v

The static structure: classes

Examining the software engineering background of our discussion, you have seen tt
reasons for demanding a better approach to modular design: reusability and extendibilit
You have realized the limitations of traditional approaches: centralized architecture:
limiting flexibility. You have discovered the theory behind the object-oriented approach:
abstract data types. You have heard enough about the problems. On to the solution!

This chapter and the others in parnt C introduce the fundamental techniques of objec
oriented analysis, design and programming. As we go along, we will develop the

necessary notation.

Ouir first task is to examine the basic building blocks: classes.

7.1 OBJECTS ARE NOT THE SUBJECT

What is the central concept of object technology?

Think twice before you answer “object”. Objects are useful, but they are not new.
Ever since Cobol has had structures; ever since Pascal has had records; ever since the
C programmer wrote the first C structure definition, humanity has had objects.

Objects are stud- Objects remain important to describe the execution of an O-O system. But the basi
ied in detail in the notion, from which everything in object technology derives;lass previewed in the

next chapter

preceding chapter. Here again is the d&bn:

implementation.

Definition: class

A class is an abstract data type equipped with a possibly p

artial

Abstract data types are a mathematical notion, suitable for the specification stag
(also called analysis). Because it introduces implementations, partial or total, the notio
of class establishes the necessary link with software construction — design an
implementation. Remember that a class is said to be effective if the implementation i

total, deferred otherwise.

166 THE STATIC STRUCTURE: CLASSES§7.2

Like an ADT, a class is a type: it describes a set of possible data structures, called
theinstance: of the class. Abstract data types too have instances; the difference is that an
instance of an ADT is a purely mathematical element (a member of some mathematical
set), whereas an instance of a class is a data structure that may be represented in the
memory of a computer and manipulated by a software system.

For example if we have defined a cSTACF by taking the ADT specification of
the previous chapter and adding adequate representation information, the instances of that
class will be data structures representing individual stacks. Another example, developed
in the rest of this chapter, is a clePOINT modeling the notion of point in a two-
dimensional space, under some appropriate representation; an instance of that class is a
data structure representing a point. Under one of the representations studied below, the
cartesian representation, each instancPOINT is a record with two fields representing
the horizontal and vertical coordinatx andy, of a point.

The definition of “class” yields as a byproduct a definition of “object”. An object is
simply an instance of some class. For example an instance ofSTACk — a data
structure representing a particular stack — is an object; so is an instance POINT;
representing a particular point in two-dimensional space.

The software texts that serve to produce systems are classes. Objects are a run-time
notion only: they are created and manipulated by the software during its execution.

The present chapter is devoted to the basic mechanisms for writing software
elements and combining them into systems; as a consequence, its focus is on classes. In
the next chapter, we will explore the run-time structures generated by an object-oriented
system; this will require us to study some implementation issues and to take a closer look
at the nature of objects.

7.2 AVOIDING THE STANDARD CONFUSION

A class is a model, and an objectis an instance of such a model. This property is S0 0The next sectic, for
that it would normally deserve no comments beyond the preceding definitions; but iréaders who do not
been the victim of so much confusion in the more careless segment of the Iiteratur'(')'f‘?htgig\fi'g‘mg‘”g
we must take some tin_we to clarify the obvious. (If you fegl that you are immune to SkTHE ROLE OF
danger, and have avoided exposure to sloppy object-oriented teaching, you may VCLASSES”, 7.3,

skip this section altogether as it essentially belabors the obvious.) page 16

What would you think of this?

Among the countries in Europe we may identify the Iti. The Italian ha

a mountain chain running through him North-South and he likes good
cooking, often using olive c¢. His climate is of the Mediterranean ty, and

he speaks a beautifully musical language

§7.2 AVOIDING THE STANDARD CONFUSION 167

See .g. Oliver
Sack; "The Man
Who Mistook His
Wife for a Hat and
Other Clinical
Tales', Harper
Perennial, 1991

[Coad 1990, 3.3.3,
page 67

ExerciseE7.1, page
21€, asks you to
clarify each use of
“Object”in thistex.

If someone in a sober state talked or wrote to you in this fashion, you might suspect a r
neurological disease, the inability to distinguish between categories (such as the Ital
nation) and individuals members of these categories (such as individual Italians), rea
enough to give to the ambulance driver the address of Dr. Sacks’s New York clinic.

Yet in the object-oriented software literature similar confusions are commot
Consider the following extract from a popular book on O-O analysis, which uses tl
example of an interactive system to discuss how to identify abstractions:

[W]e might identify a “User” Object in a problem space where the system
does not need to keep any information about the. In this cas, the system
does not need the usual identification nun, name, access privilec, and
the like. Howeve, the system does need to monitor the, responding tq
requests and providing timely informat. And s, because of required
Services on behalf of the real world thi(in this cas, Usel), we need to add
a corresponding Object to the model of the problem <pace

In the same breath this text uses the wobjects, userandthing in two meanings
belonging to entirely different levels of abstraction:

« A typical user of the interactive system under discussion.
* Theconcep of user in general.

Although this is probably a slip of terminology (a peccadillo which few people cal
claim never to have committed) rather than a true confusion on the authors’ part, it
unfortunately representative of how some of the literature deals with the model-instar
distinction. If you start the study of a new method with this kind of elementary mix-uf
real or apparent, you are not likely to obtain a rational approach to software constructic

The mold and the instance

Take this book — the copy which you are currently reading. Consider it as an objectin
common sense of the term. It has its own individual features: the copy may be brand n
or already thumbed by previous readers; perhaps you wrote your hame on the first pe
or it belongs to a library and has a local identification code impressed on its spine.

The basic properties of the book, however, such as its title, publisher, author a
contents, are determined by a general description which applies to every individual co
the book is entitle(Object-Oriented Software Construct, it is published by Prentice
Hall, it talks about the object-oriented method, and so on. This set of properties defir
not an object but a class of objects (also called, in this castype of these objects; for
the time being the notions of type and class may be considered synonymous).

Call the clastOOSC. It defines a certain mold. Objects built from this mold, such as
your copy of the book, are callinstance: of the class. Another example of mold would
be the plaster cast that a sculptor makes to obtain an inverted version of the design f
set of identical statues; any statue derived from the cast is an instance of the mold.

168 THE STATIC STRUCTURE: CLASSES§7.2

In the quotation fronThe Name of the Rc which opens paC, the Master is explaining Pagel63.
how he was able to determine, from traces of the snow, that Brownie, the Abbot's horse,

earlier walked here. Brownie is an instance of the class of all horses. The sign on the

snow, although imprinted by one particular instance, includes only enough information

to determine the class (horse), not its identity (Brownie). Since the class, like the sign,
identifies all horses rather than a particular horse, the extract calls it a sign too.

Exactly the same concepts apply to software objects. What you will write in your
software systems is the description of classes, such as LINKED_STACkdescribing
properties of stacks in a certain representation. Any particular execution of your system
may use the classes to create objects (data structures); each such object is derived from a
class, and is called cinstance of that class. For example the execution may create a
linked stack object, derived from the description given in (LINKED_STACE such an
object is an instance of claLINKED_STACL

The class is a software text. It is static; in other words, it exists independently of any
execution. In contrast, an object derived from that class is a dynamically created data
structure, existing only in the memory of a computer during the execution of a system.

This, of course, is in line with the earlier discussion of abstract data types: when
specifyingSTACk as an ADT, we did not describe any particular stack, but the general
notion of stack, a mold from which one can derive individual instances ad libitum.

The statementsx is an instance oT” and “x is an object of typeT” will be
considered synonymous for this discussion.

With the introduction of inheritance we will need to distinguish betweenrdirect See“Instances”,
instance of a class (built from the exact pattern defined by the class) einstance in page 47
the more general sense (direct instances of the class or any of its specializations).

Metaclasses

Why would so many books and articles confuse two so clearly different notions as class
and object? One reason — although not an excuse — is the appeal of the word “object”, a
simple term from everyday language. But it is misleading. As we already saw in the
discussion of seamlessness, although some of the objects (class instances) which O-O
systems manipulate are the computer representations of objects in the usual sense of the
term, such as documents, bank accounts or airplanes, many others have no existence
outside of the software; they include in particular the objects introduced for design and
implementation purposes — instances of classes sSLSTATEor LINKED_LIST.

Another possible source of confusion between objects and classes is that in some
cases we may need to treat classes themselves as objects. This need arises only in special
contexts, and is mainly relevant to developers of object-oriented development
environments. For example a compiler or interpreter for an O-O language will manipulate
data structures representing classes written in that language. The same would hold of other
tools such as a browser (a tool used to locate classes and find out about their properties)
or a configuration management system. If you produce such tools, you will create objects
that represent classes.

§7.3 THE ROLE OF CLASSES 169

“Universal classes”,

page 58.

Se€“The creation
instruction”, page
232

Pursuing an analogy used earlier, we may compare this situation to that of a Prentice Hall
employee who is in charge of preparing the catalog of software engineering titles. For the
catalog writer, OOSC, the concept behind this book, is an object — an instance of a class
“catalog entry”. In contrast, for the reader of the book, that concept is a class, of which
the reader’s particular copy is an instance.

Some object-oriented languages, notably Smalltalk, have introduced a notion
metaclas: to handle this kind of situation. A metaclass is a class whose instances
themselves classes — what Name of the Ro extract called “signs of signs”.

We will avoid metaclasses in this presentation, however, since they bring mo
problems than benefits. In particular, the addition of metaclasses makes it difficult to he
static type checking, a required condition of the production of reliable software. The me
applications of metaclasses are better obtained through other mechanisms anyway:

* You can use metaclasses to make a set of features available to many or all clas
We will achieve the same result by arranging the inheritance structure so that
classes are descendants of a general-purpose, customizablANY, containing
the declarations of universal features.

* A few operations may be viewed as characterizing a class rather than its instanc
justifying their inclusion as features of a metaclass. But these operations are few ¢
known; the most obvious one is object creation — sufficiently important to desen
a special language construct, the creation instruction. (Other such operations, s
as object duplication, will be covered by features of CANY.)

* There remains the use of metaclasses to obtain information about a class, such
browser may need: name of the class, list of features, list of parents, list of suppli
etc. But we do not need metaclasses for that. It will suffice to devise a library clas
E CLAS, so that each instance E_CLAS! represents a class and its properties.
When we create such an instance, we pass to the creation instruction an argun
representing a certain claC; then by applying the various featuresE CLAS!to
that instance, we can learn all abC. t

In practice, then, we can do without a separate concept of metaclass. But even
method, language or environment that would support this notion, the presence
metaclasses is no excuse for confusing molds and their instances — classes and obje

7.3 THE ROLE OF CLASSES

Having taken the time to remove an absurd but common and damaging confusion, we r
now come back to the central properties of classes, and in particular study why they ar
important to object technology.

To understand the object-oriented approach, it is essential to realize that classes |
two roles which pre-O-O approaches had always treated as separate: module and typ

170 THE STATIC STRUCTURE: CLASSES§7.3

Modules and types

Programming languages and other notations used in software development (design
languages, specification languages, graphical notations for analysis) always include both
some module facility and some type system.

A module is a unit of software decomposition. Various forms of module, sucSee chapte3.
routines and packages, were studied in an earlier chapter. Regardless of the exact
of module structure, we may call the notion of modulsyntactic concept, since the
decomposition into modules only affects the form of software texts, not what the software
can do; it is indeed possible in principle to write any Ada program as a single package, or
any Pascal program as a single main program. Such an approach is not recommended, of
course, and any competent software developer will use the module facilities of the
language at hand to decompose his software into manageable pieces. But if we take an
existing program, for example in Pascal, we can always merge all the modules into a single
one, and still get a working system with equivalent semantics. (The presence of recursive
routines makes the conversion process less trivial, but does not fundamentally affect this
discussion.) So the practice of decomposing into modules is dictated by sound engineering
and project management principles rather than intrinsic necessity.

Types, at first sight, are a quite different concept. A type is the static description of
certain dynamic objects: the various data elements that will be processed during the
execution of a software system. The set of types usually includes predefined types such as
INTEGEF and CHARACTEL!I as well as developer-defined types: record types (also
known as structure types), pointer types, set types (as in Pascal), array types and others.
The notion of type is &emantic concept, since every type directly influences the
execution of a software system by defining the form of the objects that the system will
create and manipulate at run time.

The class as module and type

In non-O-O approaches, the module and type concepts remain distinct. The most
remarkable property of the notion of class is that it subsumes these two concepts, merging
them into a single linguistic construct. A class is a module, or unit of software
decomposition; but it is also a type (or, in cases involving genericity, a type pattern).

