

e The ADT method defines a set of objects implicitly, through the applicabl
functions. This was described above as defining objects by what they have, not w
they are. More precisely, the definition never implies that the operations listed a
the only ones; when it comes to a representation, you will often add other operatiol

« The functions themselves are also defined implicitly: instead of explicit definition
(such as was used fsquare plus_or, and for the early attempt to defipul by
reference to a mathematical representation), we use axioms describing the functic
properties. Here too there is no claim of exhaustiveness: when you eventua
implement the functions, they will certainly acquire more properties.

This implicitness is a key aspect of abstract data types and, by implication, of th
future counterparts in object-oriented software construction — classes. When we def
an abstract data type or a class, we alwaysabou the type or class: we simply list the
properties we know, and take these as the definition. Never do we imply that these are
only applicable properties.

Implicitness implies openness: it should always be possible to add new properties
an ADT or a class. The basic mechanism for performing such extensions withc
damaging existing uses of the original form is inheritance.

The consequences of this implicit approach are far-reaching. The “supplement:
topics” section at the end of this chapter will include more comments about implicitnes

138 ABSTRACT DATA TYPES §6.4

Partial functions

The specification of any realistic example, even one as basic as stacks, is bound to
encounter the problems of undefined operations: some operations are not applicable to
every possible element of their source sets. Here this is the casremovetanditen: you

cannot pop an element from an empty stack; and an empty stack has no top.

The solution used in the preceding specification is to describe these functions as
partial. A function from a source sX to a target seY is partial if it is not defined for all
members oiX. A function which is not partial itotal. A simple example of partial
function in standard mathematicsnv, the inverse function on real numbers, whose value
for any appropriate real numbx is

1
inv(x) = -

Becauseinvis not defined fox = 0, we may specify it as a partial functionR, the
set of all real numbers:

inv:R + R
To indicate that a function may be partial, the notation uses the crossec+ ; the
normal arrow - will be reserved for functions which are guaranteed to be total.

The domain of a partial function inX » Y is the subset oX containing those
elements for which the function yields a value. Here the domzinvisR —{0}, the set
of real numbers other than zero.

The specification of thSTACH ADT applied these ideas to stacks by declapuy
anditerr as partial functions in the FUNCTIONS paragraph, as indicated by the crossed
arrow in their signatures. This raises a new problem, discussed in the next section: how to
specify the domains of these functions.

In some cases it may be desirable to descput as a partial function too; this isExerciseE6.9,
necessary to model implementations suclaRRAY_UP andARRAY_DOWN, which only page 162
support a finite number of consecutipul operations on any given stack. It is indeed a
good exercise to adapt the specificatiolSTACE so that it will describe bounded stacks
with a finite capacity, whereas the above form does not include any such capacity
restriction. This is a new use for partial functions: to reflect implementation constraints.

In contrast, the need to decldternr andremov« as partial functions reflected an abstract
property of the underlying operations, applicable to all representations.

Preconditions

Partial functions are an inescapable fact of software development life, merely reflecting
the observation that not every operation is applicable to every object. But they are also a
potential source of errors: f is a partial function fronX to Y, we are not sure any more

that the expressic f (€) makes sense even if the valuee is in X: we must be able to
guarantee that the value belongs to the domaf. of

For this to be possible, any ADT specification which includes partial functions must
specify the domain of each of them. This is the role of the PRECONDITIONS paragraph.

For STACK, the paragraph will appear as:

8§6.4 FORMALIZING THE SPECIFICATION 139

PRECONDITIONS
e remove(s: STACK[G]) require not empty(s)
» item(s: STACK[G]) require not empty(s)

where, for each function, threquire clause indicates what conditions the function’s
arguments must satisfy to belong to the function’s domain.

The boolean expression which defines the domain is calleprecondition of the
corresponding partial function. Here the precondition of removt anditem expresses
that the stack argument must be non-empty. Beforrequire clause comes the name of
the function with dummy names for argumers for the stack argument in the example),
so that the precondition can refer to them.

Mathematically, the precondition of a functif is thecharacteristic function of the
domain off. The characteristic function of a subA of a setX is the total function
ch: X = BOOLEAN such thach (x) is true ifx belongs tcA, false otherwise.

The complete specification

The PRECONDITIONS paragraph concludes this simple specification aSTACK
abstract data type. For ease of reference it is useful to piece together the vari
components of the specification, seen separately above. Here is the full specification:

ADT specification of stacks
TYPES

* STACK[G]
FUNCTIONS
* put: STACK[G] x G - STACK[G]
* remove STACK[G] » STACK[G]
« item: STACK[G] » G
e empt: STACK[G] -~ BOOLEAM
* new. STACK[G]
AXIOMS
For anyx: G, s: STACK[G]
Al eitem(put(s, X)) = x
A2 remove(put (s, X)) =s
A3+ empty (new)
A4« not empty (put (s, x))
PRECONDITIONS
» remove(s: STACK[G]) require not empty(s)
 item(s: STACK[G]) require not empty(s)

140 ABSTRACT DATA TYPES §6.4

Nothing but the truth

The power of abstract data type specifications comes from their ability to capture the
essential properties of data structures without overspecifying. The stack specification
collected on the preceding page expresses all there is to know about the notion of stack in
general, excluding anything that only applies to some particular representations of stacks.
All the truth about stacks; yet nothing but the truth.

This provides a general model of computation with data structures. We may describe
complex sequences of operations by mathematical expressions enjoying the usual
properties of algebra; and we may view the process of carrying out the computation
(executing the program) as a case of algebraic simplification.

In elementary mathematics we have been taught to take an expression such as
co (a—t) +sin?(a+b—2xh)

and apply the rules of algebra and trigonometry to simplify it. A rule of algebra tells us
that we may simplifya + b — 2x binto a — t for any a andb; and a rule of trigonometry
tells us that we can simplifco< (x) + sin? (x) into 1 for any x. Such rules may be
combined; for example the combination of the two preceding rules allow us to simplify
the above expression into jul.t

In a similar way, the functions defined in an abstract data type specification allow us
to construct possibly complex expressions; and the axioms of the ADT allow us to
simplify such expressions to yield a simpler result. A complex stack expression is the
mathematical equivalent of a program; the simplification process is the mathematical
equivalent of a computation, that is to say, of executing such a program.

