11

Design by Contract:
building reliable software

E quipped with the basic concepts of class, object and genericity, you can by now writ
software modules that implement possibly parameterized types of data structure:
Congratulations. This is a significant step in the quest for better software architectures.

But the techniques seen so far are not sufficient to implement the comprehensiv
view of quality introduced at the beginning of this book. The quality factors on which we
have concentrated — reusability, extendibility, compatibility — must not be attained at
the expense of reliabilitycprrectnessand robustnesg Although, as recalled next, the
reliability concern was visible in many aspects of the discussion, we need more.

The need to pay more attention to the semantic properties of our classes will be
particularly clear if you remember how classes were defined: as implementations of
abstract data types. The classes seen so far consist of attributes and routines, which indeed
represent the functions of an ADT specification. But an ADT is more than just a list of
available operations: remember the role played by the semantic properties, as expressed
by the axioms and preconditions. They are essential to capture the true nature of the type’s
instances. In studying classes, we have — temporarily — lost sight of this semantic
aspect of the ADT concept. We will need to bring it back into the method if we want our
software to be not just flexible and reusable, but also correct and robust.

Assertions and the associated concepts, explained in this chapter, provide some of t
answer. Although not foolproof, the mechanisms presented below provide the programmt
with essential tools for expressing and validating correctness arguments. The key conce
will be Design by Contract viewing the relationship between a class and its clients as a
formal agreement, expressing each party’s rights and obligations. Only through such
precise definition of every module’s claims and responsibilities can we hope to attain
significant degree of trust in large software systems.

In reviewing these concepts, we shall also encounter a key problem of softwar
engineering: how to deal with run-time errors — with contract violations. This leads to the
subject ofexception handlingcovered in the next chapter. The distribution of roles
between the two chapters roughly reflects the distinction between the two components
reliability; as you will recall, correctness was defined as the software’s ability to perform
according to its specification, and robustness as its ability to react to cases not included
the specification. Assertions (this chapter) generally cover correctness, and exceptior
(next chapter) generally cover robustness.

332 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES§11.1

Some important extensions to the basic ideas of Design by Contract will have to wait
until the presentation of inheritance, polymorphism and dynamic binding, enabling us to
go from contracts tsubcontractin..

11.1 BASIC RELIABILITY MECHANISMS

The preceding chapters already introduced a set of techniques that directly address the goal
of producing reliable software. Let us review them briefly; it would be useless to consider
more advanced concepts until we have put in place all the basic reliability mechanisms.

First, the defining property of object technology is an almost obsessive concern with
the structure of software systems. By defining simple, modular, extendible architectures,
we make it easier to ensure reliability than with contorted structures as often result from
earlier methods. In particular the effort to limit inter-module communication to the strict
minimum was central to the discussion of modularity that got us started; it resulted in the
prohibition of such common reliability risks as global variables, and in the definition of
restricted communication mechanisms, the client and inheritance relations. The general
observation is that the single biggest enemy of reliability (and perhaps of software quality
in general) is complexity. Keeping our structures as simple as possible is not enough to
ensure reliability, but itis a necessary condition. So the discussion of the previous chapters
provides the right starting point for the systematic effort of the present one.

Also necessary if not sufficient is the constant emphasis on making our software
elegantanc readable.. Software texts are not just written, they are read and rewritten
many times; clarity and simplicity of notation, such as have been attempted in the
language constructs introduced so far, are a required basis for any more sophisticated
approach to reliability.

Another indispensable weapon is automatic memory management, specifically
garbage collectio. The chapter on memory management explained in detail why, for any
system that creates and manipulates dynamic data structures, it would be dangerous to rely
on manual reclamation (or no reclamation). Garbage collection is not a luxury; it is a
crucial reliability-enhancing component of any O-O environment.

The same can be said of another technique presented (in connection with genericity)
in the last chapter: static typing. Without statically enforced type rules, we would be at the
mercy of run-time typing errors.

All these techniques provide the necessary basis, from which we can now take a
closer look at what it will take for a software system to be correct and robust.

§11.2 ABOUT SOFTWARE CORRECTNESS 333

11.2 ABOUT SOFTWARE CORRECTNESS

We should first ask ourselves whaimean: for a software element to be correct. The
observations and deductions that will help answer this question will seem rather trivial
first; but let us not forget the comment (made once by a very famous scientist) tt
scientific reasoning is nothing but the result of starting from ordinary observations al
continuing with simple deductions — only very patiently and stubbornly.

Assume someone comes to you with a 300,000-line C program and asks you “Is t
program correct?”. There is not much you can answer. (If you are a consultant, though,
answering “no” and charging a high fee. You might just be right.)

To consider the question meaningful, you would need to get not only the progre
but also a precise description of what it is supposed to dcspecificatiol.

The same comment is applicable, of course, regardless of the size of a program.
instructionx := y + 1is neither correct nor incorrect; these notions only make sense wit
respect to a statement of what one expects from the instruction — what effect it is intent
to have on the state of the program variables. The instruction is correct for the specifica

“Make sure thaix andy have different values”
but it is incorrect vis-a-vis the specification

“Make sure thaix has a negative value”

(since, assuming that the entities involved are intexx may end up being non-negative
after the assignment, depending on the valvy).of

These examples illustrate the property that must serve as the starting point of
discussion of correctness:

Software Correctness property

Correctness is a relative notion.

A software system or software element is neither correct nor incorrect per se; it
correct or incorrect with respect to a certain specification. Strictly speaking, we should r
discuss whether software elementscorrect, but whether they aiconsister with their
specifications. This discussion will continue to use the well-accepted term “correctnes
but we should always remember that the question of correctness does not apply to softy
elements; it applies to pairs made of a software element and a specification.

334 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.3

In this chapter we will learn how to express such specifications thiassertions;
to help us assess the correctness of our software. But we will go further. It turns out (and
only someone who has not practiced the approach will think of this as a paradox) that just
writing the specification is a precious first step toweensuring that the software actually
meets it. So we will derive tremendous benefits from writing the assertions at the same
time as we write the software — or indeed before we write the software. Among the
consequences we will find the following:

« Producing software that is correct from the start because it is designed to be cMills 1975].
The title of an article written by Harlan D. Mills (one of the originators
“Structured Programming”) in the nineteen-seventies provides the right iHowd:
to write correct programs and knov. To “know it” means to equip the software, at
the time you write it, with the arguments showing its correctness.

« Getting a much better understanding of the problem and its eventual solutions.

 Facilitating the task of software documentation. As we will see later in this chapter,
assertions will play a central part in the object-oriented approach to documentation.

» Providing a basis for systematic testing and debugging.
The rest of this chapter explores these applications.

A word of warning: C, C++ and some other languages (following the lead of Algol
W) have an “assert” instruction that tests whether a certain condition holds at a certain
stage of the software’s execution, and stops execution if it does not. Although relevant to
the present discussion, this concept represents only a small part of the use of assertions in
the object-oriented method. So if like many other software developers you are familiar
with such instructions but have not been exposed to the more general picture, almost all
the concepts of this chapter will be new.

11.3 EXPRESSING A SPECIFICATION

We can turn the preceding informal observations into a simple mathematical notation,
borrowed from the theory of formal program validation, and precious for reasoning about
the correctness of software elements.

Correctness formulae

Let A be some operation (for example an instruction or a routine bodcorrectness
formula is an expression of the form

{P} A{Q}

denoting the following property, which may or may not hold:

§11.3 EXPRESSING A SPECIFICATION 335

Meaning of a correctness formule{ P} A{Q}

“Any execution A, starting in a state wherP holds, will terminate in a
state whereQ holds.”

Correctness formulae (also callHoare triples) are a mathematical notation, not a
programming construct; they are not part of our software language, but only designec
guide us through this discussion by helping to express properties of software element

In {P} A{Q} we have seen thA denotes an operatioP andQ are properties of
the various entities involved, also called assertions (the word will be defined mo
precisely later). Of the two assertioP is called the precondition aiQ the postcondition.
Here is a trivial correctness formula (which, assumingx is an integer entity, holds):

{x>=9} x:=x+5 {x>=13

The use of correctness formulae is a direct application of the Software Correctn
Property. What the Property stated informally — that correctness is only meaningf
relative to a particular specification — correctness formulae turn into a form that
directly usable for working on the software: from now on the discourse about softwa
correctness will not be about individual software elemA, but about triples containing
a software elemetA, a preconditiorP and a postconditioQ. The sole aim of the game
is to establish that the resulti{ P} A{Q} correctness formulae hold.

The numberl3 appearing in the postcondition is not a typo! Assuming a correct

implementation of integer arithmetic, the above formula hole >= 9is true before the

instruction,x >= 13 will be true after the instruction. Of course we can assert more
interesting things: with the given precondition, the most interesting postcondition is the
strongest possible one, hex >= 14; with the given postcondition, the most interesting
precondition is thweakes possible one, heix >= 8. From a formula that holds, you can

always get another one by strengthening the precondition or weakening the postcondition.

We will now examine more carefully these notions of “stronger” and “weaker”.

Weak and strong conditions

One way to look at a specification of the fo{ P} A{Q} is to view it as a job description
for A— an ad in the paper, which states “We are looking for someone whose work w
be to start from initial situations as characterize P, and deliver results as definedQ”.

Here is a small quiz to help you sharpen your understanding of the concepts.

Assume one of your friends is looking for a job and comes across several such &
all with similar salary and benefits, but differing by thPs andQs. (Tough times have
encouraged the companies that publish the ads to resort to this notation, which they
for its mathematical compactness since the newspaper charges by the word.) L
everyone else, your friend is lazy, that is to say, wants to have the easiest possible job
is asking for your advice, always a dangerous situation. What should you recommend
P: choose a job with iweal precondition, or &stron¢ one? Same question for the
postconditiorQ. (The answers appear right after this, but do take the time to decide t
issue for yourself before turning the page.)

336 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.3

The precondition first. From the viewpoint of the prospective employee — the
person who has to perform what has been c:éA — the preconditiorP defines the
conditions under which the required job will start or, to put it differently, the set of cases
that have to be handled. So a striP is good news: it means that you only have to deal
with a limited set of situations. The stronger P, the easier for the employee. In fact, the
perfect sinecure is the job defined by

Sinecure 1
{Fals¢} A {...}

The postcondition has been left unspecified because it does not matter what it is.
Indeed if you ever see such an ad, do not even bother reading the postcotake the
job right awa\. The preconditioiFalse is the strongest possible assertion, since it is never
satisfied in any state. Any request to exeA will be incorrect, and the fault lies not with
the agent responsible fA but with the requester — the client — since it did not observe
the required precondition, for the good reason that it is impossible to observe it. Whatever
Adoes or does not do may useles, but is alway:«correct —in the sense, defined earlier,
of being consistent with the specification.

The above job specification is probably what a famous police chief of a Southern US city
had in mind, a long time ago, when, asked by an interviewer why he had chosen his
career, he replied: “Obvious — it is the only job where the customer is always wrong”.

For the postconditiorQ, the situation is reversed. A strong postcondition is bad
news: it indicates that you have to deliver more results. The weakQ, the better for
the employee. In fact, the second best sinecure in the world is the job defined, regardless
of the precondition, by

Sinecure 2
{..} A {True}

The postconditioiTrue is the weakest possible assertion, satisfied by all states.

The notions of “stronger” and “weaker” are formally defined from loP1is said to be
stronger thalP2, andP2 weaker thaiP1, if P1impliesP2 and they are not equal. As every
proposition impliesTrue, andFalse implies every proposition, it is indeed legitimate to
speak oTrue as the weakest arFalse as the strongest of all possible assertions.

Why, by the way, is Sinecure 2 only the “second best” job in the world? The reason
has to do with a fine point that you may have noticed in the definition of the meaning of
{P} A{Q} on the preceding page: termination. The definition stated that the execution
mustterminate in a state satisfyinQ whenever it is started in a state satisf P. With
Sinecure 1 there are no states satisfP, so it does not matter whA does, even if it is
a program text whose execution would go into an infinite loop or crash the computer. Any
Awill be “correct” with respect to the given specification. With Sinecure 2, however, there

§11.4 INTRODUCING ASSERTIONS INTO SOFTWARE TEXTS 337

must be a final state; that state does not need to satisfy any specific properties, butit r
exist. From the viewpoint of whoever has to perfcA: you need to do nothinbut you
must do it in finite tim.e

Readers familiar with theoretical computing science or program proving techniques will
have noted that th{ P} A {Q} notation as used here denatotal correctness, which
includes termination as well as conformance to specification. (The property that a
program will satisfy its specification if it terminates is known as partial correctness.) See
[M 1990] for a detailed presentation of these concepts.

The discussion of whether a stronger or weaker assertion is “bad news” or “good nev
has taken the viewpoint of the prospective employee. If, changing sides, we start lookin
the situation as if we were the employer, everything is reversed: a weaker precondition \
be good news, asit means ajob that handles a broader set of input cases; so will be a str
postcondition, as it means more significant results. This reversal of criteria is typical
discussions of software correctness, and will reappear as the central notion of this chaj
contracts between client and supplier modules, in which a benefit for one is an obligatic
for the other. To produce effective and reliable software is to draw up the contre
representing the best possible compromise in all appliclient-supplieicommunications.

11.4 INTRODUCING ASSERTIONS INTO SOFTWARE TEXTS

Once we have defined the correctness of a software element as the consistency o
implementation with its specification, we should take steps to include the specificatio
together with the implementation, in the software itself. For most of the softwal
community this is still a novel idea: we are accustomed to programs as defining t
operations that we command our hardware-software machines to execute foilhow);he

it is less common to treat the description of the software’s purposewha) as being
part of the software itself.

To express the specification, we will rely on assertions. An assertion is an express
involving some entities of the software, and stating a property that these entities
satisfy at certain stages of software execution. A typical assertion might express the
certain integer has a positive value or that a certain reference is not void.

Mathematically, the closest notion is that of predicate, although the asserti
language that we shall use has only part of the power of full predicate calculus.

Syntactically, the assertions of our notation will simply be boolean expressions, wi
a few extensions. One of these extensions,old notation, is introduced later in this
chapter. Another is the use of the semicolon, as in

n>0; x/= Void

The meaning of the semicolon is equivalent to that ofand. As between
declarations and instructions, the semicolon is actually optional, and we will omit it whe
assertion clauses appear on separate lines; just consider that there is an anodlicit
between successive assertion lines. These conventions facilitate identification of |
individual components of an assertion. It is indeed possible, and usually desirable, to Iz
these components individually, as in

338 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.5

Positive n>0
Not_voic x/= Void

If present, the labels (such PositiveandNot_voic in this example) will play a role
in the run-time effect of assertions — to be discussed later in this chapter — but for the
moment they are mainly there for clarity and documentation.

The next few sections will review this principal application of assertions: as a
conceptual tool enabling software developers to construct correct systems and to
documenwhy they are correct.

11.5 PRECONDITIONS AND POSTCONDITIONS

The first use of assertions is the semantic specification of routines. A routine is not just a
piece of code; as the implementation of some function from an abstract data type
specification, it should perform a useful task. It is necessary to express this task precisely,
both as an aid in designing it (you cannot hope to ensure that a routine is correct unless
you have specified what it is supposed to do) and, later, as an aid to understanding its text.

You may specify the task performed by a routine by two assertions associated with
the routine: gpreconditior and gpostconditiol. The precondition states the properties that
must hold whenever the routine is called; the postcondition states the properties that the
routine guarantees when it returns.

A stack class

An example will enable us to become familiar with the practical use of assertions. In the
previous chapter, we saw the outline of a generic stack class, under the form

classSTACK][G] feature
... Declaration of the features:
coun, empt, full, pui, removy, item
end

An implementation will appear below. Before considering implementation issues,
however, it is important to note that the routines are characterized by strong semantic
properties, independent of any specific representation. For example:

* Routinesremoveanditemare only applicable if the number of elements is not zero.
* putincreases the number of elements by removedecreases it by one.

Such properties are part of the abstract data type specification, and even people who
do not use any approach remotely as formal as ADTs understand them implicitly. But in
common approaches to software construction software texts reveal no trace of them.
Through routine preconditions and postconditions you can turn them into explicit
elements of the software.

We will express preconditions and postconditions as clauses of routine declarations
introduced by the keyworcrequire andensurerespectively. For the stack class, leaving
the routine implementations blank for the time being, this gives:

§11.5 PRECONDITIONS AND POSTCONDITIONS

339

indexing

descriptior: "Stack: Dispenser structures with a Last, First-Out %

%access polic'y
class STACKI[G] feature -- Access

coun: INTEGER
-- Number of stack elements

item: Gis
-- Top element
require
not empty
do

end
feature -- Status report
empt: BOOLEANis
-- Is stack empty?
do ... end

full: BOOLEANIs
-- Is stack representation full?

do

end
feature -- Element change
put(x: G) is
-- Add x on top.
require
not full
do

ensure

not empty

item=x

count=old count + 1
end

removeis
-- Remove top element.
require
not empty
do

ensure

not full

count=old count -1
end

end

340 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.5

Both therequire and theensure clauses are optional; when present, they appear at

the places shown. Threquire appears before thlocal clause, if present. The next

sections explain in more detail the meaning of preconditions and postconditions.
Note the division into severfeature clauses, useful to group the features into categories More on feature cat-
indicated by the clauses’ header commeAcces, Status repo andElemen chang are egories in“A stack

some of a dozen or so standard categories used throughout the libraries and, whenevclass”, page 343
applicable, subsequent examples in this book.

Preconditions

A precondition expresses the constraints under which a routine will function properly.
Here:

* put may not be called if the stack representation is full.
e remove anditenr may not be applied to an empty stack.

A precondition applies to all calls of the routine, both from within the class and from
clients. A correct system will never execute a call in a state that does not satisfy the
precondition of the called routine.

Postconditions

A postcondition expresses properties of the state resulting from a routine’s execution. Here:

« After aput, the stack may not be empty, its top is the element just pushed, and its
number of elements has been increased by one.

« After aremov, the stack may not be full, and its number of elements has been
decreased by one.

The presence of a postcondition clause in a routine expresses a guarantee on the part
of the routine’s implementor that the routine will yield a state satisfying certain properties,
assuming it has been called with the precondition satisfied.

A special notationold, is available in postconditionpui andremove use it to
express the changes coun. The notationold €, wheree is an expression (in most
practical cases an attribute), denotes the valuee had on routine entry. Any occurrence
of enot preceded bold in the postcondition denotes the value of the expression on exit.
The postcondition cput includes the clause

count=old count + 1

to state thapui, when applied to any object, must increase by one the value couns
field of that object.

A pedagogical note

If you are like most software professionals who get exposed to these ideas for the first
time, you may be itching to know what effect, if any, the assertions have on the execution
of the software, and in particular what happens if one of them gets violated at run time —
if full is true when someone caputi, or empt is true wherpui terminates one of its
executions. It is too early to give the full answer but as a preview we can use the lawyer’s
favorite:it depend.

§11.6 CONTRACTING FOR SOFTWARE RELIABILITY 341

See*Monitoring
assertions at run
time”, page 393

More precisely, it depends on what you want. You may decide to treat assertio
purely as comments, with no effect on the software’s execution; then a run-time asser!
violation will remain undetected. But it is also possible to use assertions to check tt
everything goes according to plan; then during execution the environment w
automatically monitor that all assertions hold when they should, and if one does not it w
trigger an exception, usually terminating execution and printing a message indicati
clearly what happened. (Itis also possible to include an exception handling clause that
try to recover from the exception and continue execution; exception handling is discus:
in detail in the next chapter.) To specify the policy that you want — no assertion checkir
or assertion monitoring at one of various possible levels — you will use a compilatic
option, which you can set separately for each class.