Much of the power of the object-oriented method derives from this identification.
Inheritance, in particular, can only be understood fully if we look at it as providing both
module extension and type specialization.

What is not clear yet ihow it is possible in practice to unify two concepts which
appear at first so distant. The discussion and examples in the rest of this chapter will
answer this question.

§7.4 A UNIFORM TYPE SYSTEM 171

The mathematical
axioms defining
integers are known
as Peano’s axionis

7.4 A UNIFORM TYPE SYSTEM

An important aspect of the O-O approach as we will develop it is the simplicity an
uniformity of the type system, deriving from a fundamental property:

Object rule

Every object is an instance of some class.

The Object rule will apply not just to composite, developer-defined objects (such
data structures with several fields) but also to basic objects such as integers, real numt
boolean values and characters, which will all be considered to be instances of predefi
library classesINTEGEF, REAL, DOUBLE, BOOLEAN CHARACTEI).

This zeal to make every possible value, however simple, an instance of some cl
may at first appear exaggerated or even extravagant. After all, mathematicians ¢
engineers have used integers and reals successfully for a long time, without knowing t
were manipulating class instances. But insisting on uniformity pays off for several reasor

* It is always desirable to have a simple and uniform framework rather than mai
special cases. Here the type system will be entirely based on the notion of class.

» Describing basic types as ADTs and hence as classes is simple and natural. It is
hard, for example, to see how to define the cINTEGEF with features covering
arithmetic operations such {'+", comparison operations such "<=", and the
associated properties, derived from the corresponding mathematical axioms.

« By defining the basic types as classes, we allow them to take part in all the O
games, especially inheritance and genericity. If we did not treat the basic types
classes, we would have to introduce severe limitations and many special cases.

As an example of inheritance, clasINTEGEF, REAL andDOUBLE will be heirs to more
general classeNUMERIC, introducing the basic arithmetic operations suc"+:", "-"

and "[1", and COMPARABLI, introducing comparison operations such"<". As an
example of genericity, we can define a generic c(MATRI* whose generic parameter
represents the type of matrix elements, so that instanMATRIX[INTEGEF| represent
matrices of integers, instancesMATRIX[REAL| represent matrices of reals and so on. As
an example of combining genericity with inheritance, the preceding definitions also allow
us to use the typMATRIX[NUMERIC], whose instances represent matrices containing
objects of type NTEGEF as well as objects of tyfREAL and objects of any new ty|T2
defined by a software developer so as to inherit NUMERIC.

With a good implementation, we do not need to fear any negative consequence fr
the decision to define all types from classes. Nothing prevents a compiler from havi
special knowledge about the basic classes; the code it generates for operations on v
of types such aINTEGERanc BOOLEAL can then be just as efficient as if these were
built-in types in the language.

172 THE STATIC STRUCTURE: CLASSES§7.5

Reaching the goal of a fully consistent and uniform type system requires the
combination of several important O-O techniques, to be seen only later: expanded classes,
to ensure proper representation of simple values; infix and prefix operators, to enable
usual arithmetic syntax (such a < b or —a rather than the more cumbersc auless
than(b) or a.negater); constrained genericity, needed to define classes which may be
adapted to various types with specific operations, for example aMATRIXthat can
represent matrices of integers as well as matrices of elements of other numeric types.

7.5 A SIMPLE CLASS

Let us now see what classes look like by studying a simple but typical example, which
shows some of the fundamental properties applicable to almost all classes.

The features
The example is the notion of point, as it could appear in a two-dimensional graphics system.

A A point and its
coordinates

R g
e LI _

To characterize typPOINT as an abstract data type, we would need the four query
functionsx, vy, p, 6. (The names of the last two will be spelled oufrho andthete in
software texts.) Functiox gives the abscissa of a point (horizontal coordinay its
ordinate (vertical coordinatep its distance to the origii the angle to the horizontal axis.
The values ox andy for a point are called its cartesian coordinates, thoy: and® its
polar coordinates. Another useful query functiodistance, which will yield the distance
between two points.

Then the ADT specification would list commands suctranslate (fto move a point The nameranslate
by a given horizontal and vertical displacemerotate (to rotate the point by a certain{e;'?fsnto the ;‘Ffa”;'
angle, aro_und the origin) arscale (to bring the point closer to or further from the origilgae':r?]e?rffra on
by a certain factor).

It is not difficult to write the full ADT specification including these functions and
some of the associated axioms. For example, two of the function signatures will be

x: POINT -~ REAL
translate: POINT x REAL x REAL — POINT

and one of the axioms will be (for any pop and any reala, b):
X (translate(pl, a, b)) = x(pl) + a

expressing that translating a point<a, b> increases its abscissa a.y

§7.5 A SIMPLE CLASS 173

ExerciseE7.2, page
21€.

“Function catego-
ries”, page 13:

Representing a
point in
cartesian
coordinates

Representing a
point in polar
coordinates

You may wish to complete this ADT specification by yourself. The rest of this
discussion will assume that you have understood the ADT, whether or not you ha
written it formally in full, so that we can focus on its implementation — the class.

Attributes and routines

Any abstract data type suchPOINT is characterized by a set of functions, describing the
operations applicable to instances of the ADT. In classes (ADT implementations
functions will yield features — the operations applicable to instances of the class.

We have seen that ADT functions are of three kinds: queries, commands a
creators. For features, we need a complementary classification, based on how each fe:
is implemented: by space or bgne.

The example of point coordinates shows the difference clearly. Two commc
representations are available for points: cartesian and polar. If we choose carte:
representation, each instance of the class will contain two fields representx andy:
of the corresponding point:

y

(CARTESIAN_POINJT

If plis the point shown, getting itx or itsy simply requires looking up the
corresponding field in this structure. Gettip or 6, however, requires a computation: for
p we must computéd +y’, and foré we must computarctg (y/x) with non-zercx.

If we use polar representation, the situation is reveip and6 are now accessible
by simple field lookupx andy require small computations (p cos6 andp sin8).

rho

theta

(POLAR_POINY

This example shows the need for two kinds of feature:

* Some features will be represented by space, that is to say by associating a cel
piece of information with every instance of the class. They will be cattributes.
For points,x andy are attributes in cartesian representatirho and thete are
attributes in polar representation.

174 THE STATIC STRUCTURE: CLASSES§7.5

* Some features will be represented by time, that is to say by defining a certain
computation (an algorithm) applicable to all instances of the class. They will be
calledroutines. For pointsrho andthete are routines in cartesian representaton;
andy are routines in polar representation.

A further distinction affects routines (the second of these categories). Some routines
will return a result; they are calldunctions. Herex andy in polar representation, as well
asrho andthete in cartesian representation, are functions since they return a result, of type
REAL. Routines which do not return a result correspond to the commands of an ADT
specification and are calleprocedures. For example the clasPOINT will include
proceduretranslate, rotate andscale.

Be sure not to confuse the use of “function” to denote result-returning routines in classes
with the earlier use of this word to denote the mathematical specifications of operations
in abstract data types. This conflict is unfortunate, but follows from well-established
usage of the word in both the mathematics and software fields.

The following tree helps visualize this classification of features:

Feature Feature

classificatior,
by role

No result:Command Returns resultQuery

No argument

Procedure

Computatio Memory

Function

i Attribute
ROUTINE Function

This is an external classification, in which the principal question is how a feature will
look to its clients (its users).

We can also take a more internal view, using as primary criterion how each feature
is implemented in the class, and leading to a different classification:

§7.5 A SIMPLE CLASS 175

Feature
classification

by

implementation

See‘Uniform
Access”, page 55

Feature

Routine Attribute

No result Returns result

Procedure Function

Uniform access

One aspect of the preceding classifications may at first appear disturbing and has pert
caught your attention. In many cases, we should be able to manipulate objects,
example a poinpl, without having to worry about whether the internal representation o
plis cartesian, polar or other. Is it appropriate, then, to distinguish explicitly betwee
attributes and functions?

The answer depends on whose view we consider: the supplier’s view (as seen by
author of the class itself, hePOINT) or the client’s view (as seen by the author of a class
that usesPOINT). For the supplier, the distinction between attributes and functions i
meaningful and necessary, since in some cases you will want to implement a feature
storage and in others by computation, and the decision must be reflected somewh
What would be wrong, however, would be to force clients to be aware of the
difference. If | am accessirpl, | want to be able to find out ix or itsp without having
to know how such queries are implemented.

The Uniform Access principle, introduced in the discussion of modularity, answel
this concern. The principle states that a client should be able to access a property o
object using a single notation, whether the property is implemented by memory or
computation (space or time, attribute or routine). We shall follow this important principl
in devising a notation for feature call below: the expression denoting the value xf the
feature forp1 will always be

pl.x
whether its effect is to access a field of an object or to execute a routine.

As you will have noted, the uncertainty can only exist for queries without arguments,
which may be implemented as functions or as attributes. A command mustbe a procedure;
a query with arguments must be a function, since attributes cannot have arguments.

176 THE STATIC STRUCTURE: CLASSES§7.5

The Uniform Access principle is essential to guarantee the autonomy of the
components of a system. It preserves the class designer’'s freedom to experiment with
various implementation techniques without disturbing the clients.

Pascal, C and Ada violate the principle by providing a different notation for a function
call and for an attribute access. For such non-object-oriented languages this is
understandable (although we have seen that Algol W, a 1966 predecessor to Pascal,
satisfied uniform access). More recent languages such as C++ and Java also do not
enforce the principle. Departing from Uniform Access may cause any internal
representation change (such as the switch from polar to cartesian or some other
representation) to cause upheaval in many client classes. This is a primary source of
instability in software development.

The Uniform Access principle also yields a requirement on documentaUsing assertions
techniques. If we are to apply the principle consistently, we must ensure that it ifor documentation:

possible to determine, from the official documentation on a class, whether a query Wtct?gsssr’}o;;fgérgg a

arguments is a function or an attribute. This will be one of the properties of the stai.uc.«
mechanism for documenting a class, known as the short form.

The class

Here is a version of the class text POINT. (Any occurrence of consecutive dasl--2s
introduces a comment, which extends to the end of the line; comments are explanations
intended for the reader of the class text and do not affect the semantics of the class.)

indexing
descriptior: "Two-dimensional poin"s
clas: POINTfeature

X, y: REAL
-- Abscissa and ordinate

rho: REALIs
-- Distance to origin (0, 0)
do
Result=sqrt(x * 2 +y "))
end

thete: REALIs
-- Angle tc horizonta axis
do
...Left to reader (exercise E7.3, page 216) °©
end

§7.6 BASIC CONVENTIONS 177

distance(p: POINT): REALIs
-- Distance tcp
do
Result=sqrt(x —px)*"2+(y—py) " 2
end

translate(a, b: REAL) is
-- Move bya horizontally,b vertically.
do
X=X +a
y=y+b
end

scale(factor: REAL) is
-- Scale byfactor.
do
x = factord x
y :=factorOy
end

rotate(p: POINT; angle REAL) is
-- Rotate arounip by angle.
do
...Left to reader (exercise E7.3, page 2...))
end

end

The next few sections explain in detail the non-obvious aspects of this class text.

The class mainly consists of a clause listing the various features and introduced

the keywordfeature. There is also arindexing clause giving generadescription

information, useful to readers of the class but with no effect on its execution semanti

Later on we will learn three optional clausinherit for inheritancecreation for non-

default creation aninvariant for introducing class invariants; we will also see how to

include two or mordeature clauses in one class.

7.6 BASIC CONVENTIONS

ClassPOINT shows a number of techniques which will be used throughout later example

Let us first look at the basic conventions.
Recognizing feature kinds

Featurex andy are just declared as being of tyREAL, with no associated algorithm; so
they can only be attributes. All other features have a clause of the form

178 THE STATIC STRUCTURE: CLASSES87.6

do
. Instruction....
end

which defines an algorithm; this indicates the feature is a routine. Rorho, thete and
distance are declared as returning a result, of tREAL in all cases, as indicated by
declarations of the form

rho: REALIs ...

This defines them as functions. The other ttranslate andscale, do not return a
result (since they do not have a result declaration of the :T. for some typeT), and so
they are procedures.

Sincex andy are attributes, whilrho andthetz are functions, the representation
chosen in this particular class for points is cartesian.