Here is an example. With the specification of STACk abstract data type as given
above, we can write the expression

item (remove(put (remove(put (put (
remove(put (put (put(new, x1), x2), x3)),
item (remove(put (put (new, x4), x)))), x6)), X7)))

Let us call this expressiostackex for future reference. It is perhaps easier to
understanstackex if we define it in terms of a sequence of auxiliary expressions:

sl=new

s2=put(put (put (s1, x1), x2), X3)
s3=remove(s2)

S4= new

s5= put (put (s4, x4), x5)
s6=remove(s5)

y1=item(s€)

s7=put(ss, yl)

s8= put(s7, x€)

s9= remove(s8)

8§6.4 FORMALIZING THE SPECIFICATION 141

s10= put(s€, x7)

s11=remove(s1()

stackexf= item(s11)

Whichever variant of the definition you choose, it is not hard to follow the
computation of whiclstackexjis a mathematical model: create a new stack; push elemen

x1, x2, x3, in this order, on top of it; remove the last pushed elenx3), callings3 the
resulting stack; create another empty stack; and so on. Or you can think of it graphical

Stack 3

manipulations ‘ - x“ -

al 1 o« i [_]
3

sl [Y4
(empty) (also:s9, s17)
x5 -] s7=put(s3 yl)
x4 - x4
s5 H

You can easily find the value of such an ADT expression by drawing figures such
the above. (Here you would finx4.) But the theory enables you to obtain this result
formally, without any need for pictures: just apply the axioms repeatedly to simplify th
expression until you cannot simplify any further. For example:

e Applying A2 to simplify sg, that is to sayemove(put (put (put (s1, xJ), x2), x3)),
yieldsput (put (s1, x1), x2)). (With A2, any consecutiviemovepui pair cancels out.)

* The same axiom indicates tls6is put(s4, x4); then we can use axiom Al to deduce
thatyl, that is to saitem (put (s4, x4)), is in factx4, showing that (as illustrated by
the arrow on the above figurs7is obtained by pushinx4 on top ofsc.

And so on. A sequence of such simplifications, carried out as simply an
mechanically as the simplifications of elementary arithmetic, yields the value of tf
expressiorstackex, which (as you are invited to check for yourself by performing the
simplification process rigorously) is index4.

This example gives a glimpse of one of the main theoretical roles of abstract d:
types: providing a formal model for the notion of program and program execution. Th
model is purely mathematical: it has none of the imperative notions of program sta
variables whose values may change in time, or execution sequencing. It relies on
standard expression evaluation techniques of ordinary mathematics.

142 ABSTRACT DATA TYPES §6.5

6.5 FROM ABSTRACT DATA TYPES TO CLASSES

We have the starting point of an elegant mathematical theory for modeling data structures
and in fact, as we just saw, programs in general. But our subject is software architecture,
not mathematics or even theoretical computing science! Have we strayed from our path?

Not by much. In the search for a good modular structure based on object types,
abstract data types provide a high-level description mechanism, free of implementation
concerns. They will lead us to the fundamental structures of object technology.

Classes

ADTs will serve as the direct basis for the modules that we need in the search begun in
chapter3. More precisely, an object-oriented system will be built (at the level of analysis,
design or implementation) as a collection of interacting ADTs, partially or totally
implemented. The basic notion hereclass:

Definition: class

A class is an abstract data type equipped with a possibly partial
implementation.

So to obtain a class we must provide an ADT and decide on an implementation. The
ADT is a mathematical concept; the implementation is its computer-oriented version. The
definition, however, states that the implementation may be partial; the following
terminology separates this case from that of a fully implemented class:

Definition: deferred, effective class

A class which is fully implemented is said to effective. A class which is
implemented only partially, or not at all, is said todeferred. Any class is
either deferred or effective.

To obtain an effective class, you must provide all the implementation details. For a
deferred class, you may choose a certain style of implementation but leave some aspects
of the implementation open. In the most extreme case of “partial” implementation you
may refrain from making any implementation decision at all; the resulting class will be
fully deferred, and equivalent to an ADT.

8§6.5 FROM ABSTRACT DATA TYPES TO CLASSES 143

How to produce an effective class

Consider first the case of effective classes. What does it take to implement an ADT? Th
kinds of element will make up the resulting effective class:

El+ An ADT specification (a set of functions with the associated axioms and
preconditions, describing the functions’ properties).

E2« A choice of representation.

E3 ¢ A mapping from the function1) to the representatiote2) in the form of a set
of mechanisms, cfeatures, each implementing one of the functions in terms of
the representation, so as to satisfy the axioms and preconditions. Many of the:
features will be routines (subprograms) in the usual sense, although some m:
also appear as data fields, or “attributes”, as explained in the next chapters.

For example, if the ADT iSTACK, we may choose as representation (E2) the
solution callecarrAY_up above, which implements any stack by a pair

<representatio, coun>

whererepresentatio is an array ancoun an integer. For the function implementatioEs) (
we will have features correspondincput, removy, iterr, empt andnew, which achieve the
corresponding effects; for example we may implenput by a routine of the form
put(x: G)is
-- Pushx onto stack.

-- (No check for possible stack overflow.)
do
count:=count + 1

representatioffcoun] := x
end
The combination of elements obtained ungei, E2 and E2 will yield a class, the
modular structure of object technology.

The role of deferred classes

For an effective class, all of the implementation informatie2, E3 above) must be
present. If any of it is missing, the class is deferred.

The more deferred a class, the closer it is to an ADT, gussied up in the kind
syntactic dress that will help seduce software developers rather than mathematicic
Deferred classes are particularly useful for analysis and for design:

* In object-oriented analysis, no implementation details are needed or desired: -
method uses classes only for their descriptive power.

e In object-oriented design, many aspects of the implementation will be left ou
instead, a design should concentrate on high-level architectural properties of
system — what functionalities each module provides, not how it provides them.

* As you move your design gradually closer to a full implementation, you will adq
more and more implementation properties until you get effective classes.

144 ABSTRACT DATA TYPES §6.5

But the role of deferred classes does not stop there, and even in a fully implemented
system you will often find many of them. Some of that role follows from their previous
applications: if you started from deferred classes to obtain effective ones, you may be well
inspired to keep the former as ancestors (in the sense of inheritance) to the latter, to serve
as a living memory of the analysis and design process.

Too often, in software produced with non-object-oriented approaches, the final form
of a system contains no record of the considerable effort that led to it. For someone who
is asked to perform maintenance — extensions, ports, debugging — on the system, trying
to understand it without that record is as difficult as it would be, for a geologist, to
understand a landscape without having access to the sedimentary layers. Keeping the
deferred classes in the final system is one of the best ways to maintain the needed record.

Deferred classes also have purely implementation-related uses. They serve to
classify groups of related types of objects, provide some of the most important high-level
reusable modules, capture common behaviors among a set of variants, and play a key role
(in connection with polymorphism and dynamic binding) in guaranteeing that the software
architecture remains decentralized and extendible.