The full details of run-time assertion monitoring do appear later in this chapter. B
it would be a mistake to attach too much importance to this aspect at this stage (one of
reasons why you were warned earlier not to think too much about the C notion of asser
if that has been your only exposure to the concept). Other aspects of assertions den
our attention first. We have only started to see assertions as a technique to help us ge
software right in the first place; wélshave much to discover of themethodologice role
as built-in guardians of reliability. The question of what happens if we do fail (in particule
if an assertion, in spite of all our efforts, is not satisfied at some execution instant)
important too, but only after we have done all we could to prevent it from arising.

So (although it is never bad to think ahead) you do not need at this point to be t
preoccupied by such questions as the possible performance penalty impliedold the
construct. Must the run-time system preserve values before we start a routine, just tc
able to evaluate aold expression appearing in the postconditidt depend: in some
circumstances (for example testing and debugging) it will indeed be useful to evalu:
assertions; in others (for example production runs of fully validated systems) you can tr
them as mere annotations to the software text.

All that counts for the next few sections is the methodological contribution o
assertions, and of the associated method of Design by Contract: as a conceptual too
analysis, design, implementation and documentation, helping us to build software
which reliability is built-in , rather than achieved or attempted after the fact throug|
debugging; in Mills’s terms, enabling us to build correct programs and know it.

11.6 CONTRACTING FOR SOFTWARE RELIABILITY

Defining a precondition and a postcondition for a routine is a way to decontrac that
binds the routine and its callers.

Rights and obligations

By associating clauserequire pre andensure pos with a routiner, the class tells its
clients:

“If you promise to calr with pre satisfied then |, in return, promise to deliyer
a final state in whiclpos is satisfied.”

342 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.6

In relations between people or companies, a contract is a written document that
serves to clarify the terms of a relationship. It is really surprising that in software, where
precision is so important and ambiguity so risky, this idea has taken so long to impose
itself. A precondition-postcondition pair for a routine will describe the contract that the
routine (thesuppliel of a certain service) defines for its callers (clients of that service).

Perhaps the most distinctive feature of contracts as they occur in human affairs is that
any good contract entails obligations as well as benefits for both parties — with an
obligation for one usually turning into a benefit for the other. This is true of contracts
between classes, too:

» The precondition binds the client: it defines the conditions under which a call to the
routine is legitimate. It is aobligatior for the client and benefi for the supplier.

* The postcondition binds the class: it defines the conditions that must be ensured by
the routine on return. It is a benefit for the client and an obligation for the supplier.

The benefits are, for the client, the guarantee that certain properties will hold after
the call; for the supplier, the guarantee that certain assumptions will be satisfied whenever
the routine is called. The obligations are, for the client, to satisfy the requirements as stated
by the precondition; for the supplier, to do the job as stated by the postcondition.

Here is the contrador one of the routines in o example:

put OBLIGATIONS BENEFITS A routine
contract
(Satisfy preconditior:) (From postconditior:) routine putfor
Client Only callput(x) on a non-| Get stack updated: not a stack class
full stack. empty,x on top iterr yields

X, coun increased by 1).

Supplier | (Satisfy postconditio:) (From preconditior:)

Update stack representati¢ Simpler processing thanks
to havexon top itemyields | to the assumption that stack
X), counincreased by 1, is not full.
not empty.

Zen and the art of software reliability: guaranteeing more by checking less

Although you may not have noticed it yet, one of the contract rules given goes against the
generally accepted wisdom in software engineering; shocking at first to many, it is among
the method’s main contributions to software reliability and deserves emphasis.

The rule reflects the above observation that the preconditionbenefi for the
supplier and is expressed in the bottom-right box of the table: if the client’s part of the

§11.6 CONTRACTING FOR SOFTWARE RELIABILITY 343

contract is not fulfilled, that is to say if the call does not satisfy the precondition, then t
class is not bound by the postcondition. In this case the routine may do what it pleas
return any value; loop indefinitely without returning a value; or even crash the executi
in some wild way. This is the case in which (in reference to the discussion at the beginn
of this chapter) “the customer is wrong”.

The first advantage of this convention is that it considerably simplifies the
programming style. Having specified as a precondition the constraints which calls tc
routine must observe, you, the class developer, may assume when writing the routine b
that the constraints are satisfied; you do not need to test for them in the body. So if a sq
root function, meant to produce a real number as a result, is of the form

sqrt(x: REAL): REALis
-- Square root ox

require
x>=0
do ... end

you may write the algorithm for computing the square root without any concern for tt
case in whickx is negative; this is taken care of by the precondition and becomes tl
responsibility of your clients. (At first sight this may appear dangerous; but read on.)

Actually the method of Design by Contract goes further. Writincdo clause of the
routine under the form

if x<0then

“Handle the error, somehow”
else

“Proceed with normal square root computation”
end

is not just unnecessary but unacceptable. This may be expressed as a methodological

Non-Redundancy principle

Under no circumstances shall the body of a routine ever test for the rodtine’s
precondition.

This rule is the reverse of what many software engineering or programmir
methodology textbooks advocate, often under the ndefensive programmii — the
idea that to obtain reliable software you should design every component of a system
that it protects itself as much as possible. Better check too much, this approach holds, 1
not enough; one is never too careful when dealing with strangers. A redundant che
might not help, but at least it will not hurt.

Design by Contract follows from the opposite observation: redundant checks can &
indeed will hurt. Of course this will at first seem strange; the natural reaction is to thir
that an extra check — for example routisqrt containing the above conditional
instruction testing fox < 0 even though callers have been instructed to erx >= 0 —

344 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.6

may at worst be useless, but cannot possibly cause any damage. Such a comment,
however, comes from a microscopic understanding of reliability, focused on individual
software elements such as sqri routine. If we restrict our view to the narrow world of

sqri, then the routine seems more robust with the extra test than without it. But the world
of a system is not restricted to a routine; it contains a multitude of routines in a multitude
of classes. To obtain reliable systems we must go from the microscopic view to a
macroscopic view encompassing the entire architecture.

If we take this global viewsimplicity becomes a crucial criterion. As was noted at
the beginning of this chapter, complexity is the major enemy of quality. When we bring
in this concern, possibly redundant checks do not appear so harmless any more!
Extrapolated to the thousands of routines of a medium-size system (or the tens or hundreds
of thousands of routines of a larger one), if x < 0 then ... of sgri, innocuous at first
sight, begins to look like a monster of useless complexity. By adding possibly redundant
checks, you add more software; more software means more complexity, and in particular
more sources of conditions that could go wrong; hence the need for more checks, meaning
more software; and so on ad infinitum. If we start on this road only one thing is certain:
we will neverobtain reliability. The more we write, the more we will have to write.

To avoid this infinite chase we should never start it. With Design by Contract you are
invited to identify the consistency conditions that are necessary to the proper functioning of
each client-supplier cooperation (each contract); and to specify, for each one of these
conditionswhose responsibility it it to enforce it: the client’s, or the supplier’'s. The answer
may vary, and is partly a matter of design style; advice will be given below on how best to
choose it. But once you have made the decision, you should stick to it: if a correctness
requirement appears in the precondition, indicating that the requirement is part of the client’s
responsibility, there must not be a corresponding test in the routine; and if it is not in the
precondition, then the routine must check for the requirement.

Defensive programming appears in contrast to cover up for the lack of a systematic
approach by blindly putting in as many checks as possible, furthering the problem of
reliability rather than addressing it seriously.

Redundant checking, it should be noted, is a standard technique in hardware. The
difference is that in a hardware system some object that was found to be in a correct state
atsome point may later have its integrity destroyed because of reasons beyond the control
of the system itself, such as interference from another system, harmful external event, or
simply wear and tear. For that reason it is normal practice, for example, to have both the
sender and the receiver of an electronic signal check its integrity.

But no such phenomenon occurs in software: if | can prove or check in some way that
is non-negative whenevisqrt (a) is called, | do not need to insert a checkx <= 0,
wherex is the corresponding formal argument, in the bodsqri. Nothing will happen

toa between the time itis “sent” by the caller and the time itis “received” (under the name
x) by the routine. Software does not wear out when used for too long; it is not subject to
line loss, to interference or to noise.

Also note that in most cases what is called redundant checking in hardware is not really
redundant: one actually applidifferen- and complementary verifications, such as a
parity check and some other test. Even when the checks are the same they are often

§11.6 CONTRACTING FOR SOFTWARE RELIABILITY 345

“Modular protec-
tion”, page 4%

applied by different devices, as in the just mentioned case of a sender and receiver that
both check a signal, or in a redundant computer system where several computers perform
the same computation, with a voting mechanism to resolve discrepancies.

Another drawback of defensive programming is its costs. Redundant checks impl
performance penalty — often enough in practice to make developers wary of defens
programming regardless of what the textbooks say. If they do make the effort to inclu
these checks, removing some of them later to improve performance will be tedious. T
techniques of this chapter will also leave room for extra checks, but if you choose to ena
them you will rely on the development environment to carry them out for you. To remoy
them, once the software has been debugged, it suffices to change a compilation op
(details soon). The software itself does not contain any redundant elements.

Aside from performance considerations, however, the principal reason to distrt
defensive programming is simply our goal of getting the best possible reliability. For
system of any significant size the individual quality of the various elements involved
not enough; what will count most is the guarantee that for every interaction between t
elements there is an explicit roster of mutual obligations and benefits — the contra
Hence the Zen-style paradox of our conclusion: that tmore reliability the best policy
is often tocheckless.

Assertions are not an input checking mechanism

Itis useful here to emphasize a few properties of the approach which, although implicit
the preceding discussion, have been shown by experience to require further explanati
The following comments should help address some of the questions that may have b
forming in your mind as you were reading about the basic ideas of Design by Contrac

To avoid a common misunderstanding, make sure to note that each of the contr:
discussed holds between a routine (the supplier) and another routine (its caller): we
concerned about software-to-software communication, not software-to-human
software-to-outside-world. A precondition will not take care of correcting user input, fc
example in eread_positive_integ: routine that expects the interactive user to enter g
positive number. Including in the routine a precondition of the form

require
input> 0

would be wishful thinking, not a reliability technique. Here there is no substitute for th
usual condition-checking constructs, including the venelif ...:then ...; the exception
handling mechanism studied in the next chapter may also be helpful.

Assertions do have a role to play in a solution to this problem of input validation. |
line with the criterion of Modular Protection, the method encourages validating any obje
obtained from the outside world — from sensors, from user input, from a n.....— as
close to the source of the objects as possible, using “filter” modules if necessary:

346 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.6

-Q Using filter
l-u::uu:luu,:-..,.ll modules

11,
ll'l,,.ll
u:::lll,,.
iEEmIEIEEENEREEON T LELERE
External objects Input and validation modules Processing modules

In obtaining information from the outside (communication paths shown in color) you
cannot rely on preconditions. But part of the task of the input modules shown in grey in
the middle of the figure is to guarantee that no information is passed further to the right —
to the modules responsible for the system’s actual computations — unless it satisfies the
conditions required for correct processing. In this approach there will be ample use of
assertions in the software-to-software communication paths represented by the black
dotted lines on the right. The postconditions achieved by the routines of the input modules
will have to match (or exceed, in the sense of “stronger” defined earlier) the piteammnd
imposed by the processing routines.

The routines of the filter classes may be compared to security officers in, say, a large
government laboratory. To meet experts from the laboratory and ask them technical
guestions, you must submit to screening procedures. But it is not the same person who
checks your authorization level and answers the questions. The physicists, once you have
been officially brought into their offices, assume you satisfy the preconditions; and you
will not get much help from the guards on theoretical physics.

Assertions are not control structures

Another common misunderstanding, related to the one just discussed, is to think of
assertions as control structures — as techniques to handle special cases. It should be clear
by now that this is not their role. If you want to write a routsqri that will handle
negative arguments a certain way, and non-negative arguments anotherrequirel

clause is not what you need. Conditional instructidf ...[then ... else...) and related
constructs to deal with various cases (such as Pascase... of ... or theinspect
instruction of this book’s notation) are perfectly appropriate for such purposes.

Assertions are something else. They express correctness conditisgri has its
precondition, a call for whicx < 0 is not a special case: it is a bug, plain and simple.

Assertion Violation rule (1)

A run-time assertion violation is the manifestation of a bug in the software.

“Bug” is not a very scientific word but is clear enough to anyone in software; we will
look for more precise terminology in the next section. For the moment we can pursue the
assertion violation rule further by noting a consequence of the contract view:

§11.6 CONTRACTING FOR SOFTWARE RELIABILITY 347

Assertion violation rule (2)

A precondition violation is the manifestation of a bug in the client.

A postcondition violation is the manifestation of a bug in the supplier.

A precondition violation means that the routine’s caller, although obligated by th
contract to satisfy a certain requirement, did not. This is a bug in the client itself; tl
routine is not involved. (“The customer is wrong”.) An outside observer might of cours
criticize the contract as too demanding, as with the unsatisfirequire False
precondition or our fictitiou:Sinecure lexample (“the customer always wrong”), but
this is too late to argue over the contract: it is the contract, and the client did not obse
its part of the deal. So if there is a mechanism for monitoring assertions during execut
— as will be introduced shortly — and it detects such a precondition violation, the routil
should not be executed at all. It has stated the conditions under which it can operate,
these conditions do not hold; trying to execute it would make no sense.

A postcondition violation means that the routine, presumably called under corre
conditions, was not able to fulfill its contract. Here too the distribution of guilt anc
innocence is clear, although it is the reverse of the previous one: the bug is in the rout
the caller is innocent.

Errors, defects and other creeping creatures

The appearance of the word “bug” in the preceding analysis of assertion violation cau
is a good opportunity to clarify the terminology. In Edsger W. Dijkstra’s view, using th
word “bug” is a lame attempt by software people to blame someone else by implying t
mistakes somehow creep into the software from the outside while the developers

looking elsewhere — as if were not the developers who made the mistakes in the first ple

Yet the term enjoys enduring success, if only because it is colorful and readi
understood. Like the rest of the software literature, this book uses it freely. But it
appropriate to complement it by more specific (if more stodgy) terms for cases in whi
we need precise distinctions.

Terms to denote software woes
An error is a wrong decision made during the development of a software
system.

A defec is a property of a software system that may cause the system to
depart from its intended behavior.

A faultis the event of a software system departing from its intended behavior
during one of its executions.

The causal relation is clear: faults are due to defects, which result from errors.

348 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.7

“Bug” usually has the meaning of defect (“are you sure there remains no other bug
in this routine?”). This is the interpretation in this book. But in informal discussions it is
also used in the sense of fault (“We have had bug-free operation for the last three weeks”)
or error (“the bug was that | used an unsorted list").

11.7 WORKING WITH ASSERTIONS

Let us now probe further the use of preconditions and postconditions, continuing with
fairly elementary examples. Assertions, some simple, some elaborate, will be pervasive in
the examples of the following chapters.

A stack class

The assertion-equippeSTACE class was left in a sketchy foriISTACK?). We can now
come up with a full version including a spelled out implementation.

For an effective (directly usable) class we must choose an implementation. Let us use
the array implementation illustrated at the beginning of the discussion of abstract data types:

capacity “Push” operation: Stack
count:= count + 1 implemented
representatiorfcoun] := x with an array
count -
(see pagel2:
(ARRAY_UP) for other
representation)s
representation 1

The array will be callecrepresentatiorand will have bounds 1 arcapacity, the
implementation also uses an integer, the attricoun, to mark the top of the stack.

Note that as we discover inheritance we will see how to write deferred classeFor an array-based
cover several possible implementations rather than just one. Even for a class that stackimplementation
particular implementation, for example by arrays as here, we will be ainherit from ﬂ%@ﬁg&egﬁ;‘i_see
the implementation clasARRA" rather than use it as a client (although some objetion INHERIT-
oriented developers will still prefer the client approach). For the moment, however, wANCE”, 24.8, page

do without any inheritance-related technique. 84«

Here is the class. Recall thaa is an array then the operation to assign vx to its
i-th element isa.put (x, i), and the value of iti-th element is given ba.item (i) or,
equivalentlya @ . If, as here, the bounds of the array are 1capacit, theni mustin
all cases lie between these bounds.

§11.7 WORKING WITH ASSERTIONS

349

indexing

descriptior: "Stack: Dispenser structures with a Last, First-Out %

%access poli¢, and a fixed maximum capac'ity
class STACKZ[G] creation
make
feature -- Initialization

make(n: INTEGEF) is
-- Allocate stack for a maximum n elements
require
positive_capacit: n>=0
do
capacity:=n
Il representationmake(l, capacity)
ensure
capacity_se: capacity=n
array_allocatet representatior/= Void
stack_empt: empty
end

feature -- Access

On the export status capacity. INTEGER
of capacit) see exer- -- Maximum number of stack elements

ciseE11.4, page 41.0
coun: INTEGER
-- Number of stack elements

item: Gis
-- Top element
require
not_empt: not empt -- i.e. count> 0
do
Result:= representation @ count
end

feature -- Status report
empt: BOOLEANis

-- Is stack empty?

do
Result:= (count= 0)

ensure
empty_definitio: Result= (count= 0)

end

350 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.7

full: BOOLEANIs
-- Is stack full?
do
Result:= (count= capacity)
ensure
full_definitior: Result= (count= capacity)
end
feature -- Element change
put(x: G) is
-- Add x on top
require
not_full: not full -- i.e. count< capacityin this representation
do
count:=count + 1
representationput (coun, x)
ensure
not_empt: not empty
added_to_to: item=x
one_more_iter: count=old count + 1
in_top_array_entr: representation @ cou= x
end
removeis
-- Remove top element
require
not_empt: not empty-- i.e. count> 0
do
count:= count—1
ensure
not_full: not full
one_fewe: count=old count-1
end

feature { NONE} -- Implementation
representatio: ARRAVY[G]
-- The array used to hold the stack elements
invariant
.. To be filled in later (see pa@36E) ...
end -- classSTACK2 Invariants are

This class text illustrates the simplicity of working with assertions. It is complintroduced in
except for thenvariant clause, which will be added later in this chapter. Let us expl CLASS INVARI-

its various properties. Q‘I:\IATS 11.8, page

§11.7 WORKING WITH ASSERTIONS 351

On multiple feature
clauses and export-
ing toNONEsee
“SELECTIVE
EXPORTS AND
INFORMATION
HIDING", 7.8,

page 191.

“Feature clause
header comments”,
page 88

“Introducing a more
imperative view”,
page 145

This is the first full-fledged class of this chapter, not too far from what you will find
in professional libraries of reusable object-oriented components such as the Base libra
(Apart from the use of inheritance and a few extra features, what still distinguishes tl
class from its real-life counterparts is the absence cinvariant clause.)

Before studying the assertions, a general note about the structure of the class.
soon as a class has more than two or three features, it becomes essential to organi:
features in a coherent way. The notation helps by providing the possibility of includir
multiple feature clauses. An earlier chapter introduced this facility as a way to specify
different export status for certain features, as done here for the last part of the class, lab
-- Implementatio to specify that featurerepresentationis secret. But as already
previewed irSTACK: you can take advantage of multiple feature clauses even when t|
export status is the same. The purpose is to make the class easier to read, and eas
manage, by grouping features into general categories. Aftefeature keyword appears
a comment (known as the Feature Clause Comment) defining the general role of
features that follow. The categories used in the example are thcSTACK,, plus
Initialization for the creation procedure.

