2

Criteria of object orientation

In the previous chapter we explored the goals of the object-oriented method. As
preparation for part® andC, in which we will discover the technical details of the
method, it is useful to take a quick but wide glance at the key aspects of object-oriente
development. Such is the aim of this chapter.

One of the benefits will be to obtain a concise memento of what makes a syster
object-oriented. This expression has nowadays become so indiscriminately used that v
need a list of precise properties under which we can assess any method, language or t
that its proponents claim to be O-O.

This chapter limits its explanations to a bare minimum, so if this is your first reading
you cannot expect to understand in detail all the criteria listed; explaining them is the tas
of the rest of the book. Consider this discussion a preview — not the real movie, just a traile

Warning Actually a warning is in order because unlike any good trailer this chapter is alsc

SPOILER what film buffs call espoiler— it gives away some of the plot early. As such it breaks the
step-by-step progression of this book, especially part B, which patiently builds the cas
for object technology by looking at issue after issue before deducing and justifying the
solutions. If you like the idea of reading a broad overview before getting into more depth
this chapter is for you. But if you prefaptto spoil the pleasure of seeing the problems
unfold and of discovering the solutions one by one, then you should simply skip it. You
will not need to have read it to understand subsequent chapters.

2.1 ON THE CRITERIA

Let us first examine the choice of criteria for assessing objectness.

How dogmatic do we need to be?

The list presented below includes all the facilities which | believe to be essential for the
production of quality software using the object-oriented method. It is ambitious and may
appear uncompromising or even dogmatic. What conclusion does this imply for ar
environment which satisfies some but not all of these conditions? Should one just reje
such a half-hearted O-O environment as totally inadequate?

22 CRITERIA FOR OBJECT ORIENTATIONS2.2

Only you, the reader, can answer this question relative to your own context. Several
reasons suggest that some compromises may be necessary:

* “Object-oriented” is not a boolean condition: environment A, although not 100%
0-0, may be “more” O-0O than environment B; so if external constraints limit your
choice to A and B you will have to pick A as the least bad object-oriented choice.

* Not everyone will need all of the properties all the time.

< Object orientation may be just one of the factors guiding your search for a software
solution, so you may have to balance the criteria given here with other considerations.

All this does not change the obvious: to make informed choices, even if practical
constraints impose less-than-perfect solutions, you need to know the complete picture, as
provided by the list below.

Categories

The set of criteria which follows has been divided into three parts:

* Method and languac these two almost indistinguishable aspects cover the thought
processes and the notations used to analyze and produce software. Be sure to note
that (especially in object technology) the term “language” covers not just the
programming language in a strict sense, but also the notations, textual or graphical,
used for analysis and design.

* Implementation and environme¢ the criteria in this category describe the basic
properties of the tools which allow developers to apply object-oriented ideas.

* Libraries: object technology relies on the reuse of software components. Criteria in
this category cover both the availability of basic libraries and the mechanisms
needed to use libraries and produce new ones.

This division is convenient but not absolute, as some criteria straddle two or three of
the categories. For example the criterion labeled “memory management’” has been
classified under method and language because a language can support or prevent
automatic garbage collection, but it also belongs to the implementation and environment
category; the “assertion” criterion similarly includes a requirement for supporting tools.

2.2 METHOD AND LANGUAGE

The first set of criteria covers the method and the supporting notation.

Seamlessness

The object-oriented approach is ambitious: it encompasses the entire software lifecycle.
When examining object-oriented solutions, you should check that the method and
language, as well as the supporting tools, apply to analysis and design as well as
implementation and maintenance. The language, in particular, should be a vehicle for
thought which will help you through all stages of your work.

§2.2 METHOD AND LANGUAGE 23

The result is a seamless development process, where the generality of the conc
and notations helps reduce the magnitude of the transitions between successive ste|
the lifecycle.

These requirements exclude two cases, still frequently encountered but eque
unsatisfactory:

* The use of object-oriented concepts for analysis and design only, with a method ¢
notation that cannot be used to write executable software.

e The use of an object-oriented programming language which is not suitable f
analysis and design.

In summary:

An object-oriented language and environment, together with the suppprting
method, should apply to the entire lifecycle, in a way that minimizes the|gaps
between successive adties.

Classes

The object-oriented method is based on the notion of class. Informally, a class is
software element describing an abstract data type and its partial or total implementati
An abstract data type is a set of objects defined by the list of operatiofeature:;
applicable to these objects, and the properties of these operations.

The method and the language should have the notion of class as$ their
central concept.

Assertions

The features of an abstract data type have formally specified properties, which shoulc
reflected in the corresponding classes. Assertions — routine preconditions, routi
postconditions and class invariants — play this role. They describe the effect of featu
on objects, independently of how the features have been implemented.

Assertions have three major applications: they help produce reliable software; th
provide systematic documentation; and they are a central tool for testing and debugg
object-oriented software.

The language should make it possible to equip a class and its featthgs wit
assertions (preconditions, postconditions and invariants), relying on topls to
produce documentation out of these assertions and, optionally, monitor them
at run time.