The next few chapters, which introduce the basic object-oriented techniques, will at
first concentrate on effective classes. But keep in mind the notion of deferred class, whose
importance will grow as we penetrate the full power of the object-oriented method.

Abstract data types and information hiding

A particularly interesting consequence of the object-oriented policy of basing all mo(See the mention of
on ADT implementations (classes) is that it provides a clear answer to a question thvagueness in the
left pending in the discussion of information hiding: how do we select the public Middle of pag52.
private features of a module — the visible and invisible parts of the iceberg?

The ADT view
Public part: of a module
ADT specification (E1) under
information
hiding

Secret part:
» Choice of representation (EE

* Implementation of functions
by features (E3)

8§6.5 FROM ABSTRACT DATA TYPES TO CLASSES 145

If the module is a class coming from an ADT as outlined above, the answer is cle
of the three parts involved in the transitie1, the ADT specification, is publicez and
EZ, the choice of representation and the implementation of the ADT functions in tern
of this representation, should be secret. (As we start building classes we will encour
a fourth part, also secret: auxiliary features needed only for the internal purposes
these routines.)

So the use of abstract data types as the source of our modules gives us a prac
unambiguous guideline for applying information hiding in our designs.

Introducing a more imperative view

The transition from abstract data types to classes involves an important stylis
difference: the introduction of change and imperative reasoning.

As you will remember, the specification of abstract data types is change-free, or,
use a term from theoretical computing scierapplicative. All features of an ADT are
modeled as mathematical functions; this applies to creators, queries and commands.
example the push operation on stacks is modeled by the command function

put: STACK[G] x G — STACK[G]
specifying an operation that returns a new stack, rather than changing an existing stac

Classes, which are closer to the world of design and implementation, abandon t
applicative-only view and reintroduce commands as operations that may change objet

For exampleput will appear as a routine which takes an argument of G (the
formal generic parameter), and modifies a stack by pushing a new element on top
instead of producing a new stack.

This change of style reflects the imperative style that prevails in softwar
construction. (The word “operational” is also used as synonym for “imperative”.) It wil
require the corresponding change in the axioms of ADTs. Axioms Al and A4 of stack
which appeared above as

Al eitem(put(s, X)) = x

A4« not empty (put (s, X))

will yield, in the imperative form, a clause known éroutine postcondition, introduced
by the keyworcensure in

146 ABSTRACT DATA TYPES §6.5

put(x: G) is
-- Pushx on top of stack
require
... The precondition, if an...
do
... The appropriate implementation, if kno...i
ensure
item= x
not empty
end

Here the postcondition expresses that on return from a call to rut, the value
of iter will be x (the element pushed) and the valuempt will be false.

Other axioms of the ADT specification will yield a clause known asclass “THE ADT CON-
invariant. Postconditions, class invariants and other non-applicative avatars cNECTION", 11.10,
ADT'’s preconditions and axioms will be studied as part of the discussion of asseP29€ 37-
and Design by Contract.

Back to square one?

If you followed carefully, starting with the chapter on modularity, the line of reasoning
that led to abstract data types and then classes, you may be a little puzzled here. We started
with the goal of obtaining the best possible modular structures; various arguments led to
the suggestion that objects, or more precisely object types, would provide a better basis
than their traditional competitors — functions. This raised the next question: how to
describe these object types. But when the answer came, in the form of abstract data types
(and their practical substitutes, classes), it meant that we must base the description of data
on... the applicable functions! Have we then come full circle?

No. Object types, as represented by ADTs and classes, remain the undisputed basis
for modularization.

It is not surprising that both the object and function aspects should appear in the final
system architecture: as noted in the previous chapter, no description of software issues can
be complete if it misses one of these two components. What fundamentally distinguishes
object-oriented methods from older approaches is the distribution of roles: object types are
the undisputed winners when it comes to selecting the criteria for building modules.
Functions remain their servants.

In object-oriented decomposition, no function ever exists just by itself: every
function is attached to some object type. This carries over to the design and
implementation levels: no feature ever exists just by itself; every feature is attached to
some class.

8§6.6 BEYOND SOFTWARE 147

See pagll€forthe
original definitior.

Object-oriented software construction

The study of abstract data types has given us the answer to the question asked a
beginning of this chapter: how to describe the object types that will serve as the backb
of our software architecture.

We already had a definition of object-oriented software construction: remaining at
high level of generality, it presented the method as “basing the architecture of a
software system on modules deduced from the types of objects it manipulates”. Keep
that first definition as the framework, we can now complement it with a more technic
one:

Object-oriented software construction (definition 2)

Object-oriented software construction is the building of software systems as
structured collections of possibly partial abstract data type implementations.

This will be our working definition. Its various components are all important:
* The basis is the notion abstract data typ.e

« For our software we need not the ADTs themselves, a mathematical notion, but Al
implementation, a software notion.

* These implementations, however, need not be complete;possibly partia”
gualification covers deferred classes — including the extreme case of a ful
deferred class, where none of the features is implemented.

* A system is &ollectior of classes, with no one particularly in charge — no top or
main program.

*« The collection isstructurec thanks to two inter-class relations: client and
inheritance.

6.6 BEYOND SOFTWARE

As we are completing our study of abstract data types itis worth taking a moment to refl
on the significance of this notion outside of its imnmediate intended application area.

What the ADT approach tells us is that a successful intellectual investigation shot
renounce as futile any attempt at knowing things from the inside, and concentrate inst
on their usable properties. Do not tell me what you are; tell me what you have — whe
can get out of you. If we need a name for this epistemological discipline, we should cal
theprinciple of selfishne:.s

If I am thirsty, an orange is something | can squeeze; if | am a painter, it is col
which might inspire my palette; if | am a farmer, it is produce that | can sell at the mark
if | am an architect, it is slices that tell me how to design my new opera house, overlooki
the harbor; but if | am none of these, and have no other use for the orange, then | sh
not talk about it, as the concept of orange does not for me even exist.

148 ABSTRACT DATA TYPES §6.7

The principle of selfishness — you are but what you have — is an extreme form of
an idea that has played a central role in the development of science: abstraction, or the
importance of separating concerns. The two quotations at the beginning of this chapter,
each in its own remarkable way, express the importance of this idea. Their authors,
Diderot and Stendhal, were writers rather than scientists, although both obviously had a
good understanding of the scientific method (Diderot was the living fire behind the Great
Encyclopedia, and Stendhal prepared for admission into the Ecole Polytechnique,
although in the end he decided that he could do better things with his life). It is striking to
see how both quotations are applicable to the use of abstraction in software development.