The standard feature categories and associated Feature Clause Comments are p
the general rules for consistency and organization of reusable library classes. A m
complete list appears in the chapter on style rules.

The imperative and the applicative

The assertions (STACK illustrate a fundamental concept of which we got a first glimpse
when we studied the transition from abstract data types to classes: the difference betw
imperative and applicative views.

The assertions iempt andfull may have caused you to raise an eyebrow. Here
again is the text cfull:

full: BOOLEANis

-- Is stack full?
do

Result:= (count= capacity)
ensure

full_definitior: Result= (count= capacity)
end

The postcondition expresses ttResul has the same value count= capacit.

(Since both sides of the equality, the enResul and the expressiccount= capacit, are
boolean, this means that the function retiurue if and only ifcountis equal tccapacity.)
But what is the point of writing this postcondition, one may ask, since the body of t
routine (the do clause) says exactly the same thing through the instructio
Resuli:= (count= capacity), whose only difference with the postcondition clause is its use
of := rather thar="? Is the postcondition not redundant?

352 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.7

Actually, there is a big difference between the two constructs, and no redundancy at
all. The instructiorResult:= (count= capacity) is a command that we give to our virtual
computer (the hardware-software machine) to change its state in a certain way; it performs
an action. The asserticResult= (count= capacity) does not do anything: it specifies a
property of the expected end state, as visible to the routine’s caller.

The instruction iprescriptive; the assertion idescriptive. The instruction describes
the “how”; the assertion describes the “what”. The instruction is part of the
implementation; the assertion is an element of specification.

The instruction isimperativg the assertion isapplicative. These two terms
emphasize the fundamental difference between the worlds of computing and mathematics:

« Computer operations may change the state of the hardware-software machine.
Instructions of common programming languages are commands (imperative
constructs) directing the machine to execute such operations.

« Mathematical reasoning never changes anything; as noted in the presentation of
abstract data types, taking the square root of the number 2 does not change that
number. Mathematics instead describes how to use properties of known objects, such
as the number 2, to infer properties of others, sucf2as , obtained from the former
by applyinc (hence the name) certain mathematical derivations such as square root.

That the two notations are so close in our example — assigr:= and equality=
— should not obscure this fundamental difference. The assertion describes an intended
result, and the instruction (the loop body) prescribes a particular way to achieve that result.
Someone using the class to write a client module will typically be interested in the
assertion but not in the implementation.

The reason for the closeness of notations for assignment and equality is that
assignment is indeed in many cases the straightforward way to achieve equality; in our
example the chosen implementatiResul:= (count= capacit), is indeed the obvious one.

But as soon as we move on to more advanced examples the conceptual difference between
the specification and the implementation will be much larger; even in the simple case of a
function to compute the square root of a real nunx, where the postcondition is just
something likeabs (Result » 2 —) <= tolerancewith abs denoting absolute value and
tolerance a tolerance value, the instructions in the function’s body will be far less trivial
since they have to implement a general algorithm for the computation of square roots.

Even forputin class STACK] the same specification could have led to different
implementations, although the differences are minor; for example the body could be

if count= capacitythen Result:= Trueelse Result:= Falseend
perhaps simplified (thanks to the rules of default initialization) into
if count= capacitythen Result:= Trueend
So the presence of related elements in the body and the postcondition is not evidence

of redundancy; it is evidence of consistency between the implementation and the
specification — that is to say, of correctness as defined at the beginning of this chapter.

§11.7 WORKING WITH ASSERTIONS 353

See“Including func
tions in assertions”,
page 40.L

The
imperative-
applicative
opposition

In passing, we have encountered a property of assertions that will merit furth
development: their relevance for authors of client classes, whom we should not ask to r
routine implementations, but who need a more abstract description of the routine’s rc
This idea will lead to the notion ishort form discussed later in this chapter as the basic
class documentation mechanism.

A caveat: for practical reasons we will allow assertions to include some seeming
imperative elements (functions). This issue will be explored at the end of this chapter.

As a summary of this discussion it is useful to list the words that have been usec
contrast the two categories of software elements:

Implementation Specification
Instruction Expression
How What
Imperative Applicative
Prescription Description

A note on empty structures

The precondition of the creation procedmake in classSTACK: requires a comment. It
statesn >= 0, hence allowing empty stacks. n is zero,make will call the creation
procedure for arrays, also nammake, with argument<l and 0 for the lower and upper
bounds respectively. This is not an error, but follows from a convention regardir
ARRA"s creation procedure: using a first argument greater than the second by one cre:
an empty array.

A zeron for a stack, or a first creation argument greater than the second for an arr
is not wrong but simply means that this particular stack or array should be empty. An er
would only occur out of a call attempting to access an element from the structure, -
example epui for the stack or aitem for the array, both of whose preconditions will
always be false for an empty structurmy customer is always wrong”).

When you define a general data structure such as a stack or array, you shc
determine whether the case of an empty structure is conceptually meaningful. In so
casesitis not: for example most definitions of the notictreestart from the assumption
that there is at least one node, the root. But if the empty case raises no logi
impossibility, as with arrays and stacks, you should plan for it in the design of your de
structure, acknowledging that clients will, every once in a while, create empty instanc
and should not suffer for it. An application system may for example need a sterck for
elements, whern is an upper bound on the number of elements to be stacked, comput
by the application just before it creates the stack; in some runs that number may be z
This is not an error, simply an extreme case.

The array mechanism of Algol W provides a counter-example. When a dynamically
allocated array has an empty range, the program terminates in error — even if it was a
perfectly valid array which simply happened to be empty on that particular run. This is too
restrictive: an array with zero size is valid, it simply does not allow s to any element.

354 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.7

Precondition design: tolerant or demanding?

Central to Design by Contract is the idea, expressed as the Non-Redundancy priThe principle was on
that for any consistency condition that could jeopardize a routine’s proper functioninPage34<.
should assign enforcement of this condition to only one of the two partners in the co

Which one? In each case you have two possibilities:

« Either you assign the responsibility to clients, in which case the condition will appear
as part of the routine’s precondition.

« Or you appoint the supplier, in which case the condition will appear in a conditional
instruction of the fornif conditior then ..., or an equivalent control structure, in the
routine’s body.

We can call the first attituddemandini and the second ortolerant. The STACK?2
class illustrates the demanding style; a tolerant version of the class would have routines
with no preconditions, such as

removeis Warning: not the
recommended style

-- Remove top element

do
if emptythen
print ("Error: attempt to pop an empty sti):k
else
count:=count -1
end
end

In the analogy with human contracts we can think of the demanding style as
characterizing an experienced contractor who expects his clients to “do their homework”
before calling on him; he has no trouble finding business, and will reject requests that
appear too broad or unreasonable. The tolerant style evokes the image of a freshly
established consulting practice, whose owner is so desperate for business that he will take
anything, having put in his driveway a big sign:

§11.7 WORKING WITH ASSERTIONS 355

Page344

NO PRECONDITION
TOO BIG
OR TOO SMALL

Which is the better style? To a certain extent this is a matter of personal choice
opposed to the Non-Redundancy principle, which was absolute in stating thneveis
acceptable to deal with a correctness condition on both the client and supplier sides)
strong case can be made, however, for the demanding style illustratSTACK:,
especially in the case of software meant to be reusable — and in O-O development
should always write our software with the goal of ultimately making it reusable.

At first the tolerant style might appear better for both reusability and reliability; afte
all the demanding approach appears to put more responsibility on the clients, and there
typically many clients for a single supplier — even more so for a reusable class. Is it |
preferable, then, to let the supplier take care of the correctness conditions once and fol
rather than require every client to do it for itself?

If we look more closely at the issue this reasoning does not hold. The correctn
conditions describe what the routine requires to be able to do its job properly. The toler
removeon the facing page is a good counter-example: what can a poor stack-popp
routine do for an empty stack? It makes a brave attempt by outputting an error mess:
but this is clearly inadequate: a specialized utility module such as a stack handler ha:
business messing up the system’s user output. We could try something more sophistice
but removesimply does not have the proper context; the focus of STACK?2is too
narrow to determine what to do in the case of an empty Only the client— a module
using stacks in some application, for example the parsing module in a compiler — t
enough information to decide what an attempt to pop an empty stack really means: is
normal although useless request that we should simply ignore, executing a null operati
Orisitanerror, and if so, how should we handle it: raise an exception, correct the situat
before trying again, or (the least likely answer) output a user-visible error message?

In the square root example, you may remember the fictitious routine text quoted
the discussion preceding the Non-Redundancy principle:

if x<0then

“Handle the error, somehow”
else

“Proceed with normal square root computation”
end

356 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.7

The operative word issomehov’. The then clause is incantation more than
software: there is really no good general-purpose technique for handlix < 0 case.
Here again a general-purpose routine has no clue. Only the client author can know what
the call means in this case — an error in the software, a case in which the expected result
is 0, a reason to trigger an excep...n

In this case as in the attempt at a toleremovy, the position of the routine is not
unlike that of a postman asked to deliver a postcard with no delivery address and no return
address: the case falls outside of the contract, and there is no good way to decide what to do.

In the spirit of Design by Contract, the demanding approach to precondition design
does not attempt to produce routines that are all things to all clients. Instead, it insists that
each routine do a well-defined job and do it well (correctly, efficiently, generally enough
to be reusable by many clie...), and specify clearly what cases it cannot handle. In fact
you cannot hope that the routine will do its job wunles: you have carefully
circumscribed that job. A factotum routine, which wants to do a computation and check
for abnormal cases and take corrective actions and notify the client and produce a result
anyway, will most likely fail to fulfill any of these goals properly.

The routine author does not try to outsmart his clients; if he is not sure of what the
routine is supposed to do in a certain abnormal situation, he excludes it explicitly through
the precondition. This attitude is more generally a consequence of the overall theme in this
book: building software systems as sets of modules that mind their own business.

If you read the supplementary mathematical section in the chapter on abstract data type‘Altematives to par-
you may have noted the similarity between the present discussion and the arguments fcial functions”, page

using partial functions in the mathematical model, rather than special error values suctdl
aswyteger The two ideas are indeed very close, and Design by Contract is in part the
application to software construction of the concept of partial function, so remarkably
flexible and powerful in formal specification.

A word of caution: the demanding approach is only applicable if the preconditions
remain reasonable. Otherwise the job of writing a module would become easy: start every
routine withrequire False so that, as we have seen, any routine body will be correct. What
does “reasonable” concretely mean for the precondition of a routine? Here is a more
precise characterization:

Reasonable Precondition principle
Every routine precondition (in a “demanding” design approach) must satisfy
the following requirements:

* The precondition appears in the official documentation distributed to
authors of client modules.

« |t is possible to justify the need for the precondition in terms of| the
specification only.

§11.7 WORKING WITH ASSERTIONS 357

The general stack

The first requirement will be supported by the notion of short form studied later i
this chapter. The second requirement excludes restrictions meant only for the supplit
convenience in implementing the routine. For example when you want to pop a stack
preconditionnot emptyis a logical requirement that can be justified “in terms of the
specification only”, through the simple observation that in an empty stack there is nothi
to pop; and when you want to compute the real square root of a number, the precondi
x >= 0 is a direct result of the mathematical property that negative real numbers do 1
have real square roots.

Some restrictions may arise from the general kind of implementation selected. F

ADT was studied ingyample the presence require not full as precondition to the push operatput in

chapter6; the

bounded stack AD

TSTACK:is due to the decision of using an array for the implementation of stacks. But su

was the subject of @ case does not violate the principle, as the bounded natSTACK: stacks has been
exerciseE6.9, page made part of the specification: the class does not claim to represent arbitrary stacks,

162.

only stacks of finite maximum capacity (as expressed for example indexing clause

of the class). The abstract data type serving as specification of this class is not the n

general notion of stack, but the notion of bounded stack.
In general, it is desirable to avoid bounded structures; even a stack implemented by arrays
can use array resizing. This is the case with the most commonly used stack class in the
Base libraries, which follows trSTACK: style but without a notion (capacity; a stack

that overflows its current capacity resizes itself silentlyaccommodate thinew
elements.

Preconditions and export status

You may have noted the need for a supplementary requirement on preconditions, which doe
figure in the Reasonable Precondition principle: to be satisfiable by the clients, the precondi
must not use features that are hidden from the clients as a result of export restrictions.

Assume for example the following situation:

-- Warning: this is an invalid class, for purposes of illustration only.
class SNEAKYfeature

tricky is
require
accredited
do

end
feature { NONE}
accreditec BOOLEANis do... end
end -- classSNEAKY

The specification fotricky states that any call to that procedure must satisfy the
condition expressed by the boolean functaccredite«. But whereas the class exports
tricky to all clients, it keepaccredite(secret, so that clients have no way of finding out,

358 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.7

before a call, whether the call is indeed correct. This clearly unacceptable situation is akin,
in human contracts, to a deal in which the supplier would impose some conditions not
stated explicitly in the contract, and hence could reject a client’s request as incorrect
without giving the client any way to determine in advance whether it is correct.

The reason why the Reasonable Precondition principle does not cover such cases is
that here a methodological principle does not suffice: we need a language rule to be
enforced by compilers, not left to the decision of developers.

The rule must take into account all possible export situations, not just tSELECTIVE
illustrated above in which a feature is available to all clietricky) or to no client %%%RJET%SHID
(accrediteq). As you will recall from the discussion of information hiding, it is aI,NGn’ 7.8, page 161
possible to make a feature available to some clients only, by declaring it in a feature
appearing afeature {A, B, ...}, which makes it available only 1A, B, ... and their

descendants. Hence the language rule:

Precondition Availability rule

Every feature appearing in the precondition of a routine must be available to
every client to which the routine is available.

With this rule every client that is in a position to call the feature will also be in a
position to check for its precondition. The rule makes ¢(SNEAKYinvalid, sincetricky
is generally exported (available to all clients); you can turn it into a valid class by making
accreditec also generally exported.tricky had appeared in a feature clause starting with
feature { A, B, C}, thenaccreditet would have to be exported at leasiA, B andC (by
appearing in the same feature clausericky, or by appearing in a clause of the form
feature { A, B, C}, orfeature { A, B, C, D, ...}, orjustfeature). Any violation of this rule
is a compile-time error. ClasSNEAK", for example, will be rejected by the compiler.

There is no such rule for postconditions. It is not an error for some clauses of a
postcondition clause to refer to secret features, or features that are not as broadly exported
as the enclosing routine; this simply means that you are expressing properties of the
routine’s effect that are not directly usable by clients. This was the case wipuithe
procedure irSTACK;, which had the form

put(x: G) is
-- Add x on top
require
not full
do

ensure
... Other clause... For the Other clauses

in_top_array_entr: representation @ couH x see pag3sl
end

§11.7 WORKING WITH ASSERTIONS 359

For filters of the first

The last postcondition clause indicates that the array entry at coun contains
the element just pushed. This is an implementation property; even tpuiis generally
available (exported to all clients), arrrepresentatio is secret. But there is nothing
wrong with the postcondition; it simply includes, along with properties that are directl
useful to clients (theOther clause”), one that is only meaningful for someone who reads
the entire class text. Such secret clauses will not appear in the “shont” form of the class
the documentation for clieauthors.

A tolerant module

(On first reading you may skip this section or just look through it quickly.)

The simple but unprotected basic modules may not be robust enough for use

kind see’Assertions arbitrary clients. In some cases there will be a need for new classes to serve as filt

are not an input
checking mecha-
nism”, page 345

“UNIQUE VAL-

interposed not between the software and the external world (as with filters of the ki
discussed earlier in this chapter) but between software and other software: poss
careless clients on one side, unprotected classes on the other.

Although we have seen that this is generally not the right approach, it is useful
examine how classes will look if we do decide to use the tolerant style in a specific ca
ClassSTACK., appearing next, illustrates the idea. Because the class needs to set inte
error codes, it is convenient to rely on a property of the notation that has not be
introduced yet: “unique” integer constants. If you declare a set of attributes as

a, b, c INTEGERIs unique

the effectis to defina, b, c ... as integer constants with consecutive positive values. Thes

UES’, 18.6, page 654values will be assigned by the compiler, and are guaranteed to be different for all const:

thus declared, relieving you of having to invent separate codes. By convention, const
attributes such as these have names beginning with an upper-case letter, with the re
lower case, as Underflow.

Here, using this technique, is a tolerant version of our earlier stack class. Make s
to note that this class text (which you may just skim through on first reading) is includ
here only to make sure you understand the tolerant style;not an example of the
generally recommended design — for reasons that will be discussed below, but v
probably be clear enough as you browse through the text.

indexing
descriptior: "Stack: Dispenser structures with a Last, First-Out %
%access poli¢, and a fixed maximum capac;i%
%tolerant versio, setting an error code in case %
%of impossible operatio."s
class STACK3[G] creation

make

360 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.7

feature -- Initialization
make(n: INTEGEF) is
-- Allocate stack for a maximum n elements in > Q;
-- otherwise seerror to Negative_size
-- No precondition!

do
if capacity>= 0then
capacity:=n
I representation make(capacity)
else
error := Negative_size
end
ensure
error_code_if _impossib: (n < Q) = (error = Negative_siz)2
no_error_if_possibl: (n>=0) = (error = Q)
capacity_set_if_no_errci(error = 0) implies (capacity= n)
allocated_if no_errc: (error = 0) implies (representatior/= Voic)
end

feature -- Access

item: Gis
-- Top element if present; otherwise the type’s default value.
-- with error set toUnderflow.
-- No precondition!
do

if not emptythen
checkrepresentatior/= Voidend
Result:= representatioritem
error:=0
else
error := Underflow
-- In this case the result is the default value
end
ensure
error_code_if_impossib: (old empt) = (error = Underflov)
no_error_if_possibl: (not (old empty)) = (error = Q)
end
feature -- Status report
empt: BOOLEANis
-- Number of stack elements
do
Result:= (capacity= 0) or elserepresentationempty
end

§11.7 WORKING WITH ASSERTIONS 361

error: INTEGER
-- Error indicator, set by various features to a non-zero value
-- if they cannot do their job
full: BOOLEANIs
-- Number of stack elements
do

Result:= (capacity= 0) or elserepresentationfull
end

Overflow, Underflow, Negative_siz INTEGERIs unique
-- Possible error codes
feature -- Element change
put(x: G) is
-- Add x on top if possible; otherwise set error code.
-- No precondition!
do
if full then
error := Overflow
else
checkrepresentatior/= Voidend
representationput (x); error := 0
end
ensure
error_code_if _impossib: (old full) = (error = Overflow)
no_error_if _possibl: (not old full) = (error = Q)
not_empty if no_err: (error = Q) implies not empty
added_to_top_if no_err: (error = Q) implies item= x
one_more_item_if no_en: (error = C) implies count=old count + 1

end
removeis
-- Remove top element if possible; otherwise set error.
-- No precondition!
do

if emptythen
error := Underflow
else
checkrepresentatior/= Voidend
representationremove
error :=0
end
ensure
error_code_if_impossib: (old empt) = (error = Underflow)
no_error_if_possibl: (not old empt) = (error = Q)
not_full_if_no_erro: (error = 0) implies not full
one_fewer_item_if_no_err: (error = 0) implies count=old count— 1
end

362 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.7

feature {NONE} -- Implementation

representatio: STACKZ[G]
-- The unprotected stack used as implementation

capacity INTEGER

-- The maximum number of stack elements
end -- classSTACK3

The operations of this class have no preconditions (or, more accuratelyTrueve
as their preconditions). For those that may result in abnormal situations, the postcondition
has been refined to distinguish between correct and erroneous processing. An operation
such as.removy, wheres is aSTACK:, will sets. error to 0 or taUnderflow(which, from
the rules on unique values, is known to be strictly positive) and, in the latter case, do
nothing else. It is still the caller's responsibility to check scerror after the call. As
noted, a general-purpose module sucSTACK! has no way to decide what to do in the
case of an erroneous popping attempt: produce an error message, take correct...: action

Such filter modules serve to separate algorithmic techniques to deal with nSee’A REVIEW OF
cases and techniques for handling errors. This is the distinction between correctnéEXTERNAL FAC-
robustness explained at the beginning of this book: writing a module that periTORS 112, page4
correctly in legal cases is one task; making sure that other cases are also prc
decently is another. Both are necessary, but they should be handled separately. Faiuic
do so is one of the principal reasons why so many software systems are hopelessly
complex: any algorithm that does anything useful also takes care of checking that it is
applicable, and for good measure tries to handle the cases in which it is not. Such software
soon mushrooms into a total mess.