Routine bodies and header comments

The body of a routine (thdo clause) is a sequence of instructions. You can IFor details sefThe
semicolons, in the Algol-Pascal tradition, to separate successive |nstruct|onsW<’=1f0fthe Semico-
declarations, but the semicolons are optional. We will omit them for simplicity betw©"S" Page 897
elements on separate lines, but will always include them to delimit instructions or
declarations appearing on the same line.

All the instructions in the routines of claPOINT are assignments; for assignment,
the notation uses tl:= symbol (again borrowed from the Algol-Pascal conventions). This
symbol should of course not be confused with the equality syr=, used, as in
mathematics, as a comparison operator.

Another convention of the notation is the use of header comments. As already noted,
comments are introduced by two consecutive da--. They may appear at any place in
a class text where the class author feels that readers will benefit from an explanation. A
special role is played by theader commenwhich, as a general style rule, should appear
at the beginning of every routine, after the keywis, indented as shown by the examples
in classPOINT. Such a header comment should tersely express the purpose of the routine.

Attributes should also have a header comment immediately following their
declaration, aligned with routine’s header comments, as illustrated herx andy.

The indexing clause

At the beginning of the class comes a clause starting with the keyindexing. It See“A note about
contains a single entry, labeldescriptior. The indexing clause has no effect on softwgcomponent index-
execution, but serves to associate information with the class. In its general form it co™9" P39¢ 7¢
zero or more entries of the form

index_worc index_valu, index_valu, ...

where theindex_worc is an arbitrary identifier, and eadndex_valu is an arbitrary
language element (identifier, integer, st...).

§7.6 BASIC CONVENTIONS 179

Chapte 36

describes a general

0O-0 browsing
mechanism.

“Self-Documenta-
tion”, page 5¢

An “entity” is a
name denoting a
value. Full defini-
tion on page212.

Initialization rules
will be given ir‘The
creation instruc-
tion”, page 23..

The benefit is twofold:
* Readers of the class geta summary of its properties, without having to see the det

« In a software development environment supporting reuse, query tools (often kno
asbrowser) can use the indexing information to help potential users find out abot
available classes; the tools can let the users enter various search words and m
them with the index words and values.

The example has a single indexing entry, vdescriptionas index word and, as
index value, a string describing the purpose of the class. All classes in this book, save
short examples, will include descriptionentry. You are strongly encouraged to follow
this example and begin every class text withindexing clause providing a concise
overview of the class, in the same way that every routine begins with a header comme

Both indexing clauses and header comments are faithful applications of the Se
Documentation principle: as much as possible of a module’s documentation should apg
in the text of the module itself.

Denoting a function’s result

We need another convention to understand the texts of the functions iPOINT: rho,
thete anddistanct.

Any language that supports functions (value-returning routines) must offer
notation allowing the body of a function to set the value which will be returned by an
particular call. The convention used here is simple: it relies on a predefined entity nar
Resul, denoting the value that the call will return. For example, the borho contains
an assignment tResul:

Result=sqrt(x "2+ y "))

Resul is a reserved word, and may only appear in functions. In a function declar:
as having a result of ty[T, Resul is treated in the same way as other entities, and may b
assigned values through assignment instructions such as the above.

Any call to the function will return, as its result, the final value assigniResult
during the call’'s execution. That value always exists since language rules (to be see!
detail later) require every execution of the routine, when it starts, to initResul to a
preset value. For REALthe initialization value is zero; so a function of the form

non_negative_valu(x: REAL): REALIs
-- The value ox if positive; zero otherwise.
do
if x> 0.0then
Result:= x
end
end
will always return a well-defined value (as described by the header comment) even thot
the conditional instruction has lelse part.

180 THE STATIC STRUCTURE: CLASSES87.6

The discussion section of this chapter examines the rationale behitResubt See‘Denoting the
convention and compares it with other techniques such as return instructions. Alttresultofafunction”,
this convention addresses an issue that arises in all design and programming languP29¢ 2"
blends particularly well with the rest of the object-oriented approach.

Style rules

The class texts in this book follow precise style conventions regarding indentation, fonts
(for typeset output), choice of names for features and classes, use of lower and upper case.

The discussion will point out these conventions, under the heading “style rules”, as
we go along. They should not be dismissed as mere cosmetics: quality software requires
consistency and attention to all details, of form as well as of content. The reusability goal
makes these observations even more important, since it implies that software texts will
have a long life, during which many people will need to understand and improve them.

You should apply the style rules right from the time you start writing a class. For
example you should never write a routine without immediately including its header
comment. This does not take long, and is not wasted time; in fact it is time saved for all
future work on the class, whether by you or by others, whether after half an hour or after
half a decade. Using regular indentation, proper spelling for comments and identifiers,
adequate lexical conventions — a space before each opening parenthesis but not after, and
so on — does not make your task any longer than ignoring these rules, but compounded
over months of work and heaps of software produces a tremendous difference. Attention
to such details, although not sufficient, is a necessary condition for quality software (and
quality, the general theme of this book, is what defines software engineering).

The elementary style rules are clear from the preceding class example. Sincéhz;biérze is
immediate goal is to explore the basic mechanisms of object technology, their pidevoted to style
description will only appear in a later chapter. rules.

Inheriting general-purpose facilities

Another aspect of clasPOINT which requires clarification is the presence of calls to the
sqri function (inrho anddistanci). This function should clearly return the square root of
a real number, but where does it come from?

Since it does not seem appropriate to encumber a general-purpose language with
specialized arithmetic operations, the best technique is to define such operations as
features of some specialized class — ARITHMETIC — and then simply require any
class that needs these facilities to inherit from the specialized class. As will be seen in
detail in a later chapter, it suffices then to wPOINT as

class POINTIinherit
ARITHMETIC
feature
... The rest as befou...
end

§7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION 181

See'FACILITY
INHERITANCE",
24.9, page 84.7

This technique of inheriting general-purpose facilities is somewhat controversial; one can
argue that O-O principles suggest making a function susqrta feature of the class
representing the object to which it applies, for exanREAL. But there are many
operations on real numbers, not all of which can be included in the class. Square root may
be sufficiently fundamental to justify making it a feature of cREAL; then we would

write a. sqri rather tha sqrt(x). We will return, in the discussion of design principles, to

the question of whether “facilities” classes suclARITHMETIC are desirable.

7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION

Let us now move to the fundamental properties of (POINT by trying to understand a
typical routine body and its instructions, then studying how the class and its features n
be used by other classes — clients.

The current instance

Here again is the text of one of our example routines, proctranslate:

translate(a, b: REAL) is
-- Move bya horizontally,b vertically
do
X=X+ a
y:=y+b
end

At first sight this text appears clear enough: to translate a poia horizontally,b
vertically, we adca to itsx andb to itsy. But if you look at it more carefully, it may not
be so obvious anymore! Nowhere in the text have we stated what point we were talk
about. To whosx and whosey are we addina andb? In the answer to this question will
lie one of the most distinctive aspects of the object-oriented development style. Before
are ready to discover that answer we must understand a few intermediate topics.

A class text describes the properties and behavior of objects of a certain type, poi
in this example. It does so by describing the properties and behavior of a typical instal
of that type — what we could call the “point in the street” in the way newspapers repc
the opinion of the “man or woman in the street”. We will settle for a more formal nam
thecurrent instance of the class.

Once in a while, we may need to refer to the current instance explicitly. Th
reserved word

Current

will serve that purpose. In a class teCurrenidenotes the current instance of the enclosing
class. As an example of whCurren is needed, assume we rewidistance so that it
checks first whether the argumep is the same point as the current instance, in which cas
the result is 0 with no need for further computation. Tdistance will appear as

182 THE STATIC STRUCTURE: CLASSES87.7

distance (p: POINT): REAIs

-- Distance tp
do
if p/= Currentthen
Result:=sqrt(x — px) * 2 +(y — py) " 2)
end
end

(/= is the inequality operator. Because of the initialization rule mentioned above, the
conditional instruction does not needelse part: if p = Currentthe result is zero.)

In most circumstances, however, the current instance is implicit and we will not need
to refer toCurrent by its name. For example, referencex in the body ottranslate and
the other routines simply mean, if not further qualified: ‘x of the current instance”.

This only pushes back the mystery, of course: “who” realCurreni? The answer
will come with the study of routine calls below. As long as we only look at the routine text,
it will suffice to know that all operations are relative, by default, to an implicitly defined
object, the current instance.

Clients and suppliers

Ignoring for a few moments the enigmaCurrenfs identity, we know how to define
simple classes. We must now study how to use their definitions. Such uses will be in other
classes — since in a pure object-oriented approach every software element is part of some
class text.

There are only two ways to use a class sucPOINT. One is to inherit from it; this Chapters14 to 16
is studied in detail in later chapters. The other one is to becclient of POINT. study inheritanc.:

The simplest and most common way to become a client of a class is to declare an
entity of the corresponding type:

Definition: client, supplier

Let € be a class. A clasC which contains a declaration of the foa: S is
said to be a client <. Sis then said to be a supplierC.

In this definition,a may be an attribute or function C, or a local entity or argument
of aroutine oiC.

For example, the declarationsx, y, rho, thete anddistanctabove make claPOINT
a client ofREAL. Other classes may in turn become clientPOINT. Here is an example:

§7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION 183

class GRAPHICSfeature
pl: POINT

some_routineds
-- Perform some actions wipl.
do
... Create an instance POINTand attach it tp1l ...
pl.translate(4.0, —1.5) --00

end

end

Before the instruction marke--[1[] gets executed, the attribip1 will have a value
denoting a certain instance of clePOINT. Assume that this instance represents the
origin, of coordinatex =0,y = 0:

The origin y 0.0
y 0.0
(POINT)

Entity p1 is said to beattached to this object. We do not worry at this point about
how the object has been created (by the unexplained line thatCreate objer...”)
and initialized; such topics will be discussed as part of the object model in the next chap
Let us just assume that the object exists andpl is attached to it.

Feature call

The starred instruction,
pl.translate(4.0, —1.5)

deserves careful examination since it is our first complete example of what may be cal
the basic mechanism of object-oriented computatic: feature call. In the execution of
an object-oriented software system, all computation is achieved by calling certain featu
on certain objects.

This particular feature call means: applyp1 the featuretranslate of classPOINT,
with argument4.0 and-1.5, corresponding ta andb in the declaration ctranslate as it
appears in the class. More generally, a feature call appears in its basic form as one of

x.f
x.f(u,v,...)

184 THE STATIC STRUCTURE: CLASSES87.7

In such a callx, called thetarget of the call, is an entity or expression (which at run
time will be attached to a certain object). As any other entity or exprex has a certain
type, given by a clasC; thenf must be one of the featuresC. More precisely, in the first
form, f must be an attribute or a routine without arguments; in the secondf must be
a routine with arguments, auw, v, ..., called theactual arguments for the call, must be
expressions matching in type and number the formal arguments declaf in C.r

In addition,f must be available (exported) to the client containing this call. Thi"SELECTIVE EX-
the default; a later section will show how to restrict export rights. For the momenPORTS AND INFOR-

. . MATION HIDING”,
features are available to all clients. 7.8, page 161

The effect of the above call when executed at run time is defined as follows:

Effect of calling a featuref on a targetx

Apply featuref to the object attached x, after having initialized each formgl
argument of (if any) to the value of the corresponding actual argument.

The Single Target principle

What is so special about feature call? After all, every software developer knows how to
write a proceduriranslate which moves a point by a certain displacement, and is called
in the traditional form (available, with minor variants, in all programming languages):

translate(pl, 4.0, —1.5)

Unlike the object-oriented style of feature call, however, this call treats all arguments
on an equal basis. The O-O form has no such symmetry: we choose a certain object (here
the pointpl) as target, relegating the other arguments, here the real nu4.0 and-1.5,
to the role of supporting cast. This way of making every call relative to a single target
object is a central part of the object-oriented style of computing:

Single Target principle

Every operation of object-oriented computation is relative to a certain object,
the current instance at the time of the operation’s execution.

To novices, this is often the most disconcerting aspect of the method. In object-
oriented software construction, we never really ask: “Apply this operation to these objects”.
Instead we say: “Apply this operation this object here.” And perhaps (in the second
form): “Oh, by the way, | almost forgot, you will need those values there as arguments”.

What we have seen so far does not really suffice to justify this convention; in fact its
negative consequences will, for a while, overshadow its advantages. An example of
counter-intuitive effect appears with the functdistance of classPOINT, declared above
asdistance(p: POINT): REAL, implying that a typical call will be written

pl.distance(p2)

§7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION 185

“The class as mod-
ule and type”, page
17C.

which runs against the perceptiondistanctas a symmetric operation on two arguments.
Only with the introduction of inheritance will the Single Target fiple be fully
vindicated.