Yet there is more than abstraction to the principle of selfishness: the idea, almost
shocking at first, that a property is not worth talking about unless it is useful in some direct
way to the talker.

This suggests a more general observation as to the intellectual value of our field.

Over the years many articles and talks have claimed to examine how software
engineers could benefit from studying philosophy, general systems theory, “cognitive
science”, psychology. But to a practicing software developer the results are disappointing.
If we exclude from the discussion the generally applicable laws of rational investigation,
which enlightened minds have known for centuries (at least since Descartes) and which of
course apply to software science as to anything else, it sometimes seems that experts in the
disciplines mentioned may have more to learn from experts in software than the reverse.

Software builders have tackled — with various degrees of success — some of the
most challenging intellectual endeavors ever undertaken. Few engineering projects, for
example, match in complexity the multi-million line software projects commonly being
launched nowadays. Through its more ambitious efforts the software community has
gained precious insights on such issues and concepts as size, complexity, structure,
abstraction, taxonomy, concurrency, recursive reasoning, the difference between
description and prescription, language, change and invariants. All this is so recent and so
tentative that the profession itself has not fully realized the epistemological implications
of its own work.

Eventually someone will come and explain what lessons the experience of software
construction holds for the intellectual world at large. No doubt abstract data types will
figure prominently in the list.

6.7 SUPPLEMENTARY TOPICS

The view of abstract data types presented so far will suffice for the uses of ADTs in the
rest of this book. (To complement it, doing the exercises will help you sharpen your
understanding of the concept.)

If, as | hope, you have been conquered by the elegance, simplicity and power of
ADTs, you may want to explore a few more of their properties, even though the discussion
of object-oriented methods will not use them directly. These supplementary topics, which
may be skipped on first reading, are presented in the next few pages:

8§6.7 SUPPLEMENTARY TOPICS 149

Implicitness and its relationship to the software construction process.

The difference between specification and design.

The differences between classes and records.

Potential alternatives to the use of partial functions.
« Deciding whether a specification is complete or not.

The bibliographical references to this chapter point to more advanced literature
abstract data types.

More on implicitness

The implicit nature of abstract data types and classes, discussed above, reflects
important problem of software construction.

One may legitimately ask what difference there is between a simplified AD’
specification, using the function declarations

x: POINT - REAL
y: POINT - REAL

and the record type declaration which we may express in a traditional programmi
language such as Pascal under the form

type
POINT=
record
X, y: real
end

At first sight, the two definitions appear equivalent: both state that any instance
type POINT has two associated valux andy, of type REAL. But there is a crucial if
subtle difference:

e The Pascal form is closed and explicit: it indicates thPOINT object is made of
the two given fields, and no other.

e The ADT function declarations carry no such connotation. They indicate that or
may query a point about ix and itsy, but do not preclude other queries — such as
a point's mass and velocity in a kinematics application.

From a simplified mathematical perspective, you may consider that the above Pas
declaration is a definition of the mathematicalPOINT as a cartesian product:

POINT 2 REALx REAL

where £ means “is defined as” this define®OINT fully. In contrast, the ADT
specification does not explicitly defirPOINT through a mathematical model such as the
cartesian product; it just characterizPOINT implicitly by listing two of the queries
applicable to objects of this type.

150 ABSTRACT DATA TYPES §6.7

If at some stage you think you are done with the specification of a certain notion, you
may want to move it from the implicit world to the explicit world by identifying it with
the cartesian product of the applicable simple queries; for example you will identify points
with <x, y> pairs. We may view this identification process as the very definition of the
transition from analysis and specification to design and implementation.

Specification versus design

The last observation helps clarify a central issue in the study of software: the difference
between the initial activities of software development — specification, also called analysis
— and later stages such as design and implementation.

The software engineering literature usually defines this as the difference bet'see*The clouds
“defining the problem” and “building a solution”. Although correct in principle, thand the precipice”,
definition is not always directly useful in practice, and it is sometimes hard to deterP29¢ 99°
where specification stops and design begins. Even in the research community, people
routinely criticize each other on the theme “you advertize notix as a specification
language, but what it really expresses is designs”. The supreme insult is to accuse the
notation of catering timplementatio; more on this in a later chapter.

The above definition yields a more precise criterion: to cross the Rubicon between
specification and design is to move from the implicit to the explicit; in other words:

Definition: transition from analysis (specification) to design

To go from specification to design is to identify each abstraction with the
cartesian product of its simple queries.

The subsequent transition — from design to implementation — is simply the move
from one explicit form to another: the design form is more abstract and closer to
mathematical concepts, the implementation form is more concrete and computer-oriented,
but they are both explicit. This transition is less dramatic than the preceding one; indeed,
it will become increasingly clear in the pages that follow that object technology all but
removes the distinction between design and implementation. With good object-oriented
notations, what our computers directly execute (with the help of our compilers) is what to
the non-0O-0O world would often appear as designs.

Classes versus records

Another remarkable property of object technology, also a result of the focus on implicit
definition, is that you can keep your descriptions implicit for a much longer period than
with any other approach. The following chapters will introduce a notation enabling us to
define a class under the form

class POINT feature
X, y: REAL
end

8§6.7 SUPPLEMENTARY TOPICS 151

Se€‘The Open-
Closed principle”,
page 57

This looks suspiciously close to the above Pascal record type definition. But in sp
of appearances the class definition is different: it is implicit! The implicitness comes fro
inheritance; the author of the class or (even more interestingly) someone else may at
time define a new class such as

classMOVING_POIN" inherit
POINT
feature
mas: REAL
velocity: VECTOR[REAL]
end
which extends the original class in ways totally unplanned for by the initial design. The
a variable (or entity, to use the terminology introduced later) of POINT, declared as

pl: POINT

may become attached to objects which are not just of POINT but also of any
descendant type such aMOVING POIN". This occurs in particular through
“polymorphic assignments” of the form

pl:=mpl
wherempilis of typeMOVING POIN".

These possibilities illustrate the implicitness and openness of the class definition: 1
corresponding entities represent not just points in the narrow sense of direct instance
classPOINT as initially defined, but, more generally, instances of any eventual class th
describes a concept derived from the original.

The ability to define software elements (classes) that are directly usable whi
remaining implicit (through inheritance) is one of the major innovations of objec
technology, directly answering the Open-Closed requirement. Its full implications wi
unfold progressively in the following chapters.

Not surprisingly for such a revolutionary concept, the realm of new possibilities th:
it opens still scares many people, and in fact many object-oriented languages restrict
openness in some way. Later chapters will mention examples.