A few technical comments apply to this example:

* An instance ofSTACK! is not an array but a structure containing a reference
(representatio) to an instance ¢STACK, itself containing a reference to an array.
These two indirections, detrimental to efficiency, can be avoided through inheritance
as studied in later chapters.

» The boolean operator elseis similar toor but ignores the second operand if it doOnor else see*Non-

not affect the result and trying to evaluate it could cause trouble. strict boolean opera-
tors”, page 45.}

» Thecheck instruction used ilpui andremov serves to state that a certain assertion
is satisfied. It will be studied later in this chapter.

Finally, you will have noted the heavinessSTACK:, especially if you compare it
to the simplicity thaSTACK?2achieves with its preconditioSTACK!is good evidence
that a tolerant style may lead to uselessly complex software. The demanding style, in
contrast, follows from the general spirit of Design by Contract. Trying to handle all
possible (and impossible) cases is not necessarily the best way to help your clients. If
instead you build classes that impose possibly strict but reasonable usage conditions, and
describe these conditions precisely as part of the official documentation for the class, you
actually make life easier for the clients. This has been calletough love approach: you
can often serve your clients better by being more restrictive.

§11.8 CLASS INVARIANTS 363

“Assertions are not
an input checking
mechanism”, page
34¢€.

Page35(.

Better an efficient supplier that states its functionally justified limitations than :
overzealous one that tries to second-guess its clients, making possibly inappropri
decisions for abnormal cases, and sacrificing simplicity and efficiency.

For modules whose clients are other software modules, the demanding approac
usually the right one. A possible exception is the case of modules intended for clie
whose authors use a non-O-O language and may not have understood the basic con
of Design by Contract.

The tolerant approach remains useful for software elements that deal not with other

software elements but with data coming from the outside world, such as user input, or

sensor data. Then, as noted earlier, filter modules are often necessary to separate the
actual processing modules (the physicists in our metaphor) from those which simply
qualify data and reject anything that is not appropriate (the guards). This separation of
concerns is essential for maintaining the simplicity of software elements on both sides.
STACK! provides an idea of what such modumaylook like.

11.8 CLASS INVARIANTS

Preconditions and postconditions describe the properties of individual routines. There
also a need for expressing global properties of the instances of a class, which mus
preserved by all routines. Such properties will make up the class invariant, capturing
deeper semantic properties and integrity constraints characterizing a class.

Definition and example

Consider again the earlier implementation of stacks by arrays, the one without t
protections STACKY):

classSTACKZ[G] creation
make

feature
... make; empt, full, iterr, put, remove...
capacity INTEGER
coun: INTEGER

feature {NONE} -- Implementation
representatio: ARRAY[G]

end

The attributes of the class — arrrepresentatio and integercapacity and count
— constitute the stack representation. Although routine preconditions and postconditio
given earlier, express some of the semantic properties of stacks, they fail to express o
important consistency properties linking the attributes. For exaicoun should always
remain between 0 arcapacity:

0 <= coun; count<= capacity

(implying also thacapacity>= 0), andcapacity should be the array size:

364 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.8

capacity= representatiorcapacity

A class invariant is such an assertion, expressing general consistency constraints that
apply to every class instance as a whole; this is different from preconditions and
postconditions, which characterize individual routines.

The above assertions involve only attributes. Invariants may also express the
semantic relations between functions, or between functions and attributes. For example
the invariant foiISTACK: may include the following property describing the connection
betweerempt andcoun:

empty= (count= 0)

In this example, the invariant assertion links an attribute and a function; it is not
particularly interesting as it merely repeats an assertion that appears in the postcondition
of the function (herempt). More useful assertions are those which involve either only
attributes, as above, or more than one function.

Here is another typical example. Assume — in line with previous examples deThis example was
with the notion of bank account — that we have a cBANK_ACCOUN with features first discussed i1

deposits_lis, withdrawals_lis andbalance. Then the invariant for such a class COLpL;ggoémx,ﬁfiser’ve
include a clause of the form: again to illustrate

persistence issues:

consistent_balanc deposits_listtotal — withdrawals_listtotal = balance “Correction”, page

1045.
where the functiortotal gives the cumulated value of a list of operations (deposits u
withdrawals). This states the basic consistency condition between the values accessible
through featuredeposits_lis, withdrawals_lis andbalance.

Form and properties of class invariants

Syntactically, a class invariant is an assertion, appearing iinvariant clause of the
class, after the features and just beforeenc, as in

classSTACK{[G] creation For the features of
... As inSTACKZ... S Cleesee page
feature
... ASinSTACKZ...
invariant

count_non_negativ:. 0 <= count

count_bounde: count<= capacity

consistent_with_array_si: capacity= representatiorcapacity

empty_if no_elemer: empty= (count=0)

item_at_to}: (count> 0) implies (representationitem (coun) = iterr)
end

An invariant for a clasC is a set of assertions that every instancC will satisfy at
all “stable” times. Stable times are those in which the instance is in an observable state:

§11.8 CLASS INVARIANTS 365

The life of an
object

Chapter30 covers
concurrency see in
particular “Concur-
rent accesses to an
object”, page 982

¢ On instance creation, that is to say after executic! aor!! a.make(...), wherea
is of typeC.

- Before and after every remote calr (...) to a routiner of the class.

The following figure, showing the life of an object, helps put the notions of invarian
and stable time in place.

Il a.make(...)

[| S1

‘ af(..)

S2

I|v' a.g(..)

S3

¢ af(.)

s4

¢

Life as an object, to tell the truth, is not that thrilling (in case you ever wondered
At the beginning — left of the figure — you do not exist. You are begot by a creatio
instruction!! aor!! a.make(...), or aclone, and reach your first station in life. Then things
get quite boring: through some referera, clients use you, one after the other, by
applying operations of the foraxf (...) wheref is a feature of your generating class. And
so on forever, or at least until execution terminates.

The invariant is the characteristic property of the states represented by gray squs
in the figure — S1 etc. These are the “stable times” mentioned above: those at which
object is observable from the outside, in the sense that a client can apply a feature t
They include:

e The state that results from the creation of an object (S1 in the figure).

e The states immediately before and after a call of the farsome routineg(...)
executed by a client.

Here the context is sequential computation, but the ideas will transpose to concurrent
systems in a later chapter.

366 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.8

An invariant that varies

In spite of its name, the invariant does not need to be satisfied at all times, although in the
STACK4example it does remain true after the initial creation. In the more general case, it
is perfectly acceptable for a procedg to begin by trying to work towards its goal — its
postcondition — and in the process to destroy the invariant (as in human affairs, trying to
do something useful may disrupt the established order of things); then it spends the second
part of its execution scurrying to restore the invariant without losing too much of whatever
ground has been gained. At some intermediate stages, such as the instaniimarked in the
figure, the invariant will not hold; this is fine as long as the procedure reestablishes the
invariant before terminating its execution.

Who must preserve the invariant?

Qualified calls, of the forna.f (...), executed on behalf of a client, are the only ones that
must always start from a state satisfying the invariant and leave a state satisfying the
invariant; there is no such rule for unqualified calls of the ff (...), which are not
directly executed by clients but only serve as auxiliary tools for carrying out the needs of
qualified calls. As a consequence, the obligation to maintain the invariant applies only to
the body of features that are exported either generally or selectively; a secret feature —
one that is available to no client — is not affected by the invariant.

From this discussion follows the rule that precisely defines when an assertion is a
correct invariant for a class:

Invariant rule

An assertiorl is a correct class invariant for a cliC if and only if it meets
the following two conditions:

E1 « Every creation procedure C, when applied to arguments satisfying
its precondition in a state where the attributes have their dgfault
values, yields a state satisfyill. |

E2 « Every exported routine of the class, when applied to arguments|and a
state satisfying botll and the routine’s precondition, yields a state
satisfyingl.

Note that in this rule:

« Every class is considered to have a creation procedure, defined as a null operation if
not explicitly specified.

» The state of an object is defined by all its fields (the values of the class attributes for
this particular instance).

e The precondition of a routine may involve the initial state and the arguments.

§11.8 CLASS INVARIANTS 367

This is the topic of
exerciseE11.8, page
41C. The reasoning

« The postcondition may only involve the final state, the initial state (througoldhe
notation) and, in the case of a function, the returned value, given by the predefir
entity Resul.

¢ The invariant may only involve the state.

Assertions may use functions, but such functions are an indirect way of referring to the
attributes — to the state.

A mathematical statement of the Invariant rule appears later in this chapter.

You can use the Invariant rule as a basis for answering a question that comes u
light of earlier discussions: what would it mean if an invariant clause turned out to |

for preconditions andViolated during system execution? We saw before that a precondition violation signals
postconditions wasirerror (a “bug”) in the client, a postcondition violation an error in the supplier. The answ
"Assertions are not wjl| be for invariants as for postconditions; you have all the elements for deriving th

control structures”,

page 347

property by yourself.

The role of class invariants in software engineering

Property E2 indicates that we may consider the invariant as being implicitly adde
(anded) to both the precondition and postcondition of every exported routine. So
principle the notion of invariant is superfluous: we could do without it by enriching th
preconditions and postconditions of all routines in the class.

Such a transformation is of course not desirable. It would complicate the routi
texts; but more importantly, we would lose the deeper meaning of the invariant, whi
transcends individual routines and applies to the class as a whole. One should in-
consider that the invariant applies not only to the routines actually written in the class, |
also to any ones that might be added later, thus serving as control over future evolutiol
the class. This will be reflected in the inheritance rules.

In the view of software development introduced at the beginning of this book, w
accept that change is inevitable, and we try to control it. Some aspects of a softw
system, and of its individual components — classes — may be expected to change fa
than others. Adding, removing or changing features, in particular, is a frequent and norr
event. In this volatile process one will want to cling to properties that, although they m
change too — for we can hardly guarantee that any aspect of a system will remain set
eternity — will change far less often. Invariants, because they capture the fundamer
semantic constraints applying to a class, play this role.

The STACK: example illustrates the basic ideas, but to appreciate the full power
the concept of invariant you should be on the lookout for further examples of invariants
the rest of this book. To me the notion of the invariant is one of the most illuminatir
concepts that can be learned from the object-oriented method. Only when | have deri
the invariant (for a class that | write) or read and understood it (for someone else’s cle
do | feel that | know what the class is about.

368 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.8

Invariants and contracting

Invariants have a clear interpretation in the contract metaphor. Human contracts often
contain references to general clauses or regulations that apply to all contracts within a
certain category; think of a city’s zoning regulations, which apply to all house-building
contracts. Invariants play a similar role for software contracts: the invariant of a class
affects all the contracts between a routine of the class and a client.

Let us probe further. It was noted above that we may consider the invariant as being
added to both the precondition and postcondition of every exported routirbody be
the body of a routine (the set of instructions irdo clause)pre its preconditionpos its
postcondition aniNV the class invariant. The correctness requirement on the routine may
be expressed, using the notation introduced earlier in this chapter, as:
{INV and pre} body{INV and pos} The notation was

. _ defined on pag33E.
(As you will remember this means: any executiotbody, started in any state in whicl

INV andpre both hold, will terminate in a state in which bdNV andpos hold.)

For the supplier author — the person who wrbody— is the invariant good news
or bad news, that is to say, does it make the job easier or harder?

The answer, as you will have figured out from the earlier discussion, is: both.
Remember our lazy job applicant, who wantecstron¢ precondition and eweak
postcondition. Here addinINV makes stronger or equal both the precondition and the
postcondition. (From the rules of loga and b always implie<a, that is to say, is stronger
than or equal ta.) So, if you are in charge of implementing body, the invariant:

* Makes your job easier: in addition to the official preconditpre, you may
assume that the initial state satisfINV, further restricting the set of cases that
you must handle.

* Makes your job harder: in addition to your official postconditpos, you must
ensure that the final state satisfINV.

These observations are consistent with the view of the invariant as a general
consistency condition that applies to the class as a whole, and hence to all of its routines.
As the author of such a routine, you have the benefit of being permitted to take this
condition for granted at the start of the routine; but you have the obligation to ensure that
the routine will satisfy it again on termination — so that the next routine to be executed
on the same object can in turn take it for granted.

The classBANK_ACCOUNTmentioned above, with the invariant clause
deposits_listtotal — withdrawals_lisitotal = balance

provides a good example. If you have to add a routine to the class, this clause gives you
the guarantee that the featudeposits_lis, withdrawals_lis andbalance have consistent
values, so you do not need to check this property (and then, as we have simust not

check it). But it also means that you must write the routine so that, whatever else it does,
it will leave the object in a state that again satisfies the property. So a prowithdraw,

§11.9 WHEN IS A CLASS CORRECT? 369

See“Uniform
Access’, page £5

If you prefer to skip

used to record a withdrawal operation, should not just upwithdrawals_lis: it must
also, if balance is an attribute, update the valuebalance to take the withdrawal into
account and restore the invariant, enabling any other routine called later on the same ot
to benefit from the same original assumption that facilitated the wcwithdraw.

Rather than an attributbalance could be a function, whose body computes and returns
the value odeposits_lisitotal — withdrawals_lisitotal; in this case proceduwithdraw

does noneed to do anything special to maintain the invariant. The ability to switch at will
between the two representations without affecting the client is an illustration of the
principle of Uniform Access.

This example shows the idea of class invariant as a transposition to software of
of the rules of polite behavior: that if you use a shared facility — say an office kitchen -
you should leave it for others, after each use, in the state in which you would like to fi
it when you start.

11.9 WHEN IS A CLASS CORRECT?

Although we still have to see a few more constructs involving assertions, it is useful

the theory you should take a brief pause and examine some of the implications of what we have learned at

turn to“AN ASSER-
TION INSTRUC-
TION”, 11.11, page
37¢<

preconditions, postconditions and invariants. This section does not introduce any n
constructs, but describes some of the theoretical background. Even on your first readil
think you should get familiar with these ideas as they are central to a proper understanc
of the method, and will be precious when we try to figure out how to use inheritance we

The correctness of a class

With preconditions, postconditions and invariants, we can now define precisely what
means for a class to be correct.

The basis for the answer appeared at the beginning of this chapter: a class, like
other software element, is correct or incorrect not by itself but with respect to
specification. By introducing preconditions, postconditions and invariants we have givi
ourselves a way to include some of the specification in the class text itself. This provic
a basis against which to assess correctness: the class is correct if and only if
implementation, as given by the routine bodies, is consistent with the preconditior
postconditions and invariant.

The notatior{ P} A{Q} introduced at the beginning of this chapter helps express thi
precisely. Remember that the meaning of such a correctness formula is: wrA isver
executed in a state satisfyiP, the execution will terminate in a state satisfyQ.g

Let C be a classINV its class invariant. For any routir of the class, capre, (x,)
anc pos; (x,) its precondition and postconditiox, denotes the possible argumentsr,of

to which both the precondition and the postcondition may refer. (If the precondition
postcondition is missing from the routine text, tlpre, or pos; is justTrue.) Call Body,

the body of routiner .

370 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.9

Finally, let Defauli- be the assertion expressing that the attributeC have the
default values of their types. For examDefauligtack:, referring to the earlier stack

class, is the assertion
representatior= Void
capacity= 0
count=0

These notations permit a general definition of class correctness:

Definition: class correctness

{pre, (x,) and INV} Body {pos; (x;) and INV}

A class is correct with respect to its assertions if and only if:
C1 e« For any valid set of argumerx;to a creation procedup:
{ Defaulf- and pre, (xp)} Body, {posb (xp) and INV}

C2 « For every exported routirr and any set of valid argumerx:

This rule — previewed informally in thBANK_ACCOUNTexample — is a

mathematical statement of the earlier informal diagram showing the lifecycle of a typical

object, which is worth looking at again:

Il a.make(...)

Y

S1

i

S2

af(.)

'

a.g(...)

S3

l

a.f(...)

S4

'

ConditionC1 means that any creation procedure (sucmakein the figure), when

The life of an
object

(This figure first
appeared on page
36€.)

called with its precondition satisfied, must yield an initial state (S1 in the figure) that

satisfies the invariant and the procedure’s postcondition. ConiC2 expresses that any

exported routine (such asf org in the figure), if called in a state (S1, S2 or S3) satisfying
both its precondition and the invariant, must terminate in a state that satisfies both its

postcondition and the invariant.

8§11.9 WHEN IS A CLASS CORRECT? 371

See'CREATION
PROCEDURES”,
8.4, page 236n par-
ticular “Rules on cre-
ation procedures”,
page 238

If we focus on invariants, we may look at the preceding definition of class correctness
as working by induction on the set of instances of a class.Quikthe base step of the
induction, stating that the invariant holds for all newborn objects — those which directly
result from a creation instruction. Ru@ is the induction step, through which we
determine that if a certain generation of instances satisfies the invariant, then the next
generation — the set of instances obtained by applying exported features to the members
of the current generation — will also satisfy it. Since by starting from newborn objects
and going from generation to generation through exported features we obtain all possible
instances of the class, the mechanism enables us to determine that all instances satisfy
the invariant.

Two practical observations:

« If the class has noreation clause, we may consider that it has a single implicit
creation procedureothingwith an empty body. Applying rul€1 to Bnothmgthen

means thabefauliz: must implyINV: the default values must satisfy the invariant.

* A requirement of the formiP} A {Q} does not commif in any way for cases in
whichP is not initially satisfied. So the notation is in line with the property discusse
in detail earlier in this chapter: the contract is not binding on the routine if the cliel
fails to observe its part of the deal. Accordingly, the definition of class correctne:
leaves the routines of the class free to do as they please for any call that violates
precondition or the invariant.

What has just been described is howdédinethe correctness of a class. In practice,
we may also want toheckwhether a given class is indeed correct. This issue will be
discussed later in this chapter.

The role of creation procedures
The discussion of invariants yields a better understanding of the notion of creation proced

A class invariant expresses the set of properties that objects (instances of the cl
must satisfy in what has been called the stable moments of their lifetime. In particul
these properties must hold upon instance creation.