In the society of software modules, with classes serving as the cities and instructic
(the actual executable code) serving as the executive branch of government, assert
provide the legislative branch. We shall see below who takes care of the judicial syste

24 CRITERIA FOR OBJECT ORIENTATIONS2.2

Classes as modules

Object orientation is primarily an architectural technique: its major effect is on the
modular structure of software systems.

The key role here is again played by classes. A class describes not just a type of
objects but also a modular unit. In a pure object-oriented approach:

Classes should be the only modules.

In particular, there is no notion of main program, and subprograms do not exist as
independent modular units. (They may only appear as part of classes.) There is also no
need for the “packages” of languages such as Ada, although we may find it convenient for
management purposes to group classes into administrative units,cluster

Classes as types

The notion of class is powerful enough to avoid the need for any other typing mechanism:

Every type should be based on a class.

Even basic types suchINTEGEFandREAL can be derived from classes; normally
such classes will be built-in rather than defined anew by each developer.

Feature-based computation

In object-oriented computation, there is only one basic computational mechanism: given a
certain object, which (because of the previous rule) is always an instance of some class,
call a feature of that class on that object. For example, to display a certain window on a
screen, you call the featudisplay on an object representing the window — an instance of
classWINDOW. Features may also have arguments: to increase the salary of an employee
ebyndollars, effective at daid, you call the featurraise one, withn andd as arguments.

Just as we treat basic types as predefined classes, we may view basic operations
(such as addition of numbers) as special, predefined cases of feature call, a very general
mechanism for describing computations:

Feature call should be the primary computational mechanism.

A class which contains a call to a feature of a cGts said to be iclient of C.
Feature call is also known imessage passir; in this terminology, a call such as the
above will be described as passine the message “raise your pay”, with amertsd ard
n.

§2.2 METHOD AND LANGUAGE 25

Information hiding

When writing a class, you will sometimes have to include a feature which the class ne«
for internal purposes only: a feature that is part of the implementation of the class, but
of its interface. Others features of the class — possibly available to clients — may call 1
feature for their own needs; but it should not be possible for a client to call it directly.

The mechanism which makes certain features unfit for clients’ calls is calle
information hiding. As explained in a later chapter, it is essential to the smooth evoluti
of software systems.

In practice, it is not enough for the information hiding mechanism to support export:
features (available to all clients) and secret features (available to no client); class desig
must also have the ability to export a feature selectively to a set of designated clients.

It should be possible for the author of a class to specify that a feature is
available to all clients, to no client, or to specified clients.

An immediate consequence of this rule is that communication between class
should be strictly limited. In particular, a good object-oriented language should not off
any notion of global variable; classes will exchange information exclusively throug
feature calls, and through the inheritance mechanism.

Exception handling

Abnormal events may occur during the execution of a software system. In object-orien
computation, they often correspond to calls that cannot be executed properly, as a re
of a hardware malfunction, of an unexpected impossibility (such as numerical overflow
an addition), or of a bug in the software.

To produce reliable software, it is necessary to have the ability to recover from su
situations. This is the purpose of an exception mechanism.

The language should provide a mechanism to recover from unexpected
abnormal situations.

In the society of software systems, as you may have guessed, the except
mechanism is the third branch of government, the judicial system (and the support
police force).

Static typing

When the execution of a software system causes the call of a certain feature on a ce
object, how do we know that this object will be able to handle the call? (In messa
terminology: how do we know that the object can process the message?)

To provide such a guarantee of correct execution, the language must be typed. T
means that it enforces a few compatibility rules; in particular:

26 CRITERIA FOR OBJECT ORIENTATIONS2.2

» Every entity (that is to say, every name used in the software text to refer to run-time
objects) is explicitly declared as being of a certain type, derived from a class.

« Every feature call on a certain entity uses a feature from the corresponding class (and
the feature is available, in the sense of information hiding, to the caller’s class).

e Assignment and argument passing are subjecconformance rules, based on
inheritance, which require the source’s type to be compatible with the target’s type.

In a language that imposes such a policy, it is possible to wstatic type checker
which will accept or reject software systems, guaranteeing that the systems it accepts will
not cause any “feature not available on object” error at run time.

A well-defined type system should, by enforcing a number of type
declaration and compatibility rules, guarantee the run-time type safety of the
systems it accepts.

Genericity

For typing to be practical, it must be possible to define type-parameterized classes, known
as generic. A generic claLIST[G] will describe lists of elements of an arbitrary type
represented b'G, the “formal generic parameter”; you may then declare specific lists
through such derivations LIST[INTEGEF] andLIST [WINDOW], using typeINTEGER
andWINDOW as “actual generic parameters”. All derivations share the same class text.

It should be possible to write classes with formal generic parameters
representing arbitrary types.

This form of type parameterization is calleunconstrained genericity. A
companion facility mentioned below, constrained genericity, involvesgitance.