Alternatives to partial functions

Among the techniques of this chapter that may have caused you to raise your eyebrow
its use of partial functions. The problem that it addresses is inescapable: any specifica
needs to deal with operations that are not always defined; for example, it is impossible
pop an empty stack. But is the use of partial functions the best solution?

It is certainly not the only possible one. Another technique that comes to mind, a
is indeed used by some of the ADT literature, is to make the function total but introdu
special error values to denote the results of operations applied to impossible cases.

For every typeT, this method introduces a special “error’ value; let us wriu.t
Then for any functiorf of signature

f: ... Inputtypes... - T

152 ABSTRACT DATA TYPES §6.7

it specifies that any application to an object for which the corresponding computer
operation may not be executed will produce the vw;.

Although usable, this method leads to mathematical and practical unpleasantness.
The problem is that the special values are rather bizarre animals, which may unduly
disturb the lives of innocent mathematical creatures.

Assume for example that we consider stacks of integers — instances of the generic
derivationSTACK[INTEGEF], whereINTEGEF is the ADT whose instances are integers.
Although we do not need to write the specificationINTEGEF completely for this
discussion, it is clear that the functions defining this ADT should model the basic
operations (addition, subtraction, “less than” and the like) defined on the mathematical set
of integers. The axioms of the ADT should be consistent with ordinary properties of
integers; typical among these properties is that, for any inn: yer

[21]
n+1#n

Now letn be the result of requesting the top of an empty stack, thatis to say, the value
of item(new), wherenew is an empty stack of integers. With the “special error element”
approachn must be the special valiwjtecge- What then is the value of the expression
n + 1? If the only values at our disposal are normal integer«wi\tecer then we ought
to choosew \tegEr as the answer:

winTEGER.T 1 = WINTEGER

This is the only acceptable choice: any other valuwijieggr + 1, that is to say,
any “normal” integelg, would mean in practical terms that after we attempt to access the
top of an empty stack, and get an error value as a result, we can miraculously remove any
trace of the error, simply by adding one to the result! This might have passed when all it
took to erase the memory of a crime was a pilgrimage to Santiago de Compostela and the
purchase of a few indulgences; modern mores and computers are not so lenient.

But choosingwyteger as the value cn + 1 whenn is wteggr Violates the above
Z1 property. More generallyw,reger + P Will be w,rece for anyp. This means we
must develop a new axiom system for the updated abstract datiNTEGEF enriched
with an error element), to specify that every integer operation yuw,jtecer Whenever
any one of its arguments wytecgr. Similar changes will be needed for every type.

The resulting complication seems unjustifiable. We cannot change the specification
of integers just for the purpose of modeling a specific data structure such as the stack.

With partial functions, the situation is simpler. You must of course verify, for every
expression involving partial functions, that the arguments satisfy the corresponding
preconditions. This amounts to performing a sanity check — reassuring yourself that the
result of the computation will be meaningful. Having completed this check, you may
apply the axioms without further ado. You need not change any existing axiom systems.

8§6.7 SUPPLEMENTARY TOPICS 153

Is my specification complete?

Another question may have crossed your mind as you were reading the above exampl
abstract data type specification: is there is any way to be sure that such a specifica
describes all the relevant properties of the objects it is intended to cover? Students whc
asked to write their first specifications (for example when doing the exercises at the ¢
of this chapter) often come back with the same question: when do | know that | ha
specified enough and that | can stop?

In more general terms: does a method exist to find out whether an ADT specificati
is complete?

If the question is asked in this simple form, the answer is a plain no. This is true
formal specifications in general: to say that a specification is complete is to claim tha
covers all the needed properties; but this is only meaningful with respect to sor
document listing these properties and used as a reference. Then we face one of two eq
disappointing situations:

« If the reference document is informal (a natural-language “requirements documel
for a project, or perhaps just the text of an exercise), this lack of formality preclud
any attempt to check systematically that the specification meets all the requireme
described in that document.

« If the reference document is itself formal, and we are able to check the completen
of our specification against it, this merely pushes the problem further: how do w
ascertain the completeness of the reference document itself?

In its trivial form, then, the completeness question is uninteresting. But there is
more useful notion of completeness, derived from the meaning of this word |
mathematical logic. For a mathematician, a theory is complete if its axioms and rules
inference are powerful enough to prove the truth or falsity of any formula that can |
expressed in the language of the theory. This meaning of completeness, although
limited, is intellectually satisfying, since it indicates that whenever the theory lets
express a property it also enables us to determine whether the property holds.

How do we transpose this idea to an ADT specification? Here the “language of t
theory” is the set of all thwell-formed expression, those expressions which we may
build using the ADT's functions, applied to arguments of the appropriate types. F
example, using the specification STACK and assuming a valid expressx of typeG,
the following expressions are well-formed:

new
put (new, x)
item(new) -- If this seems strange, see comments on the next page.
empty(put (new, x))

stackexp -- The complex expression defined on page 140.

154 ABSTRACT DATA TYPES §6.7

The expressior put (x) andput(x, new), however, are not well-formed, since they
do not abide by the rulepui always requires two arguments, the first of ' STACK|[G]
and the second of tyfG; soput(x) is missing an argument, aput(x, new) has the wrong
argument types.

The third example in the preceding bitem (new), does not describe a meaningful
computation sincenew does not satisfy the precondition iterr. Such an expression,
although well-formed, is nc«correct. Here is the precise definition of this notion:

Definition: correct ADT expression

Letf(xq, ..., x,) be a well-formed expression involving one or more functions
on a certain ADT. This expression is correct if and only if all x; are
(recursively) correct, and their values satisfy the preconditid, if any.

Do not confuse “correct” with “well-formed”. Well-formedness is a structural
property, indicating whether all the functions in an expression have the right number and
types of arguments; correctness, which is only defined for a well-formed expression,
indicates whether the expression defines a meaningful computation. As we have seen, the
expressiorput (x) is not well-formed (and so it is pointless to ask whether it is correct),
whereas the expressiitem (new) is well-formed but not correct.

An expression well-formed but not correct, suchitem (new), is similar to a
program that compiles (because it is built according to the proper syntax and satisfies all
typing constraints of the programming language) but will crash at run time by performing
an impossible operation such as division by zero or popping an empty stack.

Of particular interest for completeness, among well-formed expressiorquery? The “queries” in

expression, those whose outermost function is a query. Examples are: our example, return-
ing a result of type
empty(put (put (new, x1), x2)) other tharSTACH,
item (put (put (new, x1), x2)) areitemandempt.