The standard object allocation mechanism initializes fields to the default values of t
corresponding attribute types; these values may or may not satisfy the invariant. If no
specific creation procedure is required; it should set the values of the attributes so a:
satisfy the invariant. So creation may be seen as the operation that ensures that all inste
of a class start their lives in a correct mode — one in which the invariant is satisfied.

The first presentation of creation procedures introduced them as a way to answe
more mundane (and obvious) question: how do | override the default initialization rules
they do not suit me for a particular class, or if | want to provide my clients with more the
one initialization mechanism? But with the introduction of invariants and the theoretic
discussion summarized by ruel, we also see the more profound role of creation
procedures: they are here to make sure that any instance of the class, when it starts its
already satisfies the fundamental rules of its caste — the class invariant.

372 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.9

Arrays revisited

The library classARRA" was sketched in the previous chapter. Only now, however, Se¢’/ARRAYS”,10.4,
we in a position to give its definition properly. The notion of array fundamentally requPage 325
preconditions, postconditions and an invariant.

Here is a better sketch with assertions. Preconditions express the basic requirement
on array access and modification: indices should be in the permitted range. The invariant
shows the relation betweecoun, lower and uppe; it would allow count to be
implemented as a function rather than an attribute.

indexing
descriptior: "Sequences of vall, all of the same type or of a conforming ,2%:=
%accessible through integer indices in a contiguous int'rval
class ARRAY[G] creation
make
feature -- Initialization
make(mininde;, maxinde: INTEGEF) is
-- Allocate array with bounomininde> andmaxindex
-- (empty ifminindex> maxinde).
require
meaningful_bounc maxinde»>= minindex — 1
do

ensure
exact_bounds_if_non_em: (maxindex>= mininde;) implies
((lower= mininde:) and (upper= maxinde))
conventions_if_emp: (maxindex< mininde;) implies
((lower= 1) and (upper= Q))
end
feature -- Access

lower, uppe, coun: INTEGER
-- Minimum and maximum legal indices; array size.
infix "@", iterr (i: INTEGEF): Gis
-- Entry of indexi
require
index_not too_sme lower<=
index_not_too_larg: i <= upper
do... end

§11.10 THE ADT CONNECTION 373

feature -- Element change
put(v: G; i: INTEGEF) is
-- Assignv to the entry of indei:
require
index_not_too_sme lower<=i
index_not_too_larc: i <= upper
do

ensure
element_replace item(i) = v
end

invariant

consistent_cou: count=upper — lower + 1

non_negative_cou: count>=0
end -- classARRAY
The only part left blank is the implementation of routiitem and put. Because

efficient array manipulation will require low-level system access, the routines wi
actually be implemented usitexternal clauses, introduced in a later chapter.

This sectionexplores 11.10 THE ADT CONNECTION

the implications of
previous conceg. s
Some readers may
prefer to skip t¢‘AN
ASSERTION
INSTRUCTION”,
11.11, page 379

A class — you have heard this quite a few times by now — is an implementation of
abstract data type, whether formally specified or (as in many cases) just implicit
understood. As noted at the beginning of this chapter, we may view assertions as a we
re-introduce into the class the semantic properties of the underlying ADT. Let us perf
our understanding of assertion concepts by clarifying the connection of assertions to
components of an abstract data type specification.

Not just a collection of functions

As studied in the ADT chapter, an abstract data type is made of four elements:

« The name of the type, possibly with generic parameters (TYPES paragraph).
* The list of functions with their signatures (FUNCTIONS paragraph).
¢ The axioms (AXIOMS paragraph) expressing propetrties of the functions’ results.

* The restrictions on the functions’ applicability (PRECONDITIONS paragraph)

Simple-minded applications of abstract data types often overlook the last two par
This removes much of the appeal of the approach, since preconditions and axioms exp
the semantic properties of the functions. If you omit them and simply view “stack” &
encapsulating the (not specified further) operatipui, remove etc., you retain the
benefits of information hiding, but that is all. The notion of stack becomes an empty she

374 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES§11.10

with no semantics other than suggested by the operation nhames. (And in the approach of
this book that is of little comfort, since for reasons of structure, consistency and reusability
we deliberately choose general namesput, removs, iterr ... — rather than concrete,
type-specific names such pust, por andiop.)

This risk transposes to programming in an O-O language: the routines which are
supposed to implement the operations of the corresponding abstract data types could in
principle perform just about any operations. Assertions avert that risk by bringing the
semantics back in.

Class featuresvs. ADT functions

To understand the relation between assertions and ADTs we need first to establisSee*Function cate-
relation between class features and their ADT counterparts — the ADT’s functionsgories”, page 134
earlier discussion introduced three categories of function: creators, queries

commands. As you will recall, the category of a function

f:AxBx... 5 X

depended on where the ADT, <T;, appeared among the tyfA, B, ... X involved in this
signature:

« If Tappears on the right onlf is a creator; in the class it yields a creation procedure.

« If Tappears only on the left of the arrcf is a query, providing access to propertieSeeAttributes and
of instances of the class. The corresponding features are either attributes or funroutines’, page 173
(collectively called queries, for classes as well as ADTS).

« If T appears on both the left and the ricf is a command function, which yields a
new object from one or more existing objects. Off will be expressed, at the
implementation stage, by a procedure (also called a command) which modifies an
object, rather than creating a new object as a function would do.

Expressing the axioms

From the correspondence between ADT functions and class features we can deduce the
correspondence between semantic ADT properties and class assertions:

« A precondition for one of the specification’s functions reappears as precondition
clauses for the corresponding routine.

« An axiom involving a command function, possibly with one or more query
functions, reappears as postcondition clauses of the corresponding procedure.

« Axioms involving only query functions reappear as postconditions of the
corresponding functions or (especially if more than one function is involved, or if at
least one of the queries is implemented as an attribute) as clauses of the invariant.

e Axioms involving constructor functions reappear in the postcondition of the

corresponding creation procedure. ExerciseE11.2,
. . . . page 40. The ADT
At this point you should go back to the preconditions and axioms of theSTACK specification is on

and compare them with the assertions of cSTACK4(including those 0STACK.). pagel3t.

§11.10 THE ADT CONNECTION 375

Non-mathematical The abstraction function
readers may skip this
section It is instructive to think of the preceding observations in terms of the following figure

inspired by the discussion [Hoare 1972¢, which pictures the notionC is a correct
implementation 0A”.

Transformatiore Abstract objects (instances of the AT
on abstract and
concrete objects ABST 1 af » ABST 2
- - - _
(See also the figure S/ . A
on page22¢.) K !
a i ! a
CONC 1| C f' »| CONC 2

Concrete objects (instances of the clays

Ais an abstract data type, aC as a class implementing it. For an abstract function
af of the ADT specification — of which we assume for simplicity that it yields a resul
also of typeA — there will be a concrete featucf in the class.

The arrows labelea represent thabstraction function which, for any instance of
the class, or “concrete object”, yields the abstract object (instance of the ADT) that
represents. As will be seen, this function is usually partial, and the inverse relation
usually not a function.

The implementation is correct if (for all functioafapplicable to abstract data types,
and their implementatiorcf) the diagram is commutative, that is to say:

Class-ADT Consistency property
(cf; a)=(a; af)

where; is the composition operator between functions; in other words, for any tw
functionsf andg, f ; g is the functiorh such thah (x) = g (f (x)) for every applicabl.
(The compositio f; g is also writterg - f with the order of the operands reversed.)

The property states that for every concrete object CONC_1, it does not matter
which order you apply the transformation (abstiaf or concretecf) and the abstraction;
the two paths, represented by dotted lines, lead to the same abstract object ABST_2.
result is the same whether you:

* Apply the concrete transformatici, then abstract the result, yieldia (cf (CONC_J)).
» Abstract first, then apply the abstract transfction af, yieldingaf (a (CONC_J)).

376 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE §11.10

Implementation invariants

Certain assertions appear in invariants although they have no direct counterparts in the
abstract data type specifications. These assertions involve attributes, including some
secret attributes which, by definition, would be meaningless in the abstract data type. A

simple example is the following properties appearing in the invariaft 6{CK4 STACK4and its
invariant appeared
count_non_negatived <= count on page365.

count_boundedcount<= capacity

Such assertions constitute the part of the class invariant known as the
implementation invariant. They serve to express the consistency of the representation
chosen in the class (here by attributesint capacityand representatioh vis-a-vis the
corresponding abstract data type.

The figure on the previous page helps understand the concept of implementation
invariant. It illustrates the characteristic properties of the abstraction funetion
(represented by the vertical arrows), which we should explore a little further.

First, is it correct to talk aboutas being the abstractidanction as suggested by
the upwards arrows representiagn the preceding figure? Recall that a function (partial
or total) maps every source element to at most one target element, as opposed to the more
general case of a relation which has no such restriction. If we go downwards rather than
upwards in the figure and examine the inversa @fhich we may call theepresentation
relation, we will usually find it not to be a function, since there are in general many
possible representations of a given abstract object. In the array implementation that
represents every stack as a paiepresentation count, an abstract stack has many
different representations, as illustrated by the figure on the facing page; they all have the
same value focountand for the entries of arragpresentatiorbetween indices and
count but the sizecapacityof the array can be any value greater than or equad taf
and the array positions beyond indexuntmay contain arbitrary values.

Since the class interface is restricted to the features directly deduced from the ADT’s
functions, clients have no way of distinguishing between the behaviors of several concrete
objects that all represent the same abstract object (that is to say, all have thevahrap
Note in particular that proceduremovein STACK4does its job simply by executing

count:=count—-1

without bothering to clear the previous top entry, now at intexht + 1; changing an
entry of index higher thanountmodifies a concrete stack objetE, but has no effect on
the associated abstract staciCS).

So the implementation relation is usually not a function. But its inverse the
abstraction function (the upwards arrows in both figures) is indeed a function since every
concrete object represents at most one abstract object. In the stack example, every valid
<representation count pair represents just one abstract stack (the stack omitimt
elements, given, from the bottom up, by the entries pfesentatiorat indicesl to coun).

§11.10 THE ADT CONNECTION 377

Same abstract
object two
representations

Abstract
stack objec

. a-, CS2

Csi ;' / 8870| capacity= S

451

_ 0
5 count= capacity= 3 Concrete 5 count= 3
—-133 stack objects -133
342 | 1 342 | 1

representation K representation /

Both of the concrete stacks in this figure are implementations of the abstract stz
consisting of three elements of values 342, —133 and 5 from the bottom uja is at
function is a universal requirement: if the same concrete object could be interpreted
implementing more than one abstract object, the chosen representation would
ambiguous and hence inadequate. So it is proper that the arrow associala points
up in all the figures depicting connections between abstract and concrete types. (
discussion for inheritance will suggest a similar convention.)

The abstraction functioa is usually gpartial function: not every possible concrete
object is a valid representation of an abstract object. In the example, not eve
<representatio, coun> pair is a valid representation of an abstract stack; if
representatio is an array of capacity three acoun has value 4, they do not together
represent a stack. Valid representations (members of the domain of the abstrac
function) are those pairs for whicoun has a value between zero and the size of the array
This property is the implementation invariant.

In mathematical terms, the implementation invariant is the characteristic function
the domain of the abstraction function, that is to say, the property that defines when th
function is applicable. (The characteristic function of a suA is the boolean property
that is true orA and false elsewhere.)

The implementation invariant is the one part of the class’s assertions that has
counterpart in the abstract data type specification. It relates not to the abstract data t
but to its representation. It defines when a candidate concrete object is indeed
implementation of one (and then only one) abstract object.

378 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES§11.11

11.11 AN ASSERTION INSTRUCTION

The uses of assertions seen so far — preconditions, postconditions and class invariants —
are central components of the method. They establish the connection between object-
oriented software construction and the underlying theory (abstract data types). Class

invariants, in particular, cannot be understood, or even discussed, in a non-O-0 approach.

Some other uses of assertions, although less specific to the method, are also precious
in a systematic software development process and should be part of our notation. They
include thecheck instruction, as well as loop correctness constructs (loop invariant and
variant) which will be reviewed in the next section.

The check instruction serves to express the software writer's conviction that a
certain property will be satisfied at certain stages of the computation. Syntactically, the
construct is an instruction, written under the form

check
assertion_claus2
assertion_clausz

assertion_clausp
end
Including this instruction in the text of a routine is a way to state that:

“Whenever control reaches this instruction at execution , the assertion
shown(as given by its assertion clauy) will hold.”

This is a way to reassure yourself that certain properties are satisfied, and (even more
importantly) to make explicit for future readers of your software the hypotheses on which
you have been relying. Writing software requires making frequent assumptions about
properties of the objects of your system; as a trivial but typical example, any function call
of the formsqrt (x), wheresqgri is a routine requiring a non-negative argument, relies on
the assumption thex is positive or zero. This assumption may be immediately obvious
from the context, for example if the call is part of a conditional instruction of the form

if x>=0theny :=sqrt(x) end
but the justification may also be more indirect, based for example on an earlier instruction
that computecx as the sum of two squares:
X:=a”"2+ b2
Thecheck instruction makes it possible to express such an assumption if it is not
immediately obvious from the context, as in
X:=a”2+ b"2
... Other instruction....
check
x>=0
-- Becausex was computed above as a sum of squares.
end
y 1= sqrt(x)

§11.11 AN ASSERTION INSTRUCTION 379

Noif ... then ... protects the call tsgri in this example; thcheck indicates that the
call is correct. It is good practice to include, as here, a comment stating the reason invo
to support the assumption-- Becausex...”). The extra two steps of indentation for the
instruction are also part of the recommended style; they suggest that the instruction is
meant, in normal circumstances, to affect the algorithmic progression of the routine.

This example is typical of what is probably the most useful application check
instruction: adding such an instruction just before a call to a routine that has a cert
precondition (here we may assume tsqrthas a precondition requiring its argument to
be non-negative), when you are convinced that the call satisfies the precondition but
is not immediately obvious from the context. As another example ass is a stack and
you include in your code a call

s.remove

at a position where you are certain < is not empty, for example because the call has
been preceded kn “put” and m “remov¢” instructions withn > m. Then there is no need
to protect the call by aif not s.emptythen...; but if the reason for the correctness of the
call is not immediately obvious from the context, you may want to remind the reader tf
the omission of any protection was a conscious decision, not an oversight. You c
achieve this by adding before the call the instruction

check not s.emptyend

A variant of this case occurs when you write a call of the teif with the certainty
thatx is not void, so that you do not need to enclose this call in a conditional instrif ction
x /= Void then ..., but the non-vacuity argument is not obvious from the context. We
encountered this in the proceduput andremoveof our “protected stack” cla'STACK:)

The body ofpui used a call to the corresponding proceduiSTACK;, as follows:

This is from the body if full then
of puton page3e62. error := Overflow
else
checkrepresentatior/= Voidend
representationput (x); error := 0
end

ExerciseE11.5, page Here a reader might think the ciarepresentationput (x) in the else potentially

41, asks you for the ynsafe since it is not preceded by a tesrepresentatior/= Voic. But if you examine the

:nmvﬂﬁ;nnetn;?t'on class text you will realize that full is false thercapacity must be positive and hence
representatio cannot be void. This is an important and not quite trivial property, whict
should be part of the implementation invariant of the class. In fact, with a fully state
implementation invariant, we should rewrite check instruction as:

check
representation_exis: representatior/= Void
-- Because of clausrepresentation_exists_if not_fof the
-- implementation invariant.
end

380 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES§11.12

In ordinary approaches to software construction, although calls and other operations
often (as in the various preceding examples) rely for their correctness on various
assumptions, these assumptions remain largely implicit. The developer will convince
himself that a certain property always holds at a certain point, and will put this analysis to
good use in writing the software text; but after a while all that survives is the text; the
rationale is gone. Someone — even the original author, a few months later — who needs
to understand the software, perhaps to modify it, will not have access to the assumption
and will have to figure out from scratch what in the world the author may have had in
mind. Thecheck instruction helps avoid this problem by encouraging you to document
your non-trivial assumptions.

As with the other assertion mechanisms of this chapter, the benefit goes beyond helping
you get thingsright in the first place, to helping you find that you got thwrong. You

can, using a compilation option, turn icheck into a true executable instruction, which

will do nothing if all its assertion clauses are true, but will produce an exception and stop
execution if any of them is false. So if one of your assumptions was actually not justified
you should find out quickly. The mechanisms for enabcheck-checking will be
reviewedshorly.

11.12 LOOP INVARIANTS AND VARIANTS

Our last assertion constructs help us get loops right. They nicely complemerif skipping, go to
mechanisms seen so far, but are not really specific to the object-oriented method, ;YSING ASSER-

: e . : . TIONS”, 11.13
all right to skip this section on first reading. 39C - page

Loop trouble

The ability to repeat a certain computation an arbitrary number of times without
succumbing to exhaustion, indeed without experiencing any degradation whatsoever, is
the principal difference between the computational abilities of computers and those of
humans. This is why loops are so important; justimagine what you could do in a language
that only has the other two principal control structures, sequencing and conditional
instructions, but no loops (and no support for recursive routine calls, the other basic
mechanism permitting iterative computations).

But with power comes risk. Loops are notoriously hard to get right. Typical trouble
includes:

« “Off-by-one” errors (performing one iteration too many or too few).

« Improper handling of borderline cases such as empty structures: for example a loop
may work properly on a large array, but fail when the array has zero or one element.

« Failure to terminate (“infinite looping”) in some cases.

Binary search — a staple of Computing Science 101 courses — is a good illustiSee exercisE11.7,
of how tricky loops can be even when they appear trivial. Consider ant of integers Page 41
assumed to be in increasing order and indexed fronn; binary search is a way to decide
whether a certain integer valix appears in the array: if the array has no elements, the

§11.12 LOOP INVARIANTS AND VARIANTS 381

Four (wrong)
attempts at
binary searcl.
From [M 1990]

answer is no; if the array has one element, the answer is yes if and only if that element
valuex; otherwise comparx to the element at the array’s middle position, and repeat ol
the lower or higher half depending on whether that element is greater or lessx. Than
four loop algorithms below all attempt to implement this simple idea; unfortunately all al
wrong, as you are invited to check by yourself by finding, for each of them, a case in whi
it will not work properly.

Recall that @ n denotes the element at inci in arrayt. The// operator denotes integer
division, for exampl¢7 // 2and6 //2 have value3. The loop syntax is explained next but
should be self-explanatory; tifrom clause introduces the loop initialization.

BS1 BS2
from from
i=1;):=n i :=1;j:=n; found:= false
until i =j loop until i =j and not foundloop
m:=(>G+j)/l2 m:=(+j)/2
if t @ m<=xthen if t @ m< xthen
i=m i=m+1
else elseilt @ m=xthen
ji=m found:=true
end else
end j=m-=-1
Result=(x=t @) end
end

Result:= found

BS3 BS4
from from
i:=0j:=n i:=0j=n+1
until i =j loop until i =jloop
m:=((+j+21)//2 m:=(G+j)/l2
if t @ m<= xthen if t @ m<=xthen
i=m+1 i=m+1
else else
ji=m ji=m
end end
end end
if i>=1andi<=nthen if i >=1andi<=nthen
Result=(x=t @) Result=(x=t @ J)
else else
Result:= false Result:= false

end end

382 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES§11.12

Getting loops right

The judicious use of assertions can help avoid such problems. A loop may have an
associated assertion, loop invarian (not to be confused with the class invariant for the
enclosing class); it may also haveloop varian, not an assertion but an integer
expression. The invariant and variant will help us guarantee that a loop is correct.