The module-type identification

The Single Target principle is a direct consequence of the module-type merge, preser
earlier as the starting point of object-oriented decomposition: if every module is a tyf
then every operation in the module is relative to a certain instance of that type (the curt
instance). Up to now, however, the details of that merge remained a little mysterious.
class, it was said above, is both a module and a type; but how can we reconcile
syntactic notion of module (a grouping of related facilities, forming a part of a softwat
system) with the semantic notion of type (the static description of certain possible ru
time objects)? The example POINT makes the answer clear:

How the module-type merge works

The facilities provided by cla:POINT, viewed as a module, are precise
the operations available on instances of cPOINT, viewed as a type.

y

This identification between the operations on instances of a type and the servi
provided by a module lies at the heart of the structuring discipline enforced by the obje
oriented method.

The role of Curren

With the help of the same example, we are now also in a position to clear the remain
mystery: what does the current instance really represent?

The form of calls indicates why the text of a routine (suctranslate in POINT)
does not need to specify “whCurrent is: since every call to the routine will be relative
to a certain target, specified explicitly in the call, the execution will treat every featul
name appearing in the text of the routine (for exarx in the text otranslate) as applying
to that particular target. So for the execution of the call

pl.translate(4.0, —1.5)

every occurrence « in the body ofrranslate, such as those in the instruction
X =Xx+a

means: “thex of p1”.

The exact meaning («Currenifollows from these observatiorCurreni means: “the
target of the current call”. For example, for the duration of the aboveCurren: will
denote the object attachedpl. In a subsequent caCurreniwill denote the target of that
new call. That this all makes sense follows from the extreme simplicity of the objec
oriented computation model, based on feature calls and on the Single Target principle

186 THE STATIC STRUCTURE: CLASSES87.7

Feature Call principle

F1 « No software element ever gets executed except as part of a routing call.

F2 « Every call has a target.

Qualified and unqualified calls

It was said above that all object-oriented computation relies on feature calls. A
consequence of this rule is that software texts actually contain more calls than meet the
eye at first. The calls seen so far were of one of the two forms introduced above:

x.f
x.f(u v, ...)

Such calls use so-called dot notation (with th” symbol) and are said to be
gualified because the target of the call is expljcdentified: it is the entity or expression
(x in both cases above) that appears before the dot.

Other calls, however, will be unqualified because their targets are implicit. As an
example, assume that we want to add to (POINT a proceduritransforn that will both
translate and scale a point. The procedure’s text may retranslate andscale:

transform(a, b, factor: REAL) is
-- Move bya horizontally,b vertically, then scale bfactor.
do
translate(a, b)
scale(factor)
end

The routine body contains callstranslate andscale. Unlike the earlier examples,
these calls do not show an explicit target, and do not use dot notation. Such calls are said
to beunqualified.

Unqualified calls do not violate the property calF2 in the Feature Call principle:
like qualified calls, they have a target. As you have certainly guessed, the target in this case
is the current instance. When procediransforn is called on a certain target, its body
callstranslate andscale on the same target. It could in fact have been written

do
Current.translate(a, b)
Current. scale(factor)

More generally, you may rewrite any unqualified call as a qualified callCurrent Strictly speaking, the

as its target. The unqualified form is of course simpler and just as clear. equivalence only
applies if the feature

The unqualified calls that we have just examined were calls to routines. The s exported.
discussion applies to attributes, although the presence of calls is perhaps less obvious in
this case. It was noted above that, in the bodtranslate, the occurrence cx in the
expressioix + a denotes thix field of the current instance. Another way of expressing this

§7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION 187

The Object rule was

given on pag«l71.

property is thax is actually a feature call, so that the expression as a whole could ha
been written aCurrent x + a.

More generally, any instruction or expression of one of the forms

f
f(u v ...)

is in fact an unqualified call, and you may also write it in qualified form as (respectively

Current.f
Current.f (u, v, ...)

although the unqualified forms are more convenient. If you use such a notation as
instruction,f must be a procedure (with no argument in the first form, and with th
appropriate number and types of arguments in the second). If it is an exprf may be

an attribute (in the first form only, since attributes have no arguments) or a function.

Be sure to note that this syntactical equivalence only applies to a feature used a
instruction or an expression. So in the following assignment from proctranslate

X=X+a

only the occurrence c¢x on the right-hand side is an unqualified cia is a formal
argument, not a feature; and the occurrencx on the left is not an expression (one cannot
assign a value to an expression), so it would be meaningless to replaCurrent. x.

Operator features

A further look at the expressicx + a leads to a useful notion: operator features. This
notion (and the present section) may be viewed as pure “cosmetics”, that is to s
covering only a syntactical facility without bringing anything really new to the object:
oriented method. But such syntactical properties can be important to make developers’
easier if they are present — or miserable if they are absent. Operator features also pro
a good example of how successful the object-oriented paradigm can be at integra
earlier approaches smoothly.

Here is the idea. Although you may not have guessed it, the exprx + a contains
not just one call — the call tx, as just seen — but two. In hon-O-O computation, we
would conside+ as an operator, applied here to two valx anda, both declared of type
REAL. In a pure O-O model, as noted, the only computational mechanism is feature c
so you may consider the addition itself, at least in theory, to be a call to an addition featu

To understand this better, consider how we could define theREAL. The Object
rule stated earlier implied that every type is based on some class. This applies
predefined types such {REAL as well as developer-defined types suchPOINT.
Assume you are requested to wiREAL as a class. It is not hard to identify the relevant
features: arithmetic operations (addition, subtraction, nec...), comparison operations
(less than, greater th...). So a first sketch could appear as:

188 THE STATIC STRUCTURE: CLASSES87.7

indexing

description:"Real number(not final versiol!)"
class REALfeature

plus(other REAL): REALIs

-- Sum of current value arother
do

end

minus(other: REAL) REALIs
-- Difference of current value aiother
do

end

negate:: REALIs
-- Current value but with opposite sign
do

end

less_thar(other REAL): BOOLEANIs
-- Is current value strictly less thiothel?
do

end

... Other feature...
end
With such a form of the class, you could not write an arithmetic expression such as
X + aany more; instead, you would use a call of the form

X.plus(a)
Similarly, you would have to writx. negate(instead of the usu—x.

One might try to justify such a departure from usual mathematical notation on the
grounds of consistency with the object-oriented model, and invoke the example of Lisp to
suggest that it is sometimes possible to convince a subset of the software development
community to renounce standard notation. But this argument contains it owns limitations:
usage of Lisp has always remained marginal. Itis rather dangerous to go against notations
which have been in existence for centuries, and which people have been using since
elementary school, especially when there is nothing wrong with these notations.

A simple syntactical device reconciles the desire for consistency (requiring here a
single computational mechanism based on feature call) and the need for com patibility with
traditional notations. It suffices to consider that an expression of the form

X+a

is in fact a call to the addition feature of ckREAL; the only difference with thplus
feature suggested above is that we must rewrite the declaration of the corresponding
feature to specify that calls will use operator notation rather than dot notation.

§7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION 189

Here is the form of a class that achieves this goal:

The next chapter indexing

will show how to description:"Real number"s
declare this class as

“expanded’. See class REALfeature
‘Theroleof infix "+" (other: REAL): REALIs
eXpandeq types’, -- Sum of current value arother
page 255
do
end

infix "—" (other: REAL) REAs
-- Difference of current value arother
do

end
prefix "-": REALis
-- Current value but with opposite sign
do

end

infix "<" (other. REAL): BOOLEANIs
-- Is current value strictly less thiother?
do

end

... Other feature...
end

Two new keywords have been introducinfix andprefix. The only syntactical
extension is that from now on we may choose feature names which, instead of identifi
(such adistanctor plus), are of one of the two forms

infix "8"

prefix "§"
where§ stands for an operator symbol chosen from a list which incl+, —, [, <, <=
and a few other possibilities listed below. A feature may have a name infix form
only if it is a function with one argument, such as the functions cplus, minusancless_

than in the original version of clasREAL; it may have a nhame of tlprefix form only if
it is a function with no argument, or an attribute.

Infix and prefix features, collectively callcoperator features, are treated exactly
like other features (calleidentifier features) with the exception of the two syntactical
properties already seen:

« The name of an operator feature as it appears in the feature’s declaration is of
form infix "8" or prefix "§", rather than an identifier.

 Calls to operator features are of the fcu § v (in the infix case) oS u (in the prefix
case) rather than using dot notation.

190 THE STATIC STRUCTURE: CLASSES87.7

As a consequence of the second property, operator features only support qualified
calls. If a routine of clasREAL contained, in the first version given earlier, an unqualified
call of the formplus (y), yielding the sum of the current number &, the corresponding
call will have to be writteiCurrent + y in the second version. With an identifier feature,
the corresponding notatioCurrent. plus (y), is possible but we would not normally use
it in practice since it is uselessly wordy. With an operator feature we do not have a choice.

Other than the two syntactical differences noted, operator features are fully
equivalent to identifier features; for example they are inherited in the same way. Any
class, not just the basic classes sucREAL, can use operator features; for example, it
may be convenientin a claVvECTOFto have a vector addition function callinfix "+".

The following rule will apply to the operators used in operator features. An operator
is a sequence of one or more printable characters, containing no space or newline, and
beginning with one of

+-0/l<>=\"@ #| &

In addition, the following keywords, used for compatibility with usual boolean
notation, are permitted as operators:

not and or xor and then or else implies

In the non-keyword case, the reason for restricting the first character is to preserve
the clarity of software texts by ensuring that any use of an infix or prefix operator is
immediately recognizable as such from its first character.

Basic classesINTEGEF etc.) use the following, known as standard operators:
e Prefix:+ — not.

e Infix: + — 0/ <> <=>=//\\ » and or xor and then or else implies.

The semantics is the usual o// is used for integer divisiol\\ for integer remainde”\ See“Non-strict
as the power operatioxor as exclusive or. In claBOOLEAN, and then andor else are boolean opera-
variants oland andor, the difference being explained in a later chapter,implies is tors”, page 45.}

the implication operator, such tta implies b is the same g(not a) or else b.

Operators not in the “standard” list are called free operators. Here are two exal
of possible operator features using free operators:

« When we later introduce :ARRA" class, we will use the operator featinfix "@"
for the function that returns an array element given by its index, so thi-thhe
element of an arraa may be written simply ga @

* In classPOINT, we could have used the nginfix "|—|" instead odistanct, so that
the distance betweepl andp2 is writtenpl || p2instead op 1. p2.

The precedence of all operators is fixed; standard operators have their usual
precedence, and all free operators bind tighter than standard operators.

The use of operator features is a convenient way to maintain compatibility with well-
accepted expression notation while ensuring the goal of a fully uniform type system (as
stated by the Object Rule) and of a single fundamental mechanism for computation. In the
same way that treatirINTEGEF and other basic types as classes does not need to cause
any performance problem, treating arithmetic and boolean operations as features does not

§7.8 SELECTIVE EXPORTS AND INFORMATION HIDING 191

See“Information
Hiding”, page 5.

“SELECTIVE

EXPORTS”, 23.5,

page 791

need to affect efficiency. Conceptuala + x is a feature call; but any good compiler will
know about the basic types and their features, and will be able to handle such a call s
to generate code at least as good as the code generaa + x in C, Pascal, Ada or any
other language in whic+ is a special hard-wired language construct.

When using operators such +, < and others in expressions, we may forget, most
of the time, that they actually stand for feature calls; the effect of these operators is the
we would expect in traditional approaches. But it is pleasant to know that, thanks to 1
theoretical context of their definition, they do not cause any departure from objec
oriented principles, and fit in perfectly with the rest of the method.

7.8 SELECTIVE EXPORTS AND INFORMATION HIDING

In the examples seen so far all the features of a class were exported to all possible clie
This is of course not always acceptable; we know from earlier discussion how importe
information hiding is to the design of coherent and flexible architectures.

Let us take a look at how we can indeed restrict features to no clients, or to so
clients only. This section only introduces the notation; the chapter on the design of cl:
interfaces will discuss its proper use.

Full disclosure

By default, as noted, features declared without any particular precaution are available
all clients. In a class of the form

class Slfeature
f...
g...

end

featuredf, g, ... are available to all clients S1. This means that in a claC, for an entity
x declared of typS], a call

X.f...

is valid, provided the call satisfies the other validity conditions on caf, regarding the
number and types of arguments if any. (For simplicity the discussion will use identifi
features as examples, but it applies in exactly the same way to operator features, for wi
the clients will use calls in infix or prefix form rather than dot notation.)