See‘Function cate-
stackexp -- See pag 140 gories”, page 134
A query expression denotes a value which (if defined) belongs not to the ADT u

definition, but to another, previously defined type. So the first query expression above has

a value of typeBOOLEAN, the second and third have values of tG, the formal generic

parameter — for exampINTEGEF if we use the generic derivatiSTACK[INTEGEF].

Query expressions represent external observations that we may make about the
results of a certain computation involving instances of the new ADT. If the ADT
specification is useful, it should always enable us to find out whether such results are
defined and, if so, what they are. The stack specification appears to satisfy this property,
at least for the three example expressions above, since it enables us to determine that the
three expressions are defined and, by applying the axioms, to determine their values:

empty(put (put (new, x1), x2)) = False
item (put (put (new, x1), x2)) = x2
stackex[= x4

8§6.7 SUPPLEMENTARY TOPICS 155

Transposed to the case of arbitrary ADT specifications, these observations sugge
pragmatic notion of completeness, knowisufficien completeness, which expresses that
the specification contains axioms powerful enough to enable us to find the result of &
query expression, in the form of a simple value.

Here is the precise definition of sufficient completeness. (Non-mathematicall
inclined readers should skip the rest of this section.)

Definition: sufficient completeness

An ADT specification for a typT is sufficiently complete if and only if the
axioms of the theory make it possible to solve the following problems for any
well-formed expressioe:

S1 « Determine whetht € is correct.

S2 « If eis a query expression and has been shown to be correctsider
expresse’s value under a form not involving any value of tyT.

In sz, expressiore is of the formf (x4, ..., x,) wheref is a query function, such as

empt anditem for stackssaitells us thae has a value, but this is not enough; in this case
we also want to know what the value is, expressed only in terms of values of other types
the STACF example, values of typeBOOLEAN andG). If the axioms are strong enough

to answer this question in all possible cases, then the specification is sufficiently comple

Sufficient completeness is a useful practical guideline to check that no importa
property has been left out of a specification, answering the question raised above: w
do | know | can stop looking for new properties to describe in the specification? It is got
practice to apply this check, at least informally, to any ADT specification that you writ
— starting with your answers to the exercises of this chapter. Often, a formal proof
sufficient correctness is possible; the proof given below forSTACH specification
defines a model which can be followed in many cases.

As you may have notes: is optimistic in talking about “the” value €: what if the
axioms yield two or more? This would make the specification useless. To avoid sucl
situation we need a further condition, known from matheral logic as consistency:

Definition: ADT consistency

An ADT specification is consistent if and only if, for any well-formed guery
expressiore, the axioms make it possible to infer at most one value. for

The two properties are complementary. For any query expression we want to
able to deduce exactly one value: at least one (sufficient completeness), but no m
than one (consistency).

156 ABSTRACT DATA TYPES §6.7

Proving sufficient completeness

(This section and the rest of this chapter are supplementary material and its results Non-mathematically

needed in the rest of the book.) inclined readers may
skip to*KEY CON-

- L CEPTS INTRO-
The sufficient completeness of an abstract data type specification is, in geneis i o N THIS

undecidable problem. In other words, no general proof method exists which, givicpyapTER" 6.8
arbitrary ADT specification, would tell us in finite time whether or not the specificatiopage 159
sufficiently complete. Consistency, too, is undecidable in the general case.

It is often possible, however, to prove the sufficient completeness and the
consistency of a particular specification. To satisfy the curiosity of mathematically
inclined readers, it is interesting to prove, as a conclusion to this chapter, that the
specification 0ISTACL is indeed sufficiently complete. The proof of consistency will be
left as an exercise.

Proving the sufficient completeness of the stack specification means devising a valid
rule addressing problensi ands: above; in other words the rule must enable us, for an
arbitrary stack expressice:

S1 «To determine whethee is correct.

S2«If eis correct undesiand its outermost function item or empt (one of the two
guery functions), to express its value in termBOOLEADN andG values only,
without any reference to values of ty|STACK[G] or to the functions of
STACKs specification.

It is convenient for a start to consider only well-formed expressions which do not
involve any of the two query functioiite m andempty— so that we only have to deal with
expressions built out of the functionew, put andremovt. This means that only problem
s1(determining whether an expression is defined) is relevant at this stage. Query functions
ands:z will be brought in later.

The following property, which we must prove, yields a rule addressing

Weight Consistency rule

A well-formed stack expressioe, involving neitheritem nor empt, is
correct if and only if its weight is non-negative, and any subexpressien of
is (recursively) correct.

Here the “weight” of an expression represents the number of elements in the
corresponding stack; it is also the difference between the number of nested occurrences of
puiandremove. Here is the precise definition of this notion:

8§6.7 SUPPLEMENTARY TOPICS 157

Definition: weight
The weight of a well-formed stack expression not invohiterr orempt is
defined inductively as follows:
W1 « The weight of the expressimew is 0.

W2 « The weight of the expressi put(s, x) isws + 1, wherews is the
weight ofs.

W3« The weight of the expressi remove(s) isws — ., wherews is the
weight ofs.

Informally, the Weight Consistency rule tells us that a stack expression is correct
and only if the expression and every one of its subexpressions, direct or indirect, ha
least as manypul operations (pushing an element on top) as itremov« operations
(removing the top element); if we view the expression as representing a stack computat
this means that we never try to pop more than we have pushed. Remember that at this
we are only concentrating (oui andremovs, ignoring the querieitenr andempt.

This intuitively seems right but of course we must prove that the Weight Consisten
rule indeed holds. It will be convenient to introduce a companion rule and prove the t
rules simultaneously:

Zero Weight rule

Let e be a well-formed and correct stack expression not involiterr or
empt. Thenempty(e) is true if and only ie has weight O.

The proof uses induction on the nesting level (maximum number of neste
parentheses pairs) of the expression. Here again, for ease of reference, are the e
axioms applying to functioempt::

STACK AXIOMS
For anyx: G, s: STACK[G]
A3+ empty (new)
A4« not empty (put (s, x))

An expressiore with nesting level 0 (no parentheses) may only be of the new;
so its weight is 0, and it is correct sirnewhas no precondition. Axiom A3 indicates that
empty(e) is true. This takes care of the base step for both the Weight Consistency rule
the Zero Weight rule.

For the induction step, assume that the two rules are applicable to all expression:
nesting leven or smaller. We must prove that they apply to an arbitrary expree obn
nesting leven + 1. Since for the time being we have excluded the query functions fror
our expressions, one of the following two forms must appe: to

158 ABSTRACT DATA TYPES §6.7

Elee
E2e.e

pui (s, X)

remov (s)

wherex is of typeG, ands has nesting leven. Letws be the weight os.