To understand these notions it is necessary to realize that a loop is always a way to
compute a certain result Isuccessive approximation.s

Take the trivial example of computing the maximum value of an array of integers
using the obvious algorithm:

maxarray(t: ARRAY[INTEGEF]): INTEGERis
-- The highest of the values in the entriet of
require
t.capacity>=1
local
i INTEGER
do
from
i :=t.lower
Result=t @ lower
until i =t.upperloop
=i+l
Result:= Resultmax(t @ i)
end

end

We initialize i to the array’s lower bouni := t.lower and the entityResult
representing the future result to the value of the associatedt @ lowel. (We know that
this entry exists thanks to the routine’s precondition, which states that the array has at least
one element.) Then we iterate uii has reached the upper bound, at each stage increasing
i by one and replacinResuliby the value ot @ i, the element at indei, if higher than
the previous value Resul. (We rely on éma» function for integersa. max(b), for two
integersa andb, is the maximum of their values.)

§11.12 LOOP INVARIANTS AND VARIANTS 383

This computation works by successive approximations. We approach the array by
successive sliceslower,lowel], [lower,lower+1], [lower,lower+2] and so on up to the
full approximationlower, uppel].

Approximating
an array by
successive slices

lower upper

| Array element @ Array slice

The invariant property is that at each stage through theResul is the maximum

of the current approximation of the array. This is true after the initialization, since tt
instructions in thefrom clause ensure thsResul is the maximum of the first
approximation, the trivial slicdower, lower] consisting of just one element. Then on each
iteration we extend the slice by one element — improving our approximation of the arr
— and make sure to maintain the invariant by updaResul if the new value is higher
than the previous maximum. At the end, the approximation covers the entire array, &
since we have maintained invariant the propertyResul is the maximum of the current
approximation we know that it now is the maximum of the array as a whole.

Ingredients for a provably correct loop

The simple example of computing an array’s maximum illustrates the general scheme
loop computation, which applies to the following standard situation. You have determin
that the solution to a certain problem is an element belongingn-dimensional surface
POS™: to solve the problem is to find an elemenPOS’. In some casePOSThas just
one element —the solution — but in general there may be more than one acceptab
solution. Loops are useful when you have no way of shooting straiPOSTbut you see

an indirect strategy: aiming firstinto m-dimensional surfacINV that include? OS1(for

m > n); then approachinPOS7, iteration by iteration, without ever leavirlNV. The
following figure illustrates this process.

384 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE §11.12

INV A loop

computation
(from [M 1990])

POST

A loop computation has the following ingredients:

* A goal post the postcondition, defined as a property that any satisfactory end state
of the computation must satisfy. Exampl&€sultis the maximum value in the
array”. The goal is represented in the figure by the set of staiegsatisfyingpost

« An invariant propertynv, which is a generalization of the goal, thatis to say includes
the goal as a special case. Exampleesultis the maximum value in a nhon-empty
array slice beginning at the lower bound”. The invariant is represented in the figure
by the set of statdsl\V/ satisfyinginv.

< An initial pointinit which is known to be i\, that is to say to satisfy the invariant.
Example: the state in which the valuei ¢$ the array’s lower bound and the value
of Resultis that of the array element at that index, satisfying the invariant since the
maximum of a one-element slice is the value of the element.

» A transformatiorbodywhich, starting from a point irNV but not inPOST, yields a
point closer td>OSTand still inINV. In the example this transformation extends the
array slice by one element, and replaResultby the value of that element if higher
than the previouResult The loop body in functiomaxarrayis an implementation
of that transformation.

* An upper bound on the number of applicationsaflynecessary to bring a point in
INV to POST This will be the variant, as explained next.

Computations by successive approximations are a mainstay of numerical analysis,
but the idea applies more broadly. An important difference is that in pure mathematics we
accept that a series of approximations may have a limit even though it caanobtir
through a finite number of approximations: the sequendé?, 1/3, 1/4, ..., 1/n, ... has

§11.12 LOOP INVARIANTS AND VARIANTS 385

The invariant of class
ARRA" appeared on
page374.

limit O but no element of the sequence has value zero. In computing, we want to see
results on our screen during our lifetime, so we insist that all approximation sequent
reach their goal after a finite number of iterations.

Computer implementations of numerical algorithms also require finite convergence: even
when the mathematical algorithm would only converge at infinity, we cut off the
approximation process when we feel that we are close enough.

The practical way to guarantee termination of a loop process is to associate with
loop an integer quantity, the loop variant, which enjoys the following properties:

e The variant is always non-negative.

< Any execution of the loop body (the transformation cabody in the figure)
decreases the variant.

Since a non-negative integer quantity cannot decrease forever, your ability to exhi
such a variant for one of your loops guarantees that the loop will always terminate.T
variant is an upper bound, for each point in the sequence, of the maximum numbel
applications obody that will land the point iIPOS". In the array maximum computation,

a variant is easy to fint:upper — . This satisfies both conditions:

» Because the routine precondition requiricapacityto be positive (that is to say, the
routine is only applicable to non-empty arrays) and the invariant of ARRAY
indicates thacapacity= upper — lower + , the propertyi <= t.uppel (part of the
loop’s invariant) will always be satisfied whi is initialized tot. lower.

« Any execution of the loop body performs the instructi := i + 1, reducing the
variant by one.

In this example the loop is simply an iteration over a sequence of integer values i
finite interval, known in common programming languages as a “for loop” or a “DO loop”
termination is not difficult to prove, although one must always check the details (here, 1
example, thati always starts no greater themnupper because of the routine’s
precondition). For more sophisticated loops, the number of iterations is not that easy
determine in advance, so ascertaining termination is more of a challenge; the o
universal technique is to find a variant.

One more notion is needed to transform the scheme just outlined into a software t
describing a loop: we need a simple way of determining whether a certain iteration f
reached the goal (the postconditiqpos. Because the iteration is constrained to remain
within INV, andPOSTis part olINV, it is usually possible to find a conditiexii such that
an element oINV belongs toPOST if and only if it satisfiesexil. In other words, the
postconditiorpos and the invarianinv are related by

post= inv and exit

so that we can stop the loop — whose intermediate states, by construction, always sai
inv — as soon aexil is satisfied. In thimaxarrayexample, the obviouexit condition is

i = t.upper if this property is true together with the invariant, which statesResul is

the maximum value in the array slicelower, i], thenResul is the maximum value in the
array slicet.lower, t.uppel], hence in the entire array — the desired posdition.

386 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES§11.12

Loop syntax

The syntax for loops follows directly from the preceding rationale. It will include the
elements listed as necessary:

* A loop invariantinv — an assertion.
* An exit conditionexit, whose conjunction witinv achieves the desired goal.
« A variantvar — an integer expression.

« A set of initialization instructioninit, which always produces a state that satisfies
inv and makewar non-negative.

* A set of body instructionbodywhich, when started in a state whinv holds and
var is non-negative, preserves the invariant and decreases the variant while keeping
it non-negative (so that the resulting state still satisinv and has fovar a value
that is less than before but has not gone below zero).

The loop syntax combining these ingredients is straightforward:

from
init
invariant
inv
variant
var
until
exit
loop
body
end
Theinvariant andvariant clauses are optional. Tifrom clause is required (but the
init instructions may be empty). The effect of this instruction is to executdnihe

instructions and then, zero or more times, body instructions; the latter are executed
only as long aexitis false.

In Pascal, C etc. the loop would be a “while” loop, since the loop body is executed
zero or more times, unlike therepeal ... until” loop for which the body is always
executed at least once. Here the test is an exit condition, not a continuation condition, and
the loop syntax includes room for initialization. So the equivalent in Pasfrom init
until exitloop bodyendis
Warning: this is Pas-
cal, notthe O-O nota-
while not exitdo body tion.

init;

§11.12 LOOP INVARIANTS AND VARIANTS 387

With a variant and an invariant the loop maxarray appears as

from
i .= t.lower, Result=t @ lower
invariant
-- Resul is the maximum of the elementst at indicest.lower toi.
variant
t.lower — i
until
i =t.upper
loop
=i+l
Result:= Resultmax(t @ i)
end
“The expressive Note that the invariant is expressed informally as a comment; the discussion sect

gg‘é":;%‘:)""sse”ions"y of this chapter will explain this limitation of the assertion language.

Here is another example, first shown without variant or invariant. The purpose of t
following function is to compute the greatest common divisor (gcd) of two positivi
integersa andb with Euclid’s algorithm:

gcd(a, b: INTEGEF): INTEGER is
-- Greatest common divisor a andb

require
a>0;b>0
local
X, y: INTEGER
do
from
X=ay:=b
until
X=Yy
loop
if x>ythenx:=x —yelsey:=y —xend
end
Result:= x
ensure

-- Resul is the greatest common divisora andb
end
How do we know that functioigcd ensures its postcondition — that it indeed

computes the greatest common divisoa andb? One way to check this is to note that
the following property is true after loop initialization and preserved by every iteration:

388 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES§11.12

x>0 y>0
-- The pai <x, y> has the same greatest common divisor as the a, b><

This will serve as our loop invariainv. Clearly,INV is satisfied after execution of
thefrom clause. Also, ifinv is satisfied before an execution of the loop body

if x>ythenx:=x—yelsey:=y—xend

under the loop continuation conditix /=y, theninv will still be satisfied after execution
of this instruction; this is because replacing the greater of two positive non-equal numbers
by their difference leaves them positive and does not change their gcd.

We have showiinv to be satisfied before the first iteration and preserved by every
iteration. It follows that on loop exit, whe =y becomes truenv still holds; that is to say:

X =yand “The paii<x, y> has the same greatest common divisor as the a, b>"

which implies that the gcd x because of the mathematical property that the gcd of any
integerx and itself isx.

How do we know that the loop will always terminate? We need a variax islf
greater thary, the loop body replacex by x —y; if y is greater thau, it replacesy byy —
x. We cannot choosx as a variant, because we cannot be sure that an arbitrary loop
iteration will decreasix; nor can we be sure that it will decregy, soy is also not an
appropriate variant. But we can be sure that it will decreitherx ory, and hence their
maximumx. max(y); this maximum will never become negative, so it provides the sought
variant. We may now write the loop with all its clauses:

from
X=ay:=hb

invariant

x>0,y>0

-- The pair<x, y> has the same greatest common divisor as the<a, b>
variant

X.max(y)
until

X=Yy
loop

if x>ythenx:=x-yelsey:=y - xend
end

As noted, theinvariant andvariant clauses in loops are optional. When present,
they help clarify the purpose of a loop and check its correctness. Any non-trivial loop may
be characterized by an interesting invariant and variant; many of the examples in
subsequent chapters include variants and invariants, providing insights into the underlying
algorithms and their correctness.

§11.13 USING ASSERTIONS 389

“POSTSCRIPT:
THE ARIANE 5
CRASH”, page 411

Chaptei23 discusses
shortin detai.

11.13 USING ASSERTIONS

We have now seen all the constructs involving assertions and should review all 1
benefits that we can derive from them. There are four main applications:

* Help in writing correct software.
* Documentation aid.
» Support for testing, debugging and quality assurance.
e Support for software fault tolerance.
Only the last two assume the ability to monitor assertions at run time.

Assertions as a tool for writing correct software

The first use is purely methodological and perhaps the most important. It has be
explored in detail in the preceding sections: spelling out the exact requirements on e
routine, and the global properties of classes and loops, helps developers produce soft
that is correct the first time around, as opposed to the more common approach of tryin
debug software into correctness. The benefits of precise specifications and a systerr
approach to program construction cannot be overemphasized. Throughout this ba
whenever we encounter a program element, we shall seek to express as precisel
possible the formal properties of that element.

The key idea runs through this chapter: the principDesign by Contrac. To use
features from a certain module is to contract out for services. Good contracts are th
which exactly specify the rights and obligations of each party, arlimits to these rights
and obligations. In software design, where correctness and robustness are so importan
need to spell out the terms of the contracts as a prerequisite to enforcing them. Assert
provide the means to state precisely what is expected from and guaranteed to each si
these arrangements.

Using assertions for documentation: the short form of a class

The second use is essential in the production of reusable software elements and, n
generally, in organizing the interfaces of modules in large software system
Preconditions, postconditions and class invariants provide potential clients of a mod
with basic information about the services offered by the module, expressed in a conc
and precise form. No amount of verbose documentation can replace a set of caref
expressed assertions, appeain the software itself

To learn how a particular project ignored this rule and lost an entire space mission at a

cost of $500 million, see the very last section of this chapter.

The automatic documentation tcshort uses assertions as an important component
in extracting from a class the information that is relevant to potential clients. The she
form of a class is a high-level view of the class. It only includes the information that
useful to authors of client classes; so it does not show anything about secret features
for public features, it does not show the implementation do clauses). But the short
form does retain the assertions, which provide essential documentation by stating
contracts that the class offers to its clients.

390

DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.13

Here is the short form of claSTACK:

indexing

descriptior: "Stack: Dispenser structures with a Last, First-Out %
%access poli¢; and a fixed maximum capac'ty

class interfaceSTACK4[G] creation
make
feature -- Initialization
make(n: INTEGEF) is
-- Allocate stack for a maximum n elements
require
non_negative_capaci n>=0
ensure
capacity_se capacity=n
end
feature -- Access
capacity INTEGER
-- Maximum number of stack elements
coun: INTEGER
-- Number of stack elements
item: Gis
-- Top element
require
not_empt: not empt -- i.e count>0
end
feature -- Status report
empt: BOOLEANis
-- Is stack empty?
ensure
empty_definitio: Resuli= (count= 0)
end
full: BOOLEANIs
-- Is stack full?
ensure
full_definitior: Result= (count= capacity)
end

STACK4appeared
on page36E, based
onSTACKZfrom
page35(.

§11.13 USING ASSERTIONS 391

feature -- Element change
put(x: G) is

-- Add x on top

require
not_full: not full

ensure
not_empt: not empty
added_to_to: item=x
one_more_itel: count=old count + 1

end
removeis
-- Remove top element
require
not_empt: not empty-- i.e.count> 0
ensure
not_full: not full
one_fewe: count=old count — 1
end

invariant

count_non_negativ 0 <= count

count_bounde: count<= capacity

empty_if no_elemer. empty= (count= 0)
end -- class interfacSTACK4

This short form is not a syntactically valid class text (hence the class interface
rather than the usuclass to avoid any confusion), although it is easy to turn it into a valid
deferrecclass, a notion to be seen in detail in our study of inheritance.

See chapte3€abou In the ISE environment, you obtain the short form of a class by clicking on the
the environmei.t corresponding button in a Class Tool displaying a class; you can generate plain text, as
well as versions formated for a whole host of formats such as HTML (for Web browsing),
RTF (Microsoft's Rich Text Format), FrameMaker's MMLEX, troff and others. You
can also define your own format, for example if you are using some text processing tool
with its specific conventions for specifying fonts and layout.

If you compare the short form’s assertions to those of the class, you will notice that
the clauses involvinrepresentatio have disappeared, since that attribute is not exported

The short form of documentation is particularly interesting for several reasons:

* The documentation is at a higher level of abstraction than what it describes,
essential requirement for quality documentation. The actual implementatio
describing th¢how, has been removed, but the assertions, explaininwhat(or in
some cases thwhy) are still there. Note that the header comments of routines, whic
complement assertions by giving a less formal explanation of each routine
purpose, are retained, as well asdescriptionentry of theindexing clause.

392 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.13

« A direct consequence of the Self-Documentation principle studied in our reviewvsglf-Documenta-
modularity concepts, the short form treats documentation not as a separate prtion”, page 5«
but as information contained in the software itself. This means that there is only
product to maintain, a requirement that runs through this book. There is also, as a
result, a much better chance that the documentation will be correct, since by having
everything at the same place you decrease the risk of forgetting to update the
documentation after a change to the software, or conversely.

e« The short form can be extracted from the class by automatic tools. So the
documentation is not something that you have to write; instead it is something that
you ask “the computer” to produce, at the click of a mouse button, when you need it.

It is interesting to compare this approach with the notion of package interface present
in Ada (“specification part”), where you write a module (package) in two parts: the
interface and the implementation. Java uses a similar mechanism. Thacmteffa
package has some similarities to the short form of a class, but also significant differences:

e There are no assertions, so all the “specification” that you can give is in the form of
type declarations and comments.

e The interface is not produced by a tool but written separately. So the developer has
to state many things twice: the headers of routines, their signatures, any header
comments, declarations of public variables. This forced redundancy is tedious (it
would be even more so with assertions) and, as always, raises the risk of
inconsistency, as you may change one of the two parts and forget to update the other.

The short form (complemented by its variant the flat-short form, which deals “The flat-short
inheritance and is studied in a later chapter) is a principal contribution of the otform”, page 543
oriented method. In the daily practice of O-O development it appears all the time nc
as a tool for documenting software, particularly reusable libraries, but also as the staiuaiu
format in which developers and managers study existing designs, prepare new designs,
and discuss proposed designs.

The reason for the central role of the short form in O-O development is that it firReuse of
fulfills the goal defined by the analysis of reusability requirements at the beginning oabstracted mod-
book. There we arrived at the requiremeniabstracted moduli as the basic unit of reuse"'®S"» Page 73
A class in its short (or flat-short) form is the abstracted module that wi beenseeking.

Monitoring assertions at run time

Itis time now to deal in full with the question “what is the effect of assertions at run tirLace and Ace files
As previewed at the beginning of this chapter, the answer is up to the developer, baswere introduced in
compilation option. To set that option, you should not, of course, have to change thetg]sjfgqabg;g%;fys'
class texts; you will rely instead on the Ace file. Recall that an Ace file, written in Lace, a

you to describe how to assemble and compile a system.

Recall too that Lace is just one possible control language for assembling O-O systems,
not an immutable component of the method. You will need something like Lace, even
if it is not exactly Lace, to go from individual software components to complete
compilable systems.

§11.13 USING ASSERTIONS 393

Warning: this text is
in Lacg, not in the
O-O notatiol

A qualified call is a
call from the outsic,e
as inx. f, as opposed
toaplaininternal call
f. See"Qualified and
unqualified calls”,
page 185

Here is how to adapt a simple Ace (the one used as example in the origir
presentation of Lace) to set some assertion-monitoring options:

systen painting root

GRAPHICS
default

assertion(require)
cluster

base_library "\library\base"

graphical_library: "\library\graphic<"

option
assertion(all): BUTTON, COLOR_BITMAP

end
painting_applicatior: "\user\applicatio"
option
assertion(no)
end

end -- systempainting

Thedefault clause indicates that for most classes of the system only preconditio
will be checkedrequire). Two clusters override this defaugraphical_library, which
will monitor all assertionsall), but only for classeBUTTONandCOLOR_BITMAI; and
painting_applicatiol, which has disabled any assertion checking for all its classes. Th
illustrates how to define an assertion monitoring level for the system as a whole, for all 1
classes of a cluster, or for some classes only.

The following assertion checking levels may appear between parentheses
assertion(...):

* no: do not execute anything for assertions. In this mode assertions have no m
effect on execution than comments.

 require: check that preconditions hold on routine entry.
e ensure: check that postconditions hold on routine exit.

« invariant: check that class invariants hold on routine entry and exit for qualifie
calls.