Restricting client access

To restrict the set of clients that can call a certain feil, we will use the possibility for
a class to have two or mcfeature clauses. The class will then be of the form

192 THE STATIC STRUCTURE: CLASSES§7.8

class Sz feature
f...

g...
feature { A, B}
h..

end

Featured andg have the same status as before: available to all clients. Fh isure
available only tocA andB, and to their descendants (the classes that inherit directly or
indirectly from A or B). This means that witx declared of typSZ a call of the form

x.h ..
is invalid unless it appears in the texiA, B, or one of their descendants.

As a special case, if you want to hide a feai from all clients, you may declare it
as exported to an empty list of clients:

class S3feature {} This is not the rec-
i ommended sty; see
S5below.
end

In this case a call of the forxi (...) is always invalid. The only permitted calls to
i are unqualified calls of the form

i(..)

appearing in the text of a routine S< itself, or one of its descendants. This mechanism
ensures full information hiding.

The possibility of hiding a feature from all clients, as illustrated, is present in
many O-O languages. But most do not offer the selective mechanism illustrah:d by
exporting a feature to certain designated clients and their proper descendants. This is
regrettable since many applications will need this degree of fine control.

The discussion section of the present chapter explains why selective exports‘The architectural
critical part of the architectural mechanisms of the object-oriented approach, avoidir™€ Of selective
“ " . . exports”, page 209
need for “super-modules” that would hamper the simplicity of the method.

We will encounter various examples of selective exports in subsequent chapter*SELECTIVE
will study their methodological role in the design of good modular interfaces. E;g'z}o?%'ts ,23.5,

Style for declaring secret features
A small point of style. A feature declared in the form used abovi is secret, but perhaps

this property does not stand out strongly enough from the syntax. In particular, the
difference with a public feature may not be visible enough, as in

§7.8 SELECTIVE EXPORTS AND INFORMATION HIDING 193

Not the recom-
mended sty; seeS5
nex.

The recommended
style.

“The bottom of the
pit’, page 58

class S4feature
exportet...
feature { }

secret...
end

where featurexportec is available to all clients wheresecre is available to no client.
The difference betweefeature { }, with an empty list in braces, aifeature, with no
braces, is a little weak. For that reason, the recommended notation uses not an empt
but a list consisting of the single cleNONE, as in

class Shfeature

... Exported...
feature { NONE}

... Secrel...
end

ClassNONE, which will be studied in a later chapter in connection with inheritance
is a Base library class which is so defined as to have no instances and no descendant
exporting a feature tNONE only is, for all practical purposes, the same as keeping i
secret. As a result there is no meaningful difference between the forms illustreS4d by
andSk; for reasons of clarity and readability, however, the second form is preferred, a
will be employed in the rest of this book whenever we need to introduce a secret featu

Exporting to yourself

A consequence of the rules seen so far is that a class may have to export a secret fez
Assume the declaration

indexing
note: "Invalid as it stand(see explanations bel)"v
class S6feature
x: S6
my_routineis do ... print (x.secre) ... end
feature { NONE}
secre: INTEGER
end -- classS6

By declaringx of type S6and making the cax.secre, the class becomes its own
client. But this call is invalid, sincsecre is exported to no class! That the unauthorized
clientisSt itself does not make any difference: { NONE} export status csecre makes
any callx.secre invalid. Permitting exceptions would damage the simplicity of the rule.

The solution is simple: instead feature {NONE} the header of the secofeature
clause should regfeature { S€}, exporting the feature to the class itself and its descendant:

Be sure to note that this is only needed if you want to use the feature in a qualifi
call such as appears print (x.secre). If you are simply usinisecre by itself, as in the

194 THE STATIC STRUCTURE: CLASSES§7.9

instructionprint (secre), you of course do not need to export it at all. Features declared in

a class must be usable by the routines of the class and its descendants; otherwise we could
never do anything with a secret feature! Only if you use the feature indirectly in a qualified
call do you need to export it to yourself.

7.9 PUTTING EVERYTHING TOGETHER

The previous discussions have introduced the basic mechanisms of object-oriented
computation, but we are still missing the big picture: how does anything ever get executed?

Answering this question will help us piece everything together and understand how
to build executable systems from individual classes.

General relativity

What is a little mind-boggling is that every description given so far of what happens at run
time has been relative. The effect of a routine suctranslate is relative to the current
instance; within the class text, as noted, the current instance is not known. So we can only
try to understand the effect of a call with respect to a specific target, sp1inas

pl.translate(u, v)

But this brings the next question: what dqp1 actually denote? Here again the
answer is relative. The above call must appear in the text of some class such as
GRAPHIC:. Assume thaplis an attribute of clas<GRAPHICS. Then the occurrence of
plin the call, as noted above, may be viewed as apl stands foiCurrent.pl. So we
have only pushed the problem further, as we must know what «Curren stood for at
the time of the above call! In other words, we must look at the client that called the routine
of classGRAPHIC¢ containing that call.

So this attempt at understanding a feature call starts off a chain of reasoning, which
we will not be able to follow to the end unless we know where execution started.

The Big Bang

To understand what is going on let us generalize the above example to an arbitrary call. If
we do understand that arbitrary call, we will indeed understand all of O-O computation,
thanks to the Feature Call principle which stated that

F1 e+ No software element ever gets executed except as part of a routing call. See pag18€.

F2 « Every call has a target.

Any call will be of one of the following two forms (the argument list may be absent
in either case):

e Unqualified:f (a, b, ...)
e Qualified:x.g (u, v, ...)

8§7.9 PUTTING EVERYTHING TOGETHER 195

The call appears in the body of a routr. It can only get executed as part of a call
tor. Assume we know the target of that call, some object OBJ. Then thet is easy to
determine in each case:

T1 e For the unqualified formt is simply OBJ. CaseT2, T3 andT4 will apply to the
gualified form.

T2« If x is an attribute, thx field of OBJ has a value which must be attached to some
object;t is that object.

T3« If x is a function, we must first execute the (unqualified) cax; the result gives
ust.

T4« If x is a local entity or, earlier instructions will have givex a value, which at the
time of the call must be attached to a certain obt is that object.

The only problem with these answers is of course that they are relative: they ol
help us if we know the current instance OBJ. What is OBJ? Why, the target of the curr
call, of course! As in the traditional song (the kid was eaten by the cat, the cat was bit
by the dog, the dog was beaten by the), we do not see the end of the chain.

To transform these relative answers into absolute ones, then, we must know w
happened when everything started — at Big Bang time. Here is the rule:

Definition: system execution

Execution of an object-oriented software system consists of the follgwing
two steps:
« Create a certain object, called root object for the execution.

* Apply a certain procedure, callecreation procedure, to that object

At Big Bang time, an object gets created, and a creation procedure gets started.
root object is an instance of a certain class, the sysiroot class; the creation procedure
is one of the procedures of the root class. In all but trivial systems, the creation proced
will itself create new objects and call routines on them, triggering more object creatio
and more routine calls. System execution as a whole is the successive deployment o
the pieces in a giant and complex firework, all resulting directly or indirectly from th
initial lighting of a minuscule spark.

Once we know where everything starts, it is not difficult to trace the fcCurrent
throughout this chain reaction. The first current object, at the start of everything (Big Ba
time, when the root’s creation procedure is called), is the root object. Then at any st:
during system execution l¢ be the latest routine to have been called; if OBJ was the
current object at the time of the call r, here is what becomes Current during the
execution ofr:

CleIf r executes an instruction which does not call a routine (for example a
assighment), we keep the same object as current object.

C2 « Starting an unqualified call also keeps the same object as current object.

196 THE STATIC STRUCTURE: CLASSES§7.9

C3 - Starting a qualified calx.f ... causes the target object of that call, which is the
object attached tx (determined from OBJ through the rules caT1 to T4 at the
top of the previous page), to become the new current object. When the call
terminates, OBJ resumes its role as current object.

In casesC2 andC3 the call may be to a routine that itself includes further calls,
qualified or not; so this rule must be understood recursively.

There is nothing mysterious or confusing, then, in the rule for determining the target
of any call, even though that rule is relative and in fact recursive. What is mind-boggling
is the power of computers, the power we use to play sorcerer’s apprentice by writing a
deceptively small software text and then executing it to create objects and perform
computations on them in numbers so large — number of objects, number of computations
— as to appear almost infinite when measured on the scale of human understanding.

Systems

The emphasis in this chapter is on classes: the individual components of object-oriented
software construction. To obtain executable code, we must assemble classes into systems.

The definition of a system follows from the previous discussion. To make up a
system we need three things:

« A setCc< of classes, called the systerclass se.t
e The indication of which class iC< is theroot class.
* The indication of which procedure of the root class isroot creation procedure.

To yield a meaningful system, these elements must satisfy a consistency condition,
system closur: any class needed directly or indirectly by the root class mustbe CS. of

Let us be a little more precise:

» A classC needs directly a clas<D if the text ofC refers toD. There are two basic
ways in whichC may need directD: C may be a client aD, as defined earlier in
this chapter, anC may inherit fromD, according to the inheritance relation which
we will study later.

» A classC need: a clas<E, with no further qualification, iC is E or C needs directly
a clas<D which (recursively) neecE.

With these definitions we may state the closure requirement as follows:

Definition: system closure

A system is closed if and only if its class set contains all classes needed by
the root class.

If the system is closed, a language-processing tool, such as a compiler, will be able
to process all its classes, starting with the root class, and recursively handling needed

8§7.9 PUTTING EVERYTHING TOGETHER 197

For a critique of
function-based
decomposition see
“FUNCTIONAL
DECOMPOSI-
TION”, 5.2, page
103

classes as it encounters their names. If the tool is a compiler, it will then produce !
executable code corresponding to the entire system.

This act of tying together the set of classes of a system, to generate an execut
result, is calle@ssembl and is the last step in the software constructioness.c

Not a main program

The discussions in the previous chapters repeatedly emphasized that systems devel
with the object-oriented method have no notion of main program. By introducing tt
notion of root class, and requiring the system specification to indicate a particular creat
procedure, have we not brought main programs back through a side door?

Not quite. What is wrong with the traditional notion of main program is that it
merges two unrelated concepts:

* The place where execution begins.
* The top, or fundamental component of the system'’s architecture.

The first of these is obviously necessary: every systéiinbwgin its execution
somewhere, so we must have a way to let developers specify the starting point; here 1
will do so by specifying a root class and a creation procedure. (In the case of concurt
rather than sequential computation we may have to specify several starting points, one
independent thread of computation.)

On the concept of top, enough abuse has been heaped in earlier chapters to n
further comments unnecessary.

But regardless of the intrinsic merit of each of the two notions, there is no reason
merge them: no reason to assume that the starting point of a computation will pla;
particularly important role in the architecture of the corresponding system. Initializatic
is just one of many aspects of a system. To take a typical example, the initialization of
operating system is its booting procedure, usually a small and relatively margin
component of the OS; using it as the top of the system’s design would not lead to
elegant or useful architecture. The notion of system, and object technology in general, |
in fact on the reverse assumption: that the most important property of a system is the
of classes that it contains, the individual capabilities of these classes, and th
relationships. In this view the choice of a root class is a secondary property, and shoulc
easy to change as the system evolves.

As discussed extensively in an earlier chapter, the quest for extendibility ar
reusability requires that we shed the practice of asking “what is the main function?” at
early stage of the system’s design and of organizing the architecture around the ans
Instead, the approach promotes the development of reusable software components,
as abstract data type implementations — classes. Systems are then built as reconfigul
assemblies of such components.

In fact, you will not always build systems in the practice of O-O software
development. An important application of the method is to de\vlibraries of reusable

198 THE STATIC STRUCTURE: CLASSES§7.9

components — classes. A library is not a system, and has no root class. When developing
a library, you may of course need to produce, compile and execute one or more systems
along the way, but such systems are a means, not an end: they help test the components,
and will usually not be part of the library as finally delivered. The actual delivered product

is the set of classes making up the library, which other developers will then use to produce
their own systems — or again their own libraries.

Assembling a system

The process of putting together a number of classes (one of which is designated as root)
to produce an executable system was called “assembly” above. How in practice do we
assemble a system?

Let us assume an operating system of the usual form, where we will keep our class
texts stored in files. The language processing tool in charge of this task (compiler,
interpreter) will need the following information:

Al » The name of the root class.