In caseE1, sinceputi is a total functione is correct if and only isis correct, that is
to say (by the induction hypothesis) if and onls and all its subexpressions have non-
negative weights. This is the same as sayinge and all its subexpressions have non-
negative weights, and so proves that the Weight Consistency rule holds in this case. In
addition, e has the positive weiglws + 1, and (by axiom A4) is not empty, proving that
the Zero Weight rule also holds.

In caseE2, expressioleis correct if and only if both of the following conditions hold:
EB1-sand all its subexpressions are correct.
EB2 «not empty(s) (this is the precondition cremovy).

Because of the induction hypothesis, condieBz means thews, the weight o, is
positive, or, equivalently, thawvs — 7, the weight ole, is non-negative. ¢ e satisfies the
Weight Consistency rule. To prove that it also satisfies the Zero Weight rule, we must
prove thate is empty if and only if its weight is zero. Since the weighs is positive,s
must contain at least one occurrencepui, which also appears ie. Consider the
outermost occurrence put in e; this occurrence is enclosed irremove (sincee has a
removt at the outermost level). This means that a subexpresse, ore itself, is of the
form

remove(put (stack_expressi(, g_expressia))

which axiom A2 indicates may be reduced to jstack_expressic. Performing this
replacement reduces the weighte by 2; the resulting expression, which has the same
value ace, satisfies the Zero Weight rule by the induction hypothesis. This proves the
induction hypothesis for ca€g2.

The proof has shown in passing that in any well-formed and correct expression
which does not involve the query functioitem and empt' we may “remove every
remov(’, that is to say, obtain a canonical form that involves cput and new, by
applying axiom A2 wherever possible. For example, the expression

put (remove(remove(put (put (remove(put (put (new, x1), x2)), x3), x4))), x5)
has the same value as the canonical form
put(put (new, x1), x5)

For the record, let us give this mechanism a name and a definition:

Canonical Reduction rule

Any well-formed and correct stack expression involving neiiterr nor
emptyhas an equivalent “canonical” form that does not inviremove(that
is to say, may fsonly involvnew andpuf). The canonical form is obtained
by applying the stack axiom A2 as many times as possible.

8§6.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 159

This takes care of the proof of sufficient completeness but only for expressions tt
do not involve any of the query functions, and consequently for prasionly (checking
the correctness of an expression). To finish the proof, we must now take into acco
expressions that involve the query functions, and deal with prcs: (finding the values
of these query expressions). This means we need a rule to determine the correctnes:
value of any well-formed expression of the fcf (s), wheres is a well-formed expression
andf is eitherempt oriterr.

The rule and the proof of its validity use induction on the nesting level, as define
above. Lein be the nesting level cs. If nis 0,s can only benew since all the other
functions require arguments, and so would have at least one parenthesis pair. Then
situation is clear for both of the query functions:

e empty(new) is correct and has value true (axiom A3).
« item(new) is incorrect since the preconditionitenis not empty(s).

For the induction step, assume tis has a nesting depn of one or more. If any
subexpressiou of s hasitenr or empt as its outermost function, thu has a depth of at
mostn — 1, so the induction hypothesis indicates that we can determine wlu iser
correct and, if it is, obtain the value u by applying the axioms. By performing all such
possible subexpression replacements, we obtairs a form which involves no stack
function other thaiput, removeandnew.

Next we may apply the idea of canonical form introduced above to get rid of a
occurrences cremovs, so that the resulting form s may only involveput andnew. The
case in whicts is justnewhas already been dealt with; it remains the case for ws ish
of the formput (s', x). Then for the two expressions under consideration:

e empty(s) is correct, and axiom A3 indicates that the value of this expressfalse.:

 item(s) is correct, since the preconditionitern is preciselynot empty(s); axiom
Al indicates that the value of this expressiox. is

This concludes the proof of sufficient completeness since we have now proved |
validity of a set of rules — the Weight Consistency rule and the Canonical Reduction rt
— enabling us to ascertain whether an arbitrary stack expression is correct and, fc
correct query expression, to determine its value in terrBOOLEAIN andG values only.

6.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

e The theory of abstract data types (ADT) reconciles the need for precision al
completeness in specifications with the desire to avoid overspecification.

* An abstract data type specification is a formal, mathematical description rather th
a software text. It iapplicative, that is to say change-free.

« An abstract data type may be generic and is defined by functions, axioms a
preconditions. The axioms and preconditions express the semantics of a type and
essential to a full, unambiguous description.

e To describe operations which are not always defined, partial functions provide
convenient mathematical model. Every patrtial function has a precondition, statir
the condition under which it will yield a result for any particular candidate argument

160 ABSTRACT DATA TYPES §6.9

* An object-oriented system is a collection of classes. Every class is based on an
abstract data type and provides a partial or full implementation for that ADT.

» A class is effective if it is fully implemented, deferred otherwise.

« Classes should be designed to be as general and reusable as possible; the process of
combining them into systems is often bottom-up.

« Abstract data types are implicit rather than explicit descriptions. This implicitness,
which also means openness, carries over to the entire object-oriented method.

« No formal definition exists for the intuitively clear concept of an abstract data type
specification being “complete”. A rigorously defined notiorsufficient
completeness, usually provides the answer. Although no method is possible to
ascertain the sufficient completeness of an arbitrary specification, proofs are often
possible for specific cases; the proof given in this chapter for the stack specification
may serve as a guide for other examples.

6.9 BIBLIOGRAPHICAL NOTES

A few articles published in the early nineteen-seventies made the discovery of abstract
data types possible. Notable among these are Hoare’s paper on the “proof of correctness
of data representationgHoare 1972¢ which introduced the concept of abstraction
function, and Parnas’s work on information hiding mentioned in the bibliographical notes
to chaptess.

Abstract data types, of course, go beyond information hiding, although many
elementary presentations of the concept stop there. ADTs proper were introduced by
Liskov and Zilles[Liskov 1974; more algebraic presentations were givel[M 1976]
and[Guttag 1977. The so-called ADJ group (Goguen, Thatcher, Wagner) explored the
algebraic basis of abstract data types, using category theory. See in particular their
influential article[Goguen 197¢, published as a chapter in a collective book.