* loop: check that loops invariants hold before and after every loop iteration, and th
variants decrease while remaining non-negative.

» check: executecheck instructions by checking that the corresponding assertion:
hold. all is a synonym focheck.

Excludingno, each of these levels implies the previous ones; in particular it does n
make sense to monitor postconditions unless you also monitor preconditions, since
principles of Design by Contract indicate that a routine is required to ensure |
postcondition only if it was called with its precondition satisfied (otherwise “the custome
is wrong”). This explains whcheckandall are synonyms.

394 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.13

If turned on, assertion monitoring will have no visible effect, except for the CPU
cycles that it takes away from your computation, as long as the assertions that it monitors
all evaluate to true. But having any assertion evaluate to false is a rather serious event
which will usually lead to termination. Actually it will trigger an exception, but unless you
have taken special measures to catch the exception (see next) everything will stop. An
exception history tab will be produced, of the general form

Failure: objectO2 class:YOUR_CLAS routine:your_routine
Caust. precondition violation, clausnot_too_small
Called by: objectO2 class:YOUR_CLAS routine: his_routine
Called by: objectO1 clas: HER_CLAS routine:her_routine

This gives the call chain, starting from the routine that caused the exceptiorSee pag421 for the
object to which is was applied and its generating class. Objects are identified by indetailed forn
codes. The form shown here is only a sketch; the discussion of exceptions will give a 1iuic
complete example of the exception history table.

The optional labels that you can add to the individual clauses of an assertion, such as
not_too_smain

your_routine(x: INTEGEF) is
require
not_too_sma: x>= Minimum_value

prove convenient here, since they will be listed in the exception trace, helping you identify
what exactly went wrong.

How much assertion monitoring?

What level of assertion tracing should you enable? The answer is a tradeoff between the
following considerations: how much you trust the correctness of your software; how
crucial it is to get the utmost efficiency; how serious the consequences of an undetected
run-time error can be.

In extreme cases, the situation is clear:

« When you are debugging a system, or more generally testing it prior to release, you
should enable assertion monitoring at the highest level for the classes of the system
(although not necessarily for the libraries that it uses, as explained next). This ability
is one of the principal contributions to software development of the method
presented in this book. Until they have actually had the experience of testing a large,
assertion-loaded system using the assertion monitoring mechanisms described in
this section, few people realize the power of these ideas and how profoundly they
affect the practice of software development.

* If you have a fully trusted system in an efficiency-critical application area — the
kind where every microsecond counts — you may consider removing all monitoring.

§11.13 USING ASSERTIONS 395

From[Hoare 1973

Second Assertion
Violation rule, page
347.

See the class text
starting on page37:.

The last advice is somewhat paradoxical since in the absence of formal provi
techniques (see the discussion section of this chapter) it is seldom possible to “tru:
system fully” — except by monitoring its assertions. This is a special case of a gene
observation made with his customary eloquence by C.A.R. Hoare:

Itis absurd to make elaborate security checks on debuggini, when no trust

is putin the resul, and then remove them in production r, when an erroneous
result could be expensive or disast. What would we think of a sailing
enthusiast who wears his life-jacket when training on dry land but takes it off as
soon as he goes to *=a

An interesting possibility is the option that only checks preconditiassertion
(require). In production runs — that is to say, past debugging and quality assurance —
has the advantage of avoiding catastrophes that would result from undetected call:
routines outside of their requirements, while costing significantly less in run-tim
overhead than options that also check postconditions and invariants. (Invariants,
particular, can be quite expensive to monitor since the method suggests writing r
invariants that include all relevant consistency conditions on a class, and the invarian
checked on entry and exit for every qualified call.)

Precondition checking is indeed the default compilation option if you do not includ
a specificassertiol option in your Ace, so that the claudefault assertion(require)
appearing in the example Ace for systpainting was not necessary.

This option is particularly interesting for libraries. Remember the basic rule o
assertion violations: a violated precondition indicates an error in the client; a violat
postcondition or invariant indicates an error in the supplier. So if you are relying ¢
reusable libraries that you assume to be of high quality, it is generally not desirable
monitor their postconditions and invariants: this would mean that you suspect the librar
themselves, and although the possibility of a library error is of course always open
should only be investigated (for a widely used library coming from a reputable sourc
once you have ruled out the presera priori much more likely, of an error in your own
client software. But even for a perfect library it is useful to ctpreconditions: the goal
is to find errors in client software.

Perhaps the most obvious example is array bound checking. ARRA" class we
saw thalpui, itenr and the latter’s synonyinfix "@" all had the precondition clauses

index_not_too_sme lower<=i
index_not_too_larc: i <= upper

Enabling precondition checking for the class solves a well-known problem of ar
software that uses arrays: the possibility of an out-of-bounds array access, which v
usually scoop some memory area containing other data or code, causing ravages. M
compilers for conventional programming languages offer special compilation options
monitor array access at run time. But in object technology, just as we treat arrays throt
general notions of class and object rather than special constructs, we can handle a
bound monitoring through the general mechanism for precondition checking. Just us
version ofARRA" compiled withassertior(require).

396 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE§11.13

Should bounds always be checked? Hoare thinks so:

In our Algol compiler every occurrence of every subscript of every array element From[Hoare 198;
was on every occasion checked at run time against the declared . Manys slightly abridge«
years later we asked our customers whether they wished us to provide an option

to switch off these checks in the interest of efficiency in productior. runs

Unanimously they urged us not to — they already knew how frequently index

errors occur on production runs where failure could be disas. | note with

fear and horror that even tod, language designers and users have not learned

this lesso. In any respectable branch of enginee, failure to observe such

elementary precautions would have long been against th.e law

These comments should be discussed not just for arrays but for preconditions in
general. If indeed “index errors frequently occur on production runs” this must be true of
other precondition violations too.

One may defend a less extreme position. (Some might of course see here an attempt
at self-preservation, coming from a “language designer” who has provided a way to turn
off assertion checking, through Lace options sucassertior(no), and presumably does
not like being branded as acting “against the law”.) First, a company which delivers
software in which precondition errors “frequently occur on production runs” probably has
a problem with its software quality practices, which run-time assertion monitoring will not
solve. Monitoring addresses the symptoifaults in the terminology introduced earlier in
this chapter), not the cause (defects and errors). True, assertion monitoring is in such a
case beneficial to the software’s end-users: however unpleasant it is to have a system end
its interruption with some message spouting insults about preconditions and other
venomous beasts unknown to a layman, this is better than continuing operation and
producing bad results. But in the long term a practice of always delivering systems with
some level of assertion monitoring also has negative effects: it can encourage among
developers, even unconsciously, a happy-go-lucky attitude towards correctness, justified
by the knowledge thatif an error remains it will be caught by the users through an assertion
violation, reported to the supplier, and fixed for the following release. So can’t we stop
testing right now and start shipping?

It is hard to give an absolute answer to the question “should we leave some assertion
monitoring on?” without some knowledge of the performance overhead of assertion
monitoring. If adding some monitoring multiplied the execution time by ten, few people
outside of the mission-critical-computing community would support Hoare's view; if the
overhead were two percent, few people would disagree with it. In practice, of course, the
penalty will be somewhere in-between.

How much is it, by the way? This clearly depends on what the software does and how
many assertions it has, but it is possible to give empirical observations. In ISE’s experience
the cost for monitoring preconditions (the default option, including of course array bounds
checking) is on the order of 50%. What is frustrating is that more than 75% of that cost is
due not to precondition checking per se but to the supporting machinery of monitoring
calls — recording every routine entry and every routine exit — so that if a precondition
fails the environment can say which one and where. (A message of thiExecution

§11.13 USING ASSERTIONS 397

Pagelt.

stopped because some assertion was violated some would not be very useful.) This
may be called the Precondition Checking Paradox: precondition checking is by itself che
enough, but to get it you have to pay for something else. As to postcondition and invari
checking, they can bring the penalty to 100% to 200%. (Although circumstances va
preconditions are often relatively simple consistency conditions six> 0 ora/= Voic,
whereas many postconditions and invariants express more advanced semantic proper

One might fear that bringing performance into this discussion may lead t
compromising on correctness, against the principle expressed at the beginning of this bt

Necessary as tradeoffs between quality factors m, one factor stands out
from the res: correctnes. There is never any justification for compromising on
correctness for the sake of other concy, such as efficien.. If the software
does not perform its functi, the rest is usele. s

Considering performance when we decide whether to leave assertion monitoring
is not, however, a violation of this principle. The point is not to sacrifice correctness f
efficiency, but to determine what we should do for systems thanot correct —
obviously because we have not worked hard enough at making them correct.

In fact, efficiency may be part of correctness. Consider a meteorological system tl
takes twelve hours to predict the next-day’s weather (two hours would be more useful.
course). The system has been thoroughly optimized; in particular it does not have run-ti
checking for array bound violations or other such faults. It has also undergone care
development and extensive testing. Now assume that adding the run-time che
multiplies the execution time by two, giving a forecasting system that takes 24 hours
predict tomorrow’s weather. Would you enable these checks? No.

Although the examples that first come to mind when discussing such perforvsince
safety issues tend to be of the Patriot-against-Scud variety, | prefer the weather forecasting
example because here one cannot dismiss the efficiency issue offhand by saying “just buy
a faster microprocessor”. In meteorological computing, the hardwarealready to be

the fastest parallel computer available on the market.

Let us not stop here but ask the really hard questions. Assume the original runn
time of twelve hours was with checkilenable. Would you disable it to get a six-hour
forecast? Now assume that you also have the option of applying the improved efficiency
keep the same running time but use a more accuraeafsiing model (since you can afford
more grid points); would you do it? | think thatin either case, if offean option to switch
off the checks in the interest of efficiency in production”, almost everyone will say yes.

So in the end the choice of assertion monitoring level at production time is not
simple as Hoare’s rule suggests. But a few precise and strict principles do hold:

* Remember that a software system should be made rebefore it begins operation.
The key is to apply the reliability techniques described in the software engineerir
literature, including those which appear in this chapter and throughout this book.

 If you are a project managenever let the developers assuthat the production
versions will have checks turned on. Make everyone accept that — especially for

398 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES§11.14

biggest production runs, those which by nature make the consequences of potential
errors most frightening — all checks may be off.

« Make sure that during development assertion checking is always turned on at least
at the precondition level.

« Perform extensive testing witall the checks enabled. Also turn all checks on as
soon as any bug is encountered during development.

» For the standard production versions, decide whether to choose a no-check version
or a protected version (usually at the precondition level) based on your assessment,
from an engineering perspective, of the relative weight of the three factors cited at
the beginning of this discussion: how much you trust the correctness of your
software (meaning in part how hard you heaworkec at making it correct and
convincing yourself and others that it is); how crucial it is to get the utmost
efficiency; and how serious the consequences of an undetected run-time error can be.

« If you decide to go for a no-check version, also include in your delivery a version
that checks at least for preconditions. That way, if the system starts exhibiting
abnormal behavior against all your expectations, you can ask the users — those at
least who have not been killed by the first erroneous production runs — to switch to
the checking version, helping you find out quickly what is wrong.

Used in this way, run-time assertion monitoring provides a remarkable aid for quickly
weeding out any errors that y have srvived asystematisoftware onstructiorprocess.

11.14 DISCUSSION

The assertion mechanism presented in this chapter raises some delicate issues, which we
must now examine.

Why run-time monitoring?

Should we really have to check assertions at run time? After all we were able, (See'WHEN IS A
assertions, to give a theoretical definition of what it means for a class to be correct; CLASS COR-

. . . . RECT?", 11.9, page
creation procedure should ensure the invariant, and every routine body, when startes,
state satisfying the precondition and the invariant, should maintain the invariant anu
ensure the postcondition. This means that we should sinprove the m +n
corresponding properties mathematically (m creation procedures arn exported

routines), and then do away with run-time assertion monitoring.

We should, but we cannot. Although mathematical program proving has been an
active area of research for many years, and has enjoyed some successes, it is not possible
today to prove the correctness of realistic software systems written in full-fledged
programming languages.

We would also need a more extensive assertion language. The IFL sublanguage,
discussed below, could be used as part of a multi-tier proof strategy.

§11.14 DISCUSSION 399

Both on pag38¢.

Even if proof techniques and tools eventually become available, one may susp
that run-time checks winol go away, if only to cope with hard-to-predict events such as
hardware faults, and to make up for possible bugs in the proof software itself — in otl
words to apply the well-known engineering technique of mulindependenchecking.

The expressive power of assertions

As you may have noted, the assertion language that we have used is essentially
language of boolean expressions, extended with a few concepts <old. As a result,

we may find it too restrictive when we would like to include in our classes some of tt
properties that were easy to express in the mathematical notation for abstract data tyy

The assertions for stack classes provide a good example of what we can and cal
say. We found that many of the preconditions and axioms from the original AD
specification of chapte6 gave assertion clauses; for example the axiom

A4« not empty (put (s, x))

gives the postconditionot emptyin procedure¢pul. But in some cases we do not have the
immediate counterpart in the class. None of the postconditionremove in the stack
classes given so far includes anything to represent the axiom

A2« remove (put (s, X)) =s

We can of course add an informal property to the postcondition by resortin
to a comment:

remove is
-- Remove top element
require
not_empt: not empty-- i.e.count> 0
do
count:= count—1
ensure
not_full: not full
one_fewe: count=old count — 1

LIFO_policy: -- item is the last element pushed (put)
-- and not yet removed, if any.

end

Similar informal assertions, syntactically expressed as comments, appeared in
loop invariants fomaxarrayandgcd.

In such a case, two of the principal uses of assertions discussed earlier rem
applicable at least in part: help in composing correct software, and help in documentat
(an assertion clause that is syntactically a comment will appear in the short form). T
other uses, in particular debugging and testing, assume the ability to evaluate assert
and do not apply any more.

400 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES§11.14

It would be preferable to express all assertions formally. The best way to reach this
goal is to extend the assertion language so that it can describe arbitrary properties; this
requires the ability to describe complex mathematical objects such as sets, sequences,
functions and relations, and including the full power of first-order predicate calculus,
which allows quantified expressions (“for all” and “there exists”). Formal specification
languages exist which provide at least part of this expressive power. The best known are
Z, VDM, Larch and OBJ-2; both Z and VDM have had object-oriented extensions, such
as Object-Z, in recent years, and the last two were close to O-O concepts already. The
bibliographic notes to chapt6 provide references.

Including a full specification language into the language of this book would have
completely changed its nature. The language is meant to be simple, easy to learn,
applicable to all areas of software construction, and implementable efficiently (with a final
run-time performance similar to that of Fortran and C, and a fast compilation process).

Instead, the assertion mechanism is an engineering tradeoff: it includes enough
formal elements to have a substantial effect on software quality; but stops at the point of
diminishing return — the threshold beyond which the benefits of more formality might
start being offset by the decrease of learnability, simplicity and efficiency.

Determining that threshold is clearly a matter of personal judgment. | have been surprised
that, for the software community at large, the threshold has not moved since the first edition
of this book. Our field needs more formality, but the profession has not realized it yet.

So for the time being, and probably for quite a while, assertions will remain boolean
expressions extended with a few mechanisms such old expression in postconditions.
The limitation is not as stringent as it seems at first, because boolean expressions can use
function calls

Including functions in assertions

A boolean expression is not restricted to using attributes or local entities. We have already
used the possibility of callinfunction:in assertions: the precondition fpufin our stack
classes wanot full, werefull is the function
full: BOOLEANis
-- Is stack full?
do
Result:= (count= capacity)
ensure
full_definitior: Resuli= (count= capacity)
end
This is our little assertion secret: we get out of the stranglehold of propositional
calculus — basic boolean expressions involving attributes, local entities and boolean

operators such &and, or, not — thanks to function routines, which give us the power to
compute a boolean value in any way we like. (You should not be troubled by the presence

§11.14 DISCUSSION 401

“The imperative and
the applicative”,
page 35

of a postcondition irfull itself, as it does not create any harmful circularity. Details
shortly.)

Using function routines is a way to obtain more abstract assertions. For example, sc
people may prefer replacing the precondition of the array operations, expressed earlier

index_not_too_sme lower<=i
index_not_too_larg: i <= upper

by a single clause of the form
index_in_bounc: correct_index(i)
with the function definition

correct_index(i: INTEGEF): BOOLEANis
-- Isi within the array bounds?
do
Result:= (i >= lower) and (i <= uppe))
ensure
definitior: Resuli= ((i >=lower) and (i <= uppe))
end

Another advantage of the use of functions in assertions is that it may provide a w
to circumvent the limitations on expressive power arising from the absence of first-orc
predicate calculus mechanisms. The informal invariant omaxarray loop

-- Resuliis the maximum of the elements t at indice: t.lowerto i
may be expressed formally as
Result= (t.slice (lower, i)).max

assuming a functioslice which yields the set of elements between two indices of an arra)
and a functiormax which yields the maximum element in a set.

This approach has been exploredM 1995a as a way to extend the power of the
assertion mechanism, possibly leading to a fully formal development method (that is to
say, to software that may Iprover correct mathematically). Two central ideas in this
investigation are the use of libraries in any large-scale proof process, so that one could
prove real, large-scale systems in a multi-tier proof structure using conditional proofs,
and the definition of a restricted language of a purely applicative nature — IFL, for
Intermediate Functional Language — in which to express the functions used in assertions.
IFL is a subset of the notation of this book, which excludes some imperative constructs
such as arbitrary assignments.

The risk that such efforts try to address is clear: as soon as we permit functions
assertions, we introduce potentially imperative elements (routines) into the heretofc
purely applicative world of assertions. Without functions, we had the clear and cle
separation of roles emphasized in the earlier discussion: instructions prescribe, assert
describe. Now we open the gates of the applicative city to the imperative hordes.

Yet it is hard to resist the power of using functions, as the alternatives are not withc
their drawbacks either:

402 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES§11.14

« Including a full specification sublanguage could, as noted, cause problems of ease of
learning and efficiency.

The transitive closure

» Perhaps worse, it is not even clear that commonly accepted assertion langofarelationis
would suffice. Take what most people versed in these topics would suggest aﬁl;tg;”ﬁgr%;reg?“”g

natural candidate: first-order predicate calculus. This formalism will not enable Ujme: For example

express some properties of immediate interest to developers and common ancestor” is the

assertions, such as “the graph has no cycles” (a typical invariant claransitive closure of

Mathematically this would be stated ri. n r = [] wherer is the graph’s relation parent’.

and ™ is transitive closure. Although it is possible to conceive of a specification

language that supports these notions, most do not.

This is all the more troubling because, for a programmer, writing a boolean-valued
function routinecyclic that explores the graph and returns true if and only if there is a
cycle, is not particularly hard. Such examples provide a strong argument for contenting
ourselves with a basic assertion language and using functions for anything beyond its
expressive power.

But the need to separate applicative and imperative elements remains. Any function
routine used in an assertion to specify the properties of a software element should be
“beyond reproach”, more precisely beyond imperative reproach; it should not cause any
permanent change of the abstract state.

This informal requirement is clear enough in practice; the IFL sublanguage formalizes it
by excluding all the imperative elements which either change the global state of the
system or do not have trivial applicative equivalents, in particular:

« Assignments to attributes.
» Assignments in loops.

» Calls to routines not themselves in IFL.

If you exert the proper care by sticking to functions that are simple and self-evidently
correct, the use of function routines in assertions can provide you with a powerful means
of abstraction.