A2 * A universg, or set of files which may contain the text of classes needed by the root
(in the above precise sense of “needed”).

This information should not be included in the class texts themselves. Identifying a
class as root in its own te>Al) would violate the “no main program” principle. Letting
a class text include information about the files where the needed classes reside would tie
the class to a particular location in the file system of a given installation; this would
prevent use of the class by another installation and is clearly inappropriate.

These observations suggest that the system assembly process will need to rely on
some information stored outside of the text of the classes themselves. To provide this
information we will rely on a little control language called Lace. Let us observe the
process, but not until we have noted that the details of Lace are not essential to the method;
Lace is just an example of a control language, allowing us to keep the O-O components
(the classes) autonomous and reusable, and to rely on a separate mechanism for their
actual assembly into systems.

A typical Lace document, known as Ace file, might appear as follows:

systen paintingroot
GRAPHICS ("painting_application™)
cluster
base_librar: "\library\base";
graphical_library: "\library\graphic<";
painting_applicatior: "\user\applicatio
end -- systemrpainting

Thecluster clause defines the universe (the set of files containing class texts).chapter2s dis-
organized as a list of clusters; a cluster is a group of related classes, represeicusses the cluster
subsystem or a library. mode!

8§7.9 PUTTING EVERYTHING TOGETHER 199

A directory
structure

In practice, an operating system such as Windows, VMS or Unix provides
convenient mechanism to support the notion of cluster: directories. Its file system
structured as a tree, where only the terminal nodes (leaves), called “plain files”, cont
directly usable information; the internal nodes, called directories, are sets of files (ple
files or again directories).

dl d2 d3

O . . Root directory
4

[] Subdirectory

O Non-directory
file

O f3

We may associate each cluster with a directory. This convention is used in Lace
illustrated above: every cluster, with a Lace name subase_librarn, has an associated
directory, whose name is given as a string in double quotes, su\library\base". This
file name assumes Windows conventions (names of the \dir1\dir2\...), but this is
just for the sake of the example. You can obtain the corresponding Unix names
replacing the backslash charact\ by slashev.

Although by default you may use the hierarchical structure of directories to represent cluster
nesting, Lace has a notion of subcluster through which you can define the logical structure
of the cluster hierarchy, regardless of the clusters’ physical locations in the file system.

The directories listed in thcluster clause may contain files of all kinds. To
determine the universe, the system assembly process will need to know which one:
these files may contain class texts. A simple convention is to require the text of any cl
of nameNAME to be stored in a file of nanmnamee (lower case). Let us assume this
convention (which can easily be extended for more flexibility) for the rest of thi
discussion. Then the universe is the set of files having names of thinamese in the
list of directories appearing in ticluster clause.

Theroot clause of Lace serves to designate the root class of the system. Here the |
class iscGRAPHIC¢and, as indicated in parentheses, it appears ipainting_application
cluster. If there is only one class calGRAPHIC! in the universe, it is not necessary to
specify the cluster.

Assume that you start a language processing tool, for example a compiler, to proc
the system described by the above Ace. Assume further that none of the classes in
system has been compiled yet. The compiler finds the text of the rootGRAPHIC;
in the file graphics e of the clustepainting_applicatiol; that file appears in the directory

200 THE STATIC STRUCTURE: CLASSES§7.9

\user\applicatiol. By analyzing the text of claaGRAPHIC, the compiler will find the

names of the classes needecGRAPHIC: and will look for files with the corresponding

.e names in the three cluster directories. It will then apply the same search to the classes
needed by these new classes, repeating the process until it has located all the classes
needed directly or indirectly by the root.

An important property of this process is that it shoul@utomatic. As a software
developer, you should not have to write lists of dependencies between modules (known as
“Make files”), or to indicate in each file the names of the files that will be needed for its
compilation (through what is known in C and C++ as “Include directives”). Not only is it
tedious to have to create and maintain such dependency information manually; this
process also raises the possibility of errors when the software evolves. All that the Ace
requires you to provide is the information that no tool can find by itself: the name of the
root class, and the list of locations in the file system where needed classes — what earlier
was called thiclass se of the system — may appear.

To simplify the work of developers further, a good compiler will, when called in a
directory where no Ace is present, construct a template Ace vcluster clause includes
the basic libraries (kernel, fundamental data structures and algorithms, graphics etc.) and
the current directory, so that you will only have to fill in the name of the system and of its
root class, avoiding the need to remember the syntax of Lace.

The end result of the compilation process is an executable file, whose name is the
one given aftesystemin the Ace —paintinc in the example.

The Lace language includes a few other simple constructs, used to control the actions
of language processing tools, in particular compiler options and assertion monitoring
levels. We will encounter some of them as we explore further O-O techniques. Lace, as
noted, also supports the notion of logical subcluster, so that you can use it to describe
complex system structures, including the notions of subsystem and multi-level libraries.

Using a system description language such as Lace, separate from the development
language, allows classes to remain independent from the system or systems in which they
intervene. Classes are software components, similar to chips in electronic design; a system
is one particular assembly of classes, similar to a board or a computer made by assembling
a certain set of chips.

Printing your name

Reusable software components are great, but sometimes all you want to do is just a simple
task, such as printing a string. You may have been wondering how to write a “program”
that will do it. Having introduced the notion of system, we can answer this burning
question. (Some people tend to be nervous about the whole approach until they see how
to do this, hence this little digression.)

The following little class has a procedure which will print a string:

8§7.9 PUTTING EVERYTHING TOGETHER 201

OnGENERALsee

classSIMPLE creation

make
feature
makeis
-- Print an example string.
do
print_line ("Hello Saral!™)
end

end

The procedureprint_line can take an argument of any type; it prints a default

“Universal classes”, representation of the corresponding object, here a string, on a line. Also avaiprint: is

page 58.)

which does not go to a new line after printing. Both procedures are available to all clas:
coming from a universal ancestGENERAI, as explained in a later chapter.

To obtain a system that will print the given string, do the following:
E1 < Putthe above class text in a file calsimple e in some directory.
E2 « Start the compiler.

E3 «If you have not provided an Ace, you will be prompted to edit a new one
automatically generated from a template; just fill in the name of the root clas
SIMPLE, the name of the system — smy_first— and the cluster directory.

E4 «Exit from the editor; the compiler will assemble the system and produce &
executable file callemy_firs.

E5 ¢« Execute the result. On platforms such as Unix with a notion of command-lin
execution a command will have been generated, of rmy_firs; simply type that
name. On graphical platforms such as Windows and OS/2, a new icon will ha
appeared, labelemy firs; just double-click on that icon.

The result of the last step will be, as desired, to print on your console the messac

Hello Saral!

Structure and order: the software developer as arsonist

We now have an overall picture of the software construction process in the object-orien
method — assembling classes into systems. We also know how to reconstruct the cf
of events that will lead to the execution of a particular operation. Assume this operatior

[A]
x.g(u,v...)
appearing in the text of a routir of a classC, of which we assumxto be an attribute.
How does it ever get executed? Let us recapitulate. You must have indin a system,

and assembled that system with the help of an appropriate Ace. Then you must h
started an execution of that system by creating an instance of its root class. The ro

202 THE STATIC STRUCTURE: CLASSES§7.9

creation procedure must have executed one or more operations which, directly or
indirectly, caused the creation of an instaC_OB. of C, and the execution of a call of
the form

[B]
a.r(...)

wherea was at the time attached C_OB.. Then the call shown as [A] will execug;
with the arguments given, using as target the object attachedx field of C_ OB..

So by now we know (as well we should) how to find out the exact sequence of events
that will occur during the execution of a system. But this assumes we look at the entire
system. In general we will not be able, just by examining the text of a given class, to
determine the order in which clients will call its various routines. The only ordering
property that is immediately visible is the order in which a given routine executes the
instructions of its body.

Even at the system level, the structure is so decentralized that the task of predicting
the precise order of operations, although possible in principle, is often difficult. More
importantly, it is usually not very interesting. Remember that we treat the root class as a
somewhat superficial property of the system — a particular choice, made late in the
development process, of how we are going to combine a set of individual components and
schedule their available operations.

This downplaying of ordering constraints is part of object technology’s constant
push for decentralization in system architectures. The emphasis is not on “the” execution
of “the” program (as in Pascal or C programming and many design methods) but on the
services provided by a set of classes through their featureorderin which the services
will be exercised, during the execution of a particular system built from these classes, is a
secondary property.

The method goes in fact further by prescribing ieven if you kno the order of See'Premature
execution you should not base any serious system design decision on it. The rea©rdening’, page
this rule was explored in earlier chapters: it is a consequence of the concer
extendibility and reusability. It is much easier to add or change services in a decentr
structure than to change the order of operations if that order was one of the propertie
to build the architecture. This reluctance of the object-oriented method to consider the
order of operations as a fundamental property of software systems — what an earlier
discussion called the shopping list approach — is one of its major differences with most
of the other popular software design methods.

These observations once again evoke the picture of the software developer as
firework expert or perhaps arsonist. He prepares a giant conflagration, making sure that
all the needed components are ready for assembly and all the needed connections present.
He then lights up a match and watches the blaze. But if the structure has been properly set
up and every component is properly attached to its neighbors, there is no need to follow
or even try to predict the exact sequence of lightings; it suffices to know that every part
that must burn will burn, and will not do so before its time has come.

§7.10 DISCUSSION 203

Chapter18 dis-
cusses constant
attributes.

7.10 DISCUSSION

As a conclusion to this chapter, let us consider the rationale behind some of the decisi
made in the design of the method and notation, exploring along the way a few alternat
paths. Similar discussion sections will appear at the end of most chapters introducing r
constructs; their aim is to spur the reader's own thinking by presenting a cand
uncensored view of a few delicate issues.

Form of declarations

To hone our critical skills on something that is not too life-threatening, let us start with
syntactical property. One point worth noting is the notation for feature declarations. F
routines, there are none of the keywoprocedure or function such as they appear in
many languages; the form of a feature determines whether it is an attribute, a procedur
a function. The beginning of a feature declaration is just the feature name, say

f..

When you have read this, you must still keep all possibilities open. If a list c
arguments comes next, as in

g(al: A bl:B;...) ...
then you knowg is a routine; it could still be either a function or a procedure. Next a typ
may come:

f:T...

g(@l: A bl:B;..):T..

In the first examplef can still be either an attribute or a function without arguments;
in the second, however, the suspense stofg can only be a function. Coming backf, 0
the ambiguity will be resolved by what appears €Tt if nothing,f is an attribute, as in

my_file FILE

But if anis is present, followed by a routine boddo or the variantsonce and
external to be seen later), as in
f: Tis
do ... end
fis a function. Yet another variant is:
f: Tis some_value
which definesf as aconstant attribute of valuesome_valu.:

The syntax is designed to allow easy recognition of the various kinds of featur
while emphasizing the fundamental similarities. The very notion of feature, coverir
routines as well as attributes, is in line with the Uniform Access principle — the goal «
providing clients with abstract facilities and downplaying their representation difference
The similarity between feature declarations follows from the same ideas.

204 THE STATIC STRUCTURE: CLASSES§7.10

Attributes vs. functions

Let us explore further the consequences of the Uniform Access principle and of gro“uniform Access”,

attributes and routines under a common heading — features. page 5!, see als, in
the present chapt,'r

The principle stated that clients of a module should be able to use any se‘Uniform access”,
provided by the module in a uniform way, regardless of how the service is impleme®29¢ 17
— through storage or through computation. Here the services are the features of the viass,
what is meaningful for clients is the availability of certain features and their properties.
Whether a given feature is implemented by storing appropriate data or by computing the
result on demand is, for most purposes, irrelevant.

Assume for example a claPERSOI containing a featurage of type INTEGEF,
with no arguments. If the author of a client class writes the expression

Isabelle age

the only important information is thiage will return an integer, the age field of an
instance olPERSOI attached, at run-time, to the entlsabelle. Internally,age may be

either an attribute, stored with each object, or a function, computed by subtracting the
value of sbirth_date attribute from the current year. But the author of the client class does
not need to know which one of these solutions was chosen by the auPERSOI.

The notation foaccessin an attribute, then, is the same as for calling a routine; and
the notations fcdeclaring these two kinds of feature are as similar as conceptually possible.
Then if the author of a supplier class reverses an implementation decision (implementing
as a function a feature that was initially an attribute, or conversely), clients will not be
affected; they will require neither change, possibly not even recompilation.