Several specification languages have been based on abstract data types. Two resulting
from the work of the ADJ group are CLEA[Burstall 1977 [Burstall 1981 and OBJ-2
[Futatsugi 198E. See also Larch by Guttag, Horning and WGuttag 1985. ADT ideas
have influenced formal specification languages such as Z in its successive incarnations
[Abrial 1980] [Abrial 1980a [Spivey 1988|[Spivey 1992 and VDM [Jones 198¢. The
notion of abstraction function plays a central role in VDM. Recent extensions to Z have
established a closer link to object-oriented ideas; see in particular Ot[Duke 1991]
and further references in chapi1.

The phrase “separation of concerns” is central in the work of Dijkstra; see in
particular his “Discipline of Programmin(Dijkstra 1976.

The notion of sufficient completeness was first published by Guttag and Horning
(based on Guttag’s 1975 thesis)[Guttag 197¢&.

The idea that going from specification to design means switching from the implicit
to the explicit by identifying an ADT with the cartesian product of its simple queries was
suggested i[M 1982] as part of a theory for describing data structures at three separate
levels (physical, structural, implicit).

8E6.1 EXERCISES 161

See*How longis a
middle initial?”,
page 125

EXERCISES

E6.1 Points

Write a specification describing the abstract data POINT, modeling points in plane
geometry. The specification should cover the following aspects: cartesian and po
coordinates; rotation; translation; distance of a point to the center; distance to another po

E6.2 Boxers

Members of the Association Dijonnaise des Tapeventres, a boxing league, regule
compete in games to ascertain their comparative strength. A game involves two boxer
either results in a winner and a loser or is declared a tie. If not a tie, the outcome of a g«
is used to update the ranking of players in the league: the winner is declared better t
the loser and than any boxhk such that the loser was previously better tb. Other
comparative rankings are left unchanged.

Specify this problem as a set of abstract data tyADT_LEAGUE, BOXEF, GAME.
(Hint: do not introduce the notion of “ranking” explicitly, but model it by a funcbetter
expressing whether a player is better than another in the league.)

E6.3 Bank accounts

Write an ADT specification for a “bank account” type with operations such as “deposit

“withdraw”, “current balance”, “holder”, “change holder”.

How would you add functions representing the opening and closing of an accHint:? (
these are actually functions on another ADT.)

E6.4 Messages

Consider an electronic mail system with which you are familiar. In light of this chapter’
discussion, definMAIL_MESSAG as an abstract data type. Be sure to include not jus
query functions but also commands and creators.

E6.5 Names

Devise aNAME abstract data type taking into account the different components of
person’s name.

E6.6 Text

Consider the notion of text, as handled by a text editor. Specify this notion as an absti
data type. (This statement of the exercise leaves much freedom to the specifier; make
to include an informal description of the properties of text that you have chosen to mo«
in the ADT.)

162 ABSTRACT DATA TYPES 8§E6.7

E6.7 Buying a house

Write an abstract data type specification for the problem of buying a house, sketched “Ordering and O-
preceding chapter. Pay particular attention to the definition of logical constraints, expreO development”,
as preconditions and axioms in the ADT specification. page 111

E6.8 More stack operations

Modify the ADT specification of stacks to account for operaticoun (returning the
number of elements on a stacchange_to (replacing the top of the stack by a given
element) ancwipe_ou (remove all elements). Make sure to include new axioms and
preconditions as needed.

E6.9 Bounded stacks

Adapt the specification of the stack ADT presented in this chapter so that it will describe
stacks of bounded capacity. (Hint: introduce the capacity as an explicit query function;
makepui partial.)

E6.10 Queues

Describe queues (first-in, first-out) as an abstract data type, in the style uSTACE.
Examine closely the similarities and differenceHint : the axioms foiten andremove
must distinguish, to deal wilput (s, »), the cases in whics is empty and non-empty.)

E6.11 Dispensers
(This exercise assumes that you have answered the previous one.)

Specify a general ADDISPENSEI covering both stack and queue structures.

Discuss a mechanism for expressing more specialized ADT specifications such as those
of stacks and queues by reference to more general specifications, such as the specification
of dispensersHint: look at the inheritance mechanism studied in later chapters.)

E6.12 Booleans

Define BOOLEAN as an abstract data type in a way that supports its use in the ADT
definitions of this chapter. You may assume that equality and inequality operations
(= and#) are automatically defined on every ADT.

E6.13 Suffcient completeness

(This exercise assumes that you have answered one or more of the preceding ones.)
Examine an ADT specification written in response to one of the preceding exercises, and
try to prove that it is sufficiently complete. If it is not sufficiently complete, explain why,
and show how to correct or extend the specification to satisfy sufficient completeness.

E6.14 Consistency

Prove that the specification of stacks given in this chapter is consistent.

	6 6 Abstract data types
	6.1 CRITERIA
	6.2 IMPLEMENTATION VARIATIONS
	Stack representations
	Three possible representations for a stack
	Head-to-head representation for two stacks

	The danger of overspecification
	How long is a middle initial?

	6.3 TOWARDS AN ABSTRACT VIEW OF OBJECTS
	Using the operations
	A laissez-faire policy for the society of modules
	Name consistency
	How not to handle abstractions

	6.4 FORMALIZING THE SPECIFICATION
	Specifying types
	Genericity
	Listing the functions
	Applying the put function

	Function categories
	The AXIOMS paragraph
	Applying the put function

	Two or three things we know about stacks
	Partial functions
	Preconditions
	The complete specification
	ADT specification of stacks

	Nothing but the truth
	Stack manipulations

	6.5 FROM ABSTRACT DATA TYPES TO CLASSES
	Classes
	Definition: class
	Definition: deferred, effective class

	How to produce an effective class
	The role of deferred classes
	Abstract data types and information hiding
	The ADT view of a module under information hiding

	Introducing a more imperative view
	Back to square one?
	Object-oriented software construction
	Object-oriented software construction (definition ...

	6.6 BEYOND SOFTWARE
	6.7 SUPPLEMENTARY TOPICS
	More on implicitness
	Specification versus design
	Definition: transition from analysis (specificatio...

	Classes versus records
	Alternatives to partial functions
	Is my specification complete?
	Definition: correct ADT expression
	Definition: sufficient completeness
	Definition: ADT consistency

	Proving sufficient completeness
	Weight Consistency rule
	Definition: weight
	Zero Weight rule
	STACK AXIOMS
	Canonical Reduction rule

	6.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	6.9 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E6.1 Points
	E6.2 Boxers
	E6.3 Bank accounts
	E6.4 Messages
	E6.5 Names
	E6.6 Text
	E6.7 Buying a house
	E6.8 More stack operations
	E6.9 Bounded stacks
	E6.10 Queues
	E6.11 Dispensers
	E6.12 Booleans
	E6.13 Sufficient completeness
	E6.14 Consistency