A technical point may have caught your attention. A funcf used by an assertion
for a routiner (or the invariant of the class containir) may itself have assertions, as
illustrated by both thfull andcorrect_inde;examples. This raises a potential problem for
run-time assertion monitoring: if as part of a calr we evaluate an assertion and this
causes a call tf, we do not want the call to evaluate any assertionf litself may have.
For one thing, it is easy to construct examples that would cause infinite recursion. But
even without that risk it would be just wrong to evaluate the asserticf. This would
mean that we treat as peers the routines of our computation, sur, and their
assertions’s functions, such f — contradicting the rule that assertions should be on a

§11.14 DISCUSSION 403

See chapte8, in par-
ticular “DEALING
WITH REFER-
ENCES: BENEFITS
AND DANGERS”,
8.9, page 2€5

higher plane than the software they protect, and their correctness crystal-clear. The ru
simple:

Assertion Evaluation rule

During the process of evaluating an assertion at run-time, routine calls shall
be executed without any evaluation of the associated assertions.

If a call tof occurs as part of assertion checkingr, that is too late to ask whether
f satisfies its assertions. The proper time for such a question is when you decidf ind use
the assertions applicabler.

We can use an analogy introduced earlier. Thinlf as a security guard at the
entrance of a nuclear plant, in charge of inspecting the credentials of visitors. There
requirements on guards too. But you will run the background check on a guard in advar
not while he is screening the dayisitors.

Class invariants and reference semantics

The object-oriented model developed so far includes two apparently unrelated aspe
both useful:

< The notion of class invariant, as developed in this chapter.

* A flexible run-time model which, for various reasons detailed in an earlie
chapter (in particular the modeling needs of realistic systems), make
considerable use of references.

Unfortunately these individually desirable properties cause trouble when p
together.

The problem is, once again, dynamic aliasing, which prevents us from checking t
correctness of a class on the basis of that class alone. We have seen that the correctn
a class meanm + n properties expressing that (if we concentrate on the invelNV,t
ignoring preconditions and postconditions which play no direct role here):

P1 « Every one of them creation procedures produces an object that satiNV.
P2 « Every one of than exported routines preserviNV.

These two conditions seem sufficient to guaranteelNV is indeed invariant. The
proof is apparently trivial: sincINV will be satisfied initially, and preserved by every
routine call, it should by induction be satisfied at all stable times.

This informal proof, however, is not valid in the presence of reference semantics a
dynamic aliasing. The problem is that attributes of an object may be modified by
operation on another object. So even ifaar operations preseniNV on the object OA
attached tca, some operatiob. s (for b attached to another object) may destINV for
OA. So even with conditionP1 andPZ satisfied,INV may not be an invariant.

404 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES§11.14

Here is a simple example. Assume claA andB, each with an attribute whose type
is the other's class:

clas< A ... feature forward: B ... end
class¢B ... feature backwarc. A ... end

We require that following thforward reference (if defined) from an instance/f
and then thdackwarc reference from the correspondiB will yield the originalA. This
may be expressed as an invariant properA: of

round_trig: (forward /= Void) implies (forward. backward= Curreny)

Here is a situation involving instances of both classes and satisfying the invariant:

OA OB |
< backward Consistency of
forward and
o > backward
references
(A)
(B)

Invariant clauses of ttround_tripform are not uncommon; think forward in class
PERSOI denoting a person’s residence, abackwardin classHOUSE denoting a
house’s resident. Theround_tripstates that the resident of any person’s residence is that
person, a simple consistency requirement. Another example is the linked implementation
of trees, where the attributes of a tree node include references to its first child and to its
parent, introducing the followinround_trig-style property in the invariant:

(first_child /= Voic) implies (first_child. parent= Curren)

Assume, however, that the invariant clauseB, if any, says nothing about the
attributebackwarc. The following version oA appears consistent with the invariant:

classA feature
forward: B

attach(bl: B) is
-- Link bl to current object.

do
forward := b1
-- Updatebl’'s backward reference for consistency:
if b1/= Voidthen
bl.attach(Curreni)
end
end
invariant

round_trig: (forward /= Void) implies (forward. backward= Curreni)
end

§11.14 DISCUSSION 405

Violating the
invariant

The callbl. attact is meant to restore the invariant after an updaforward. Class
B must provide its owiattact procedure:

classB feature
backwarc B
attach(al: A) is
-- Link al to current object.
do
backward:= al
end
end
ClassA appears to be correct: a procedure-less creation instruction ensures

invariant round_trip (since it initializesforward to a void reference), and its sole
procedure will always preserround_trig. But consider execution of the following:

al: A bl:B
Mal; ' bl

al.attach(bl)
b1.attach(Void)

Here is the situation after the last instruction:

OA OB

F— backward

forward -

(A) &)

The invariant is violated on OA! This object is now linked to OB, but OB is not
linked to OA since itsbackwarc field is void. (A call tobl.attach(...) could also have
linked OB to an instance (& other than OA, which would be equally incorrect.)

What happened? Dynamic aliasing has struck again. The proof of correctness
classA outlined above is valid: every operation of the fcalar, whereal is a reference
to object OA, will preservround_trig since the corresponding feature<A (here there is
only one,attact) have been designed accordingly. But this is not sufficient to preserve tt
consistency of OA, since properties of OA may involve instances of other classes, sucl
B in the example, and the proof says nothing about the effect of these other clas:
features on the invariant Al.

This problem is important enough to deserve a ndndirect Invariant Effect . It
may arise as soon as we allow dynamic aliasing, through which an operation may moc

406 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARE §11.15

an object even without involving any entity attached to it. But we have seen how much we
need dynamic aliasing; and tHerward-backward scheme, far from being just an
academic example, is as noted a useful pattern for practical applications and libraries.

What can we do? The immediate answer involves the conventions for run-time
monitoring of assertions. You may have wondered why the effect of enabling assertion
monitoring at theassertion(invariant) level was described as

“Check that class invariants hold on routine entry and exit for qualified.talls Page394

Why both entry and exit? Without the Indirect Invariant Effect, it would suffice 1o
check the invariant when exiting qualified calls. (It is also checked at the end of creation
calls.) But now we have to be more careful, since between the termination of a call and the
beginning of the next one on the same object, some call may have affected that object even
though its target was another object.

A more satisfactory solution would be to obtain a statically enforceable validity rule,
which would guarantee that whenever the invariant of a élassolves references to
instances of a clags, the invariant o8 includes a mirror clause. In our example we can
avoid trouble by including iB an invariant clausgip_round mirroringround_trig

trip_round: (backward/= Void) implies (backwardforward= Curreni

It may be possible to generalize this observation to a universal mirroring rule.
Whether such a rule indeed exists, solving the Indirect Invariant Effect and removing the
need for double run-time monitoring, requires further investigation.

More to come

We are not done with Design by Contract. Two important consequences of the principles
remain to be studied:

« How they lead to a disciplined exception handling mechanism; this is the topic of the
next chapter.

« How they combine with inheritance, allowing us to specify that any semarINHERITANCE
constraints that apply to a class also apply to its descendants, and that serAND ASSER-
. . . L . TIONS”, page 569
constraints on a feature apply to its eventual redeclarations; this will be part o
study of inheritance.

More generally, assertions and Design by Contract will accompany us throughout
the rest of this book, enabling us to check, whenever we write software elements, that we
know what we are doing.

11.15 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

« Assertions are boolean expressions expressing the semantic properties of classes and
reintroducing the axioms and preconditions of the corresponding abstract data types.

« Assertions are used in preconditions (requirements under which routines are
applicable), postconditions (properties guaranteed on routine exit) and class

§11.16 BIBLIOGRAPHICAL NOTES 407

From[Hoare 1981)

invariants (properties that characterize class instances over their lifetime). Ott
constructs that involve assertions are loop invariants ancheck instruction.

A precondition and a postcondition associated with a routine describe a contre
between the class and its clients. The contract is only binding on the routi
inasmuch as calls observe the precondition; the routine then guarantees
postcondition on return. The notion of contracting provides a powerful metaphor f
the construction of correct software.

The invariant of a class expresses the semantic constraints on instances of the ¢
The invariant is implicitly added to the precondition and the postcondition of ever
exported routine of the class.

A class describes one possible representation of an abstract data type;
correspondence between the two is expressed by the abstraction function, whicl
usually partial. The inverse relation is in general not a function.

An implementation invariant, part of the class invariant, expresses the correctness
the representation vis-a-vis the corresponding abstract data type.

A loop may have a loop invariant, used to deduce properties of the result, anc
variant, used to ascertain termination.

If a class is equipped with assertions, it is possible to define formally what it mea
for the class to be correct.

Assertions serve four purposes: aid in constructing correct programs; documentat
aid; debugging aid; basis for an exception mechanism.

The assertion language of our notation does not include first-order predics
calculus, but can express many higher-level properties through function cal
although the functions involved must be simple and of unimpeachable correctnes

The combination of invariants and dynamic aliasing raises the Indirect Invarial
Effect, which may cause an object to violate its invariant through no fault of its owi

11.16 BIBLIOGRAPHICAL NOTES

According to Tony Hoare:

An early advocate of using assertions in programming was none other than Alan
Turing himse. On 24 June 1950 at a conference in Cambr, he gave a short

talk entitled “Checking a Large Routine” which explains the idea with great
clarity. “How can one check a large routine in the sense that it's 7 In order

that the man who checks may not have too difficult ¢, the programmer should
make a number of definiassertion which can be checked individue, and

from which the correctness of the whole program easily fo.” »ws

The notion of assertion as presented in this chapter comes from the work on progr

correctness pioneered by Bob Fl [Floyd 1967, Tony Hoare[Hoare 1969 and Edsger

408 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES8E11.1

Dijkstra[Dijkstra 1976, and further described [Gries 1981. The bookintroduction to
the Theory of Programming LanguacM 1990] presents a survey of the field.

The notion of class invariant comes from Hoare’s work on data type invariants
[Hoare 1972z See also applications to program desig[Jones 198([Jones 198t A
formal theory of morphisms between abstract data types may bein [Goguen 197¢.

Formal specification languages include Z, VDM, OBJ-2 and Larch; see the
bibliographical references to chapi6. Object-oriented formal specification languages
include Object Z, Z++, Mooz, OOZE, SmallvDM and VDM++, all of which are
described if[Lano 1994 which gives many more references.

The IEEE Computer Society publishes standards for the terminology of software errors,
defects, failure[IEEE 1990 [IEEE 1993. Its Web page is http://www.compute.org.

Surprisingly, few programming languages have included syntactical provision for
assertions; an early example (the first to my knowledge) was Hoare's and Wirth's
Algol W [Hoare 1966, the immediate precursor of Pascal. Others include Alf[Shaw
1981 and Euclid [Lampson 1977, which were specifically designed to allow the
construction of provably correct programs. The connection with object-oriented
development introduced by the notation developed in this book was foreshadowed by the
assertions of CL|[Liskov 1981 which, however, are not executable. Another CLU-based
book by Liskov and Gutta[Liskov 1986, one of the few programming methodology
texts to discuss in depth how to build reliable software, promotes the “defensive
programming” approach of which the present chapter has developed a critique.

The notion of Design by Contract presented in this chapter and developed in the rest
of this book comes fror[M 1987a and was further developed [M 1988], [M 1989c],
[M 1992b] and[M 1992c]. [M 1994a discusses the tolerant and demanding approaches
to precondition design, with particular emphasis on their application to the design of
reusable libraries, and introduces the “tough love” policy. Further developments of the
ideas have been contributed by James Mc in [McKim 1992a (which led to some of
the initial ideas for IFL),[McKim 1995], [McKim 1996], [McKim 1996a; see also
[Henderson-Sellers 199« which examines the viewpoint of the supplier.

EXERCISES

E11.1 Complex numbers

Write the abstract data type specification for a cCOMPLE> describing the notion of
complex number with arithmetic operations. Assume perfect arithmetic.

. The ADT specification
E11.2 Aclass andits ADT appears on pagl3c.

STACK:is on page
Examine all the preconditions and axioms of STACk abstract data type introduced i36< and includes
an earlier chapter and study whether and how each is reflected iISTACK.. STACK;, page350

8E11.3 EXERCISES 409

Page35(.

“A tolerant mod-

ule”, page 361)

Page40z.

Page38:.

E11.3 Complete assertions for stacks

Show that by introducing a secret functibody which returns the body of a stack, it is
possible to make the assertions iISTACK class reflect the full corresponding abstract
data type specification. Discuss the theoretical and practical value of this technique.

E11.4 Exporting the size

Why iscapacity exported for the bounded implementation of stacks, STACK:?

E11.5 An implementation invariant

Write the implementation invariant for claSTACK:J

E11.6 Assertions and exports

The discussion of using functions in assertions introduced a furcorrect_inde for the
precondition ofiterr andput. If you add this function to clasARRA", what export status
must you give it?

E11.7 Finding the bugs

Show that each of the four attempts at binary search algorithms advertized as “wrong
indeed incorrect.Hint: unlike proving an algorithm correct, which requires showing that
it will work for all possible cases, proving itincorrect only requires that youone case

in which the algorithm will produce a wrong result, fail to terminate, or execute an illeg
operation such as an out-of-bounds array access or other precondition violation.)

E11.8 Invariant violations

The discussion in this chapter has shown that a precondition violation indicates an el
in the client, and a postcondition violation indicates an error in the supplier. Explain wt
an invariant violation also reflects a supplier error.

E11.9 Random number generators

Write a class implementing pseudo-random number generation, based on a seque
n; = f(n,.1) wheref is a given function and the seng will be provided by clients of the
class. Functions should have no side effects. (Assf is known; you can find such
functions in textbooks such [Knuth 1981, and in numerical libraries.)

410 DESIGN BY CONTRACT: BUILDING RELIABLE SOFTWARES8E11.10

E11.10 A queue module

Write a class implementing queues (first-in, first-out policy), with appropriate assertions,
in the style of theSTACk classes of this chapter.

E11.11 A set module

Write a class implementing sets of elements of an arbitrary types, with the standard set
operations (membership test, addition of a new element, union, intersection etc.). Be sure
to include the proper assertions. Any correct implementation, such as linked lists or arrays,
is acceptable.

POSTSCRIPT: THE ARIANE 5 CRASH

As this book was being printed, the European Space Agency released the reporiFor a more detailed
international investigation into the test flight of the Ariane 5 launcher, which crashediscussion see
June 4, 1996, 40 seconds after lift-off, at a reported cost of 500 million dollars (u ninsM 19972.

The cause of the crash: a failure of the on-board computer systems. The cause of that
failure: a conversion from a 64-bit floating-point number (the mission’s “horizontal bias”)
to a 16-bit signed integer produced an exception because the number was not
representable with 16 bits. Although some other possible exceptions were monitored
(using the Ada mechanisms described in the next chapter) prior analysis had shown that
this particular one could not occur; so it was decided not to encumber the code with an
extra exception handler.

The real cause: insufficient specification. The analysis that the value would always
fitin 16 bits was in fact correct — but for the Ariane 4 flight trajectory! The code was
reused for Ariane 5, and the assumption, although stated in an obscure part of some
technical document, was simply forgotten. It did not apply any more to Ariane 5.

With the Design by Contract approach, it would have been stated in a precondition:

require
horizontal _bias<= Maximum_horizontal _bias

naturally prompting the quality assurance team to check all uses of the routine and to detect
that some could violate the assertion. Although we will never know, it seems almost
certain that the mistake would have been caught, probably through static analysis, and at
worst during testing thanks to the assertion monitoring mechanisms described in this
chapter.

The lesson is cleareuse without contracts is folly. The “abstracted modules” that
we have defined as our units of reuse must be equipped with clear specifications of their
operating conditions — preconditions, postconditions, invariants; and these specifications
must bein the modules themsely, not in external documents. The principles that we have
learned, particularly Design by Contract and Self-Documentation, are a required condition
of any successful reusability policy. Even if your mistakes would cost less than half a
billion dollars, remember this rule as you go after the great potential benefits of reuse: to
be reusable, a module must be specified; and the programming language must support
assertion mechanisms that will put the specification in the software itself.

	11 11 Design by Contract: building reliable softwa...
	11.1 BASIC RELIABILITY MECHANISMS
	11.2 ABOUT SOFTWARE CORRECTNESS
	Software Correctness property

	11.3 EXPRESSING A SPECIFICATION
	Correctness formulae
	Meaning of a correctness formula {P} A {Q}�

	Weak and strong conditions
	Sinecure 1
	Sinecure 2

	11.4 INTRODUCING ASSERTIONS INTO SOFTWARE TEXTS
	11.5 PRECONDITIONS AND POSTCONDITIONS
	A stack class
	Preconditions
	Postconditions
	A pedagogical note

	11.6 CONTRACTING FOR SOFTWARE RELIABILITY
	Rights and obligations
	A routine contract: routine put for a stack class

	Zen and the art of software reliability: guarantee...
	Non-Redundancy principle

	Assertions are not an input checking mechanism
	Using filter modules

	Assertions are not control structures
	Assertion Violation rule (1)
	Assertion violation rule (2)

	Errors, defects and other creeping creatures
	Terms to denote software woes

	11.7 WORKING WITH ASSERTIONS
	A stack class
	Stack implemented with an array (see page 123 for ...

	The imperative and the applicative
	The imperative- applicative opposition

	A note on empty structures
	Precondition design: tolerant or demanding?
	Reasonable Precondition principle

	Preconditions and export status
	Precondition Availability rule

	A tolerant module

	11.8 CLASS INVARIANTS
	Definition and example
	Form and properties of class invariants
	The life of an object

	An invariant that varies
	Who must preserve the invariant?
	Invariant rule

	The role of class invariants in software engineeri...
	Invariants and contracting

	11.9 WHEN IS A CLASS CORRECT?
	The correctness of a class
	Definition: class correctness
	The life of an object
	(This figure first appeared on page 366.)

	The role of creation procedures
	Arrays revisited

	11.10 THE ADT CONNECTION
	Not just a collection of functions
	Class features vs. ADT functions
	Expressing the axioms
	The abstraction function
	Transformations
	on abstract and concrete objects
	Class-ADT Consistency property

	Implementation invariants
	Same abstract object, two representations

	11.11 AN ASSERTION INSTRUCTION
	11.12 LOOP INVARIANTS AND VARIANTS
	Loop trouble
	Four (wrong) attempts at binary search.
	From [M 1990]

	Getting loops right
	Approximating an array by successive slices

	Ingredients for a provably correct loop
	A loop computation (���from [M 1990])

	Loop syntax

	11.13 USING ASSERTIONS
	Assertions as a tool for writing correct software
	Using assertions for documentation: the short form...
	Monitoring assertions at run time
	How much assertion monitoring?

	11.14 DISCUSSION
	Why run-time monitoring?
	The expressive power of assertions
	Including functions in assertions
	Assertion Evaluation rule

	Class invariants and reference semantics
	Consistency of forward and backward references
	Violating the invariant

	More to come

	11.15 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	11.16 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E11.1 Complex numbers
	E11.2 A class and its ADT
	E11.3 Complete assertions for stacks
	E11.4 Exporting the size
	E11.5 An implementation invariant
	E11.6 Assertions and exports
	E11.7 Finding the bugs
	E11.8 Invariant violations
	E11.9 Random number generators
	E11.10 A queue module
	E11.11 A set module

	POSTSCRIPT: THE ARIANE 5 CRASH