The contrast between the supplier’s and client’s view of the features of a modulhe figures
apparent in the two figures which helped introduce the notion of feature earlier irappeared on pages
chapter. The first used as its primary criterion the distinction between routines®’4andL7s
attributes, reflecting the internal (implementation) view, which is also the supplier’s view.

In the second figure, the primary distinction was between commands and queries, the
latter further subdivided into queries with and without arguments. This is the external view
— the client’s view.

The decision to treat attributes and functions without arguments as equivalent for
clients has two important consequences, which later chapters will develop:

» The first consequence affects software documentation. The standard tUsing assertions
documentation for a class, known as short form of the class, will be devised scor documentation:
as not to reveal whether a given feature is an attribute or a function (in casstct?gsssr,foggggga
which it could be either). ’

* The second consequence affects inheritance, the major technique for ad#Redeclaring a func-
software components to new circumstances without disrupting existing softwaftion into an attribute”,
a certain class introduces a feature as a function without arguments, desce®9€ 494
classes will be permitted redefine the feature as an attribute, substituting memc
for computation.

§7.10 DISCUSSION 205

Exporting attributes

The classtext was oA consequence of the preceding observations is that classes may export attributes.

pagel7e.

example, clasPOINT, in the cartesian implementation introduced earlier, has attrixutes
andy, and exports them to clients in exactly the same way as the funrho andthete.

To obtain the value of an attribute for a certain object, you simply use feature call notati
as inmy_poinfx ormy_ pointthete.

This ability to export attributes differs from the conventions that exist in many O-(
languages. Typical of these is Smalltalk, where only routines (called “methods”) may
exported by a class; attributes (“instance variables”) are not directly accessible to clien

A consequence of the Smalltalk approach is that if you want to obtain the effect
exporting an attribute you have to write a small exported function whose only purpose
to return the attribute’s value. So in tPOINT example we could call the attributes
internal_» andinternal_y, and write the class as follows (using the notation of this book
rather than the exact Smalltalk syntax, and calling the funcabsciss andordinate
rather tharx andy to avoid any confusion):

classPOINT feature -- Public features:
absciss: REALIs
-- Horizontal coordinate
do Result:= internal_xend

ordinate: REALIs
-- Vertical coordinate
do Result:= internal_yend

... Other features as in the earlier vers...n
feature { NONE} -- Features inaccessible to clients:
internal_», internal_y: REAL
end
This approach has two drawbacks:

« It forces authors of supplier classes to write many small functions stabscissa
andordinate. Although in practice such functions will be short (since the syntax o
Smalltalk is terse, and makes it possible to give the same name to an attribute ar
function, avoiding the need to devise special attribute names sinternal > and
internal_y), writing them is still a waste of effort on the part of the class author, an
reading them is a useless distraction for the class reader.

« The method entails a significant performance penalty: every access to a field of
object now requires a routine call. No wonder object technology has developec
reputation for inefficiency in some circles. (It is possible to develop an optimizin
compiler which will expand calls tabsciss-style functions in-line, but then what is
the role of these functions?)

The technique discussed in this chapter seems preferable. It avoids the need
cluttering class texts with numerous little extra functions, and instead lets the cle
designers export attributes as needed. Contrary to what a superficial examination mi

206 THE STATIC STRUCTURE: CLASSES§7.10

suggest, this policy does not violate information hiding; it is in fact a direct
implementation of this principle and of the associated principle of Uniform Access. To
satisfy these requirements it suffices to make sure that attributes, as seen by clients, are
indistinguishable from functions without arguments, and that they have the same
properties for inheritance and class documentation.

This technique reconciles the goals of Uniform Access (essential for the clients), ease
of writing class texts (essential for the suppliers), and efficiency (essential for everyone).

The client’s privileges on an attribute

Exporting an attribute, using the techniques just discussed, allows clients to access the
value of an attribute for a certain object, asmy_pointx It does not allow clients to
modify that value. You may not assign to an attribute; the assignment o

Warning: illegal
construct — for

m ointx:= 3.7
y_p illustration only.

is syntactically illegal. The syntax rule is simpazattrib, if attrib is an attribute (or for
that matter a function) is an expression, not an entity, so you cannot assign to it, any more
than you can assign to the expres<a + b.

To makeattrib accessible in modification mode, you must write and export an
appropriate procedure, of the form:

set_attrib(v: G) is
-- Set tov the value oattrib.
do
attrib ;= v
end

Instead of this convention, one could imagine a syntax for specifying access rights,
such as

classC feature [AM] Warning: not a
retained notatio.

For discussion only
feature [A] {D, E}

whereA would mean access aM: modification. (Specifyin¢A could be optional: if you
export something you must at least allow clients to access it in read mode). This would
avoid the frequent need for writing procedures simileset_attrit.

Besides not justifying the extra language complication, this solution is not flexible
enough. In many cases, you will want to exyspecific ways of modifying an attribute.
For example, the following class exports a counter, and the right to modify it not
arbitrarily but only by increments of +1 or —1:

§7.10 DISCUSSION 207

classCOUNTINC feature

counte: INTEGER
incrementis
-- Increment counter

do

count:=count+ 1
end

decremenis

-- Decrement counter
do

count:= count — 1
end

end

Similarly, classPOINT as developed in this chapter does not let its clients st the
andy of a point directly; clients can change the values of these attributes, but only by goi
through the specific mechanisms that have been exported for that purpose, proced
translateandscale.

When we study assertions we will see another fundamental reason why it
inappropriate to let clients perform direct assignments catattrib := some_valuform:
not allsome_valu are acceptable. You may define a procedure such as

set_polygon_siz(new_siz: INTEGEF) is
-- Set the number of polygon verticesnew_siz.2
require
new_size=3
do .
size:= new_size
end
requiring any actual argument to be 3 or more. Direct assignments would make
impossible to enforce this constraint; a call could then produce an incorrect object.

These considerations show that a class writer must have at his disposal, for e
attribute five possible levels for granting access privileges to clients:

Possible client No access Read only Restricted write Protected write Unrestricted

privileges on
an attribute (0) (1) (2) (3) (4)

Level O is total protection: clients have no way of accessing the attribute. At level
and above, you make the attribute available for access, but at level 1 you do not grant
modification right. At level 2, you let clients modify the attribute through specific
algorithms. At level 3, you let them set the value, but only if it satisfies certain constrain
as in the polygon size example. Level 4 removes the constraints.

208 THE STATIC STRUCTURE: CLASSES§7.10

The solution described in this chapter is a consequence of this analysis. Exporting an
attribute only gives clients access permission (level 1); permission to modify is specified
by writing and exporting appropriate procedures, which give clients restricted rights as in
the counter and point examples (level 2), direct modification rights under some constraints
(3) or unrestricted rights (4).

This solution is an improvement over the ones commonly found in O-O languages:

¢ In Smalltalk, as noted, you have to write special encapsulation functions, such as the
earlierabsciss andordinate, just to let clients access an attribute at level 1; this may
mean both extra work for the developer and a performance overhead. Here there is
no need to write routines for attribute access; only for attribute modifications (levels
2 and above) do we require writing a routine, since it is conceptually necessary for
the reasons just seen.

e C++ and Java are the other extreme: if you export an attribute then itis up for grabs
at level 4: clients can set it through direct assignments irmy_pointx := 3.7
style as well as access its value. The only way to achieve level 2 (not 3 in the
absence of an O-O assertion mechanism in these languages) is to hide the attribute
altogether, and then write exported routines, both procedures for modification
(levels 2 or 4) and functions for access (level 1). But then you get the same
behavior as with the Smalltalk approach.

This discussion of a fairly specific language trait illustrates two of the general
principles of language design: do not needlessly bother the programmer; know when to
stop introducing new language constructs at the point of diminishing returns.

Optimizing calls

At levels 2 and 3 of the preceding discussion, the use of explicit procedure calls such as
my_polygonset_size(5) to change an attribute value is inevitable. At level 4, one could
fear the effect on performance of using set_attrit-style. The compiler, however, can
generate the same codemy_pointset_x(3.7) as it would foimy_pointx:=3.7 had this

last phrasing been legal.

ISE’'s compiler achieves this through a general in-line expansion mechanism, which
eliminates certain routine calls by inserting the routine body directly, with appropriate
argument substitutions, into the caller’s code.

In-line expansion is indeed one of the transformations that we may expect from an
optimizing compiler for an object-oriented language. The modular style of development
fostered by object technology produces many small routines. It would be unacceptable for
developers to have to worry about the effect of the corresponding calls on performance.
They should just use the clearest and most robust architecture they can devise, according
to the modularity principles studied in this book, and expect the compiler to get rid of any
calls which may be relevant to the design but not necessary for the execution.

§7.10 DISCUSSION 209

“Garbage collector
requirements”, page
30%, and“The C++
approachtobinding”,
page 51.3

In some programming languages, notably Ada and C++, developers specify wt
routines they want expanded in-line. | find it preferable to treat this task as an autome
optimization, for several reasons:

e It is not always correct to expand a call in-line; since the compiler must, fc
correctness, check that the optimization applies, it may just as well spare develop
the trouble of requesting it in the first place.

« With changes in the software, in particular through inheritance, a routine which w
inlinable may become non-inlinable. A software tool is better than a human
detecting such cases.

* On alarge system, compilers will always be more effective. They are better equipy
to apply the proper heuristics — based on routine size and number of calls —
decide what routines should be inlined. This is again especially critical as tf
software changes; we cannot expect a human to track the evolution of every piec

» Software developers have better things to do with their time.

The modern software engineering view is that such tedious, automatable and delic
optimizations should be handled by software tools, not people. The policy of leaving the
to the responsibility of developers is one of the principal criticisms that have been level
at C++ and Ada. We will encounter this debate again in studying two other ke
mechanisms of object technology: memory management, and dynamic binding.

The architectural role of selective exports

The selective export facility is not just a convenience; it is essential to object-orient
architecture. It enables a set of conceptually related classes to make some of their feat
accessible to each other without releasing them to the rest of the world, that is to s
without violating the rule of Information Hiding. It also helps us understand a frequentl
debated issue: whether we need modules above the level of classes.

Without selective exports, the only solution (other than renouncing Informatio
Hiding altogether) would be to introduce a new modular structure to group classes. Sl
super-modules, similar to Ada’s or Java’'s packages, would have their own rules for hidi
and exporting. By adding a completely new and partly incompatible module level to tl
elegant framework defined by classes, they would yield a bigger, hard-to-learn langua

Rather than using a separate package construct, the super-modules could themse
be classes; this is the approach of Simula, which permits class nesting. It too brings
share of extra complexity, for no clear benefit.

We have seen that the simplicity of object technology relies for a good part on t
use of a single modular concept, the class; its support for reusability relies on our abi
to extract a class from its context, keeping only its logical dependencies. With a sup
module concept we run the risk of losing these advantages. In particular, if a class belo
to a package or an enclosing class we will not be able to reuse it by itself; if we want
include it in another super-module we will need either to import the entire original supe
module, or to make a copy of the class — not an attractive form of reuse.

210 THE STATIC STRUCTURE: CLASSES§7.10

The need will remain to group classes in structured collections. This Willchapteros.
addressed in a later chapter through the noticclustel. But the cluster is a managemet
and organizational notion; making it a language construct would jeopardize the simplicity
of the object-oriented approach and its support for modularity.

When we want to let a group of classes grant each other special privileges, we do not
need a super-module; selective exports, a modest extension to basic information hiding,
provide a straightforward solution, allowing classes to retain their status of free-standing
software components. This is, in my opinion, a typical case of how a simple, low-tech idea
can outperform the heavy artillery of a “powerful” mechanism.

Listing imports

Each class lists, in the headers offeature clauses, the features that it makes available
to others. Why not, one might ask, also list features obtained from other classes? The
encapsulation language Modula-2 indeed provideimport clause.

In a typed approach to O-O software construction, however, such a clause would not
serve any purpose other than documentation. To use a fif from another clasC, you
must be a client or (through inheritance) a descendant of that class. In the first case, the
only one seen so far, this means that every uf is of the form

a.f
where, since our notation is typea must have been declared:
a:C

showing without any ambiguity thef came from theC. In the descendant case th‘The flat-short
information will be available from the official class documentation, its “flat-short fornform”, page 54.

So there is no need to bother developers with import clauses.

There is a need, however, helg developers with import documentation. A gocSee chapte3e€.
graphical development environment should include mechanisms that enable yo
clicking a button, to see the suppliers and ancestors of a class, and follow the import cnain
further by exploring their own suppliers and ancestors.

Denoting the result of a function

An interesting language issue broached earlier in this chapter is how to denote function
results. It is worth exploring further although it applies to non-O-O languages as well.

Consider a function — a value-returning routine. Since the purpose of any call to the
function is to compute a certain result and return it to the caller, the question arises of how
to denote that result in the text of the function itself, in particular in the instructions which
initialize and update the result.

The convention introduced in this chapter uses a special eResul, treated as a
local entity and initialized to the appropriate default value; the result returned by a call is

§7.10 DISCUSSION 211

the final value oiResul. Because of the initialization rules, that value is always definec
even if the routine body contains no assignmeiResul. For example, the function

f: INTEGERIs
do
if some_conditiothen Result:= 10end
end
will return the value 10 isome_conditio is satisfied at the time of the call, and 0 (the
default initialization value foINTEGEF) otherwise.

The technique usinResul originated, as far as | know, with the notation developed
in this book. (Since the first edition it has found its way into at least one other languag
Borland’s Delphi.) Note that it would not work in a language allowing functions to b
declared within functions, as the narResul would then be ambiguous. Among the
techniques used in earlier languages, the most common are:

A« Explicit return instructions (C, C++/Java, Ada, Modula-2).

B+ Treating the function name as a variable (Fortran, Algol 60, Simula, Algol 6¢&
Pascal).

Convention A relies on an instruction of the foreturn e whose execution
terminates the current execution of the enclosing function, retue as the result. This
technique has the benefit of clarity, since it makes the returned value stand out cle:
from the function text. But it suffers from several drawbacks:

Al . Often, the result must in practice be obtained through some computation:
initialization and a few subsequent updates. This means you must introduce &
declare an extraneous variable (an entity in the terminology of this chapter) just f
the purpose of holding the intermediate results of the computation.

A2« The technique tends to promote multiple-exit modules, which are contrary to tt
principles of good program structuring.

A3+ The language definition must specify what will happen if the last instructior
executed by a call to the function is ncreturn. The Ada result in this case is to
raise ... a run-time exception! (This may be viewed as the ultimate in buck
passing, the language designers having transferred the responsibility for langu:
design issues not just to software developers, but finally tend-usersof the
programs developed in the language!)

Note that it is possible to solve the last two problems by trereturn not as an
instruction, but as a syntactic clause which would be a required part of any function te:

function name(argument): TYPEis
do

return
expression
end

212 THE STATIC STRUCTURE: CLASSES§7.10

This solution remains compatible in spirit with the idea return instruction while
addressing its most serious deficiencies. No common language, however, uses it, and of
course it still leaves probleAl open.

The second common technique, B, treats a function’s name as a variable within the
text of the function. The value returned by a call is the final value of that variable. (This
avoids introducing a special variable as mentioned tAl1.)"

The above three problems do not arise in this approach. But it raises other difficulties
because the same name now ambiguously denotes both a function and a variable. This is
particularly confusing in a language allowing recursion, where a function body may use
the function’'s name to denote a recursive call. Because an occurrence of the function’s
name now has two possible meanings, the language must define precise conventions as to
when it denotes the variable, and when it denotes a function call. Usually, in the body of
a functionf, an occurrence of the narf as the target of an assignment (or other contexts
implying a value to be modified) denotes the variable, as in

fi=x

and an occurrence f in an expression (or other contexts implying a value to be accessed)
denotes a recursive function call, as in

x:=f
which is valid only iff has no arguments. But then an assignment of the form
fi=f+1

will be either rejected by the compiler f has arguments) or, worse, understood as
containing a recursive call whose result gets assignef (the variable). The latter
interpretation is almost certainly not what the developer had in mirf had been a
normal variable, the instruction would simply have increased its value by one. Here the
assignment will usually cause a non-terminating computation. To obtain the desired
effect, the developer will have to introduce an extra variable; this takes us back to problem
Al above and defeats the whole purpose of using technique B.

The convention introduced in this chapter, relying on the predefined Resul,
avoids the drawbacks of both A and B. An extra advantage, in a language providing for
default initialization of all entities includinResul, is that it simplifies the writing of
functions: if, as often happens, you want the result to be the default value except in specific
cases, you can use the scheme

do
if some_conditiothen Result:= “Some specific valueend
end
without worrying about aelse clause. The language definition must, of course, spe®Page23z.

all default values in an unambiguous and platform-independent way; the next chapte
introduce such conventions for our notation.

A final benefit of theResul convention will become clear when we study Design Chapterll.
Contract: we can usResultto express an abstract property of a function’s rest..,

§7.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 213

independent of its implementation, in the routine’s postcondition. None of the othi
conventions would allow us to write

infix "|_" (x: REAL): INTEGEFis
-- Integer part of x
do
... Implementation omitte...
ensure
no_greater: Result <= x
smallest_possible: Result + 1 > x
end

The postcondition is thensureclause, stating two properties of the result: that it is
no greater than the argument; and that adding 1 telds a result greatthan he argument.

Complement: a precise definition of entities

It will be useful, while we are considering notational problems, to clarify a notion that he
repeatedly been used above, but not yet defined precisely: entities. Rather than a cri
concept of object technology, this is simply a technical notion, generalizing the traditior
notion of variable; we need a precise definition.

Entities as used in this book cover names that denote run-time values, themsel
attached to possible objects. We have now seen all three possible cases:

Definition: entity
An entity is one of the following:
E1 « An attribute of a class.

E2 + A routine’s local entity, including the predefined eniResul for a
function.

E3 « A formal argument of a routine.

CaseE2 indicates that the entiiResul is treated, for all purposes, as a local entity;
other local entities are introduced in tlocal clause.Resultand other local entities of a
routine are initialized anew eatime the routine is called.

All entities except formal argumentE?3) are writable, that is to say may appear as
the targex of an assignmerx := some_valu.2

7.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

* The fundamental concept of object technology is the notion of class. A class is
abstract data type, partially or fully implemented.

* A class may have instances, called objects.

214

THE STATIC STRUCTURE: CLASSES§7.11

Do not confuse objects (dynamic items) with classes (the static description of the
properties common to a set of run-time objects).

In a consistent approach to object technology, every object is an instance of a class.

The class serves as both a module and a type. The originality and power of the O-O
model come in part from the fusion of these two notions.

A class is characterized by features, including attributes (representing fields of the
instances of the class) and routines (representing computations on these instances).
A routine may be a function, which returns a result, or a procedure, which does not.

The basic mechanism of object-oriented computation is feature call. A feature call
applies a feature of a class to an instance of that class, possibly with arguments.

Feature call uses either dot notation (for identifier features) or operator notation,
prefix or infix (for operator features).

Every operation is relative to a “current instance” of a class.

For clients of a class (other classes which use its features), an attribute is
indistinguishable from a function without arguments, in accordance with the
Uniform Access principle.

An executable assembly of classes is called a system. A system contains a root class
and all the classes which the root needs directly or indirectly (through the client and
inheritance relations). To execute the system is to create an instance of the root class
and to call a creation procedure on that instance.

Systems should have a decentralized architecture. Ordering relations between the
operations are inessential to the design.

A small system description language, Lace, makes it possible to specify how a
system should be assembled. A Lace specification, or Ace, indicates the root class
and the set of directories where the system’s clusters reside.

The system assembly process should be automatic, with no need for Make files or
Include directives.

The Information Hiding mechanism needs flexibility: besides being hidden or
generally available, a feature may need to be exported to some clients only; and an
attribute may need to be exported for access only, access and restricted modification,
or full modification.

Exporting an attribute gives clients the right to access it. Modifying it requires
calling the appropriate exported procedure.

Selective exports are necessary to enable groups of closely related classes to gain
special access to each other’s features.

There is no need for a super-module construct above classes. Classes should remain
independent software components.

The modular style promoted by object-oriented development leads to many small
routines. Inlining, a compiler optimization, removes any potential efficiency

§7.12 BIBLIOGRAPHICAL NOTES 215

Chapter35, bibliog-
raphy on pagd13¢&

Chapter32 (discus-
sion on the CD).

consequence. Detecting inlinable calls should be the responsibility of the compil
not software developers.

7.12 BIBLIOGRAPHICAL NOTES

The notion of class comes from the Simula 67 language; see the bibliographical referer
of the corresponding chapter. A Simula class is both a module and a type, although-
property was not emphasized in the Simula literature, and was dropped by so
successors of Simula.

The Single Target principle may be viewed as a software equivalent of a techniq
that is well known in mathematical logic and theoretical computing scicurrying. To
curry a two-argument functicf is to replace it by a one-argument functg yielding a
one-argument function as a result, such that for any applix andy:

@) () =f(xy)

To curry a function, in other words, is to specialize it on its first argument. This i
similar to the transformation described in this chapter to replace a traditional tw
argument routineotate, called under the form

rotate(some_poir, some_ang)2
by a one-argument function with a target, called under the form
some_poinrirotate (some_angl)2

[M 1990]describes currying and some of its applications to computing science,
particular the formal study of programming language syntax and semantics. We w
encounter currying again in the discussion of graphical user interfaces.

A few language designs have used the concept of object as a software const
rather than just a run-time notion as described in this chapter. In such approaches, m
for exploratory programming, there may be no need for a notion of class. The most nota
representative of this school of thought is the Self lang[Chambers 199:, which uses
“prototypes” rather than classes.

The detail of the conventions for infix and prefix operators, in particular the
precedence table, is given[M 1992].

James McKim brought to my attention the final argument foResul convention
(its use for postconditions).

216 THE STATIC STRUCTURE: CLASSESSE7.1

EXERCISES

E7.1 Clarifying the terminology

[This exercise requires two well-sharpened pencils,blue and the othered.]

Study the textbook extract used earlier in this chapter to illustrate the confusion beisee“what would
objects and classes; for each use of the word “object”, “thing” or “user” in that extyou think of this?”,
underline the word iiblue if you think that the authors really meant object; underline {°29¢ 16>

word inred if you think that they really meant class.

E7.2 POINT as an abstract data type

Write an abstract data type specification for the notion of two-dimensional point, as
suggested in the informal introduction of that notion.

E7.3 CompletingPOINT

Complete the text of cla:POINT by filling in the missing details and adding a procedupage17¢.
rotate (to rotate a point around the origin) as well as any other feature that you fe
necessary.

E7.4 Polar coordinates

Write the text of clasPOINT so as to use a polar, rather than cartesepresentation.

	7 7 The static structure: classes
	7.1 OBJECTS ARE NOT THE SUBJECT
	Definition: class

	7.2 AVOIDING THE STANDARD CONFUSION
	What would you think of this?
	The mold and the instance
	Metaclasses

	7.3 THE ROLE OF CLASSES
	Modules and types
	The class as module and type

	7.4 A UNIFORM TYPE SYSTEM
	Object rule

	7.5 A SIMPLE CLASS
	The features
	A point and its coordinates

	Attributes and routines
	Representing a point in cartesian coordinates
	Representing a point in polar coordinates
	Feature classification, by role

	Uniform access
	Feature classification, by implementation

	The class

	7.6 BASIC CONVENTIONS
	Recognizing feature kinds
	Routine bodies and header comments
	The indexing clause
	Denoting a function’s result
	Style rules
	Inheriting general-purpose facilities

	7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION
	The current instance
	Clients and suppliers
	Definition: client, supplier
	The origin

	Feature call
	Effect of calling a feature f on a target x�

	The Single Target principle
	Single Target principle

	The module-type identification
	How the module-type merge works

	The role of Current
	Feature Call principle

	Qualified and unqualified calls
	Operator features

	7.8 SELECTIVE EXPORTS AND INFORMATION HIDING
	Full disclosure
	Restricting client access
	Style for declaring secret features
	Exporting to yourself

	7.9 PUTTING EVERYTHING TOGETHER
	General relativity
	The Big Bang
	Definition: system execution

	Systems
	Definition: system closure

	Not a main program
	Assembling a system
	A directory structure

	Printing your name
	Structure and order: the software developer as ars...

	7.10 DISCUSSION
	Form of declarations
	Attributes vs. functions
	Exporting attributes
	The client’s privileges on an attribute
	Possible client privileges on an attribute

	Optimizing calls
	The architectural role of selective exports
	Listing imports
	Denoting the result of a function
	Complement: a precise definition of entities
	Definition: entity

	7.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	7.12 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E7.1 Clarifying the terminology
	E7.2 POINT as an abstract data type
	E7.3 Completing POINT
	E7.4 Polar coordinates