Single inheritance

Software development involves a large number of classes; many are variants of others. To
control the resulting potential complexity, we need a classification mechanism, known as
inheritance. A class will be an heir of another if it incorporates the other’s features in
additionto its own. (/descendaris a direct or indirect heir; the reverse notioancesto.)

It should be possible to define a class as inheriting from another.

Inheritance is one of the central concepts of the object-oriented methods and has
profound consequences on the software development |s.oces

Multiple inheritance

We will often encounter the need to combine several abstractions. For example a class
might model the notion of “infant”, which we may view both as a “person”, with the

§2.2 METHOD AND LANGUAGE 27

Repeated
inheritance

associated features, and, more prosaically, as a “tax-deductible item”, which earns sc
deduction at tax time. Inheritance is justified in both caMultiple inheritance is the
guarantee that a class may inherit not just from one other but from as many as
conceptually justified.

Multiple inheritance raises a few technical problems, in particular the resolution
name clashe(cases in which different features, inherited from different classes, have tl
same name). Any notation offering multiple inheritance must provide an adeque
solution to these problems.

It should be possible for a class to inherit from as many others as necessary,
with an adequate mechanism for disambiguating name clashes.

The solution developed in this book is baserenamingthe conflicting features in
the heir class.

Repeated inheritance

Multiple inheritance raises the possibilityrepeatecinheritance, the case in which a class
inherits from another through two or more paths, as shown.

\ / ?Inherits from

In such a case the language must provide precise rules defining what happen
features inherited repeatedly from the common anceA in the figure. As the discussion
of repeated inheritance will show, it may be desirable for a featlA to yield just one
feature ofD in some casessharing), but in others it should yield twcreplicatior).
Developers must have the flexibility to prescribe either policy separately for each featu

Precise rules should govern the fate of features under repeated inhetitance,
allowing developers to choose, separately for each repeatedly inherited
feature, between sharing and replication.

Constrained genericity

The combination of genericity and inheritance brings about an important techniqt
constrained genericity, through which you can specify a class with a generic parame
that represents not an arbitrary type as with the earlier (unconstrained) form of generic
but a type that is a descendant of a given class.

28 CRITERIA FOR OBJECT ORIENTATIONS2.2

A generic classSORTABLE LIS, describing lists with esort feature that will
reorder them sequentially according to a certain order relation, needs a generic parameter
representing the list elements’ type. That type is not arbitrary: it must support an order
relation. To state that any actual generic parameter must be a descendant of the library
classCOMPARABLI, describing objects equipped with an order relation, use constrained
genericity to declare the classSORTABLE LIS|[G -> COMPAFABLE].

The genericity mechanism should support the constrained form of
genericity.

Redefinition

When a class is an heir of another, it may need to change the implementation or other
properties of some of the inherited features. A ¢cSESSIONescribing user sessions in

an operating system may have a featerminateto take care of cleanup operations at the
end of a session; an heir might REMOTE _SESSIC, handling sessions started from a
different computer on a network. If the termination of a remote session requires
supplementary actions (such as notifying the remote computer)REMOTE_SESSION

will redefine featureerminate.

Redefinition may affect the implementation of a feature, its signature (type of
arguments and result), and its cification.

It should be possible to redefine the specification, signature | and
implementation of an inherited feature.

Polymorphism

With inheritance brought into the picture, the static typing requirement listed earlier would
be too restrictive if it were taken to mean that every entity declared oC may only

refer to objects whose type is exacC. This would mean for example that an entity of
type C (in a navigation control system) could not be used to refer to an object of type
MERCHANT_SHI or SPORTS_BO/, both assumed to be classes inheriting from
BOAT.

As noted earlier, an “entity” is a name to which various values may become attached at
run time. This is a generalization of the traditional notion of variable.

Polymorphism is the ability for an entity to become attached to objects of various
possible types. In a statically typed environment, polymorphism will not be arbitrary, but
controlled by inheritance; for example, we should not allowBOAT entity to become

§2.2 METHOD AND LANGUAGE 29

attached to an object representing an object of BUOY, a class which does not inherit
from BOAT.

It should be possible to attach entities (names in the software |texts
representing run-time objects) to run-time objects of various possible types,
under the control of the inheritance-based type system.

Dynamic binding

The combination of the last two mechanisms mentioned, redefinition and polymorphis
immediately suggests the next one. Assume a call whose target is a polymorphic en
for example a call to the featuturn on an entity declared of tyfBOAT. The various
descendants (BOATmay have redefined the feature in various ways. Clearly, there mu:
be an automatic mechanism to guarantee that the versturn will always be the one
deduced from the actual object’s type, regardless of how the entity has been declared."
property is called dynamic binding.

Calling a feature on an entity should always trigger the feature correspgnding
to the type of the attached run-time object, which is not necessarily theg same
in different executions of the call.

Dynamic binding has a major influence on the structure of object-oriente
applications, as it enables developers to write simple calls (meaning, for example, “c
feature turn on entity my boa”) to denote what is actually several possible calls
depending on the corresponding run-time situations. This avoids the need for many of
repeated tests (“Is this a merchant ship? Is this a sports boat?”) which plague softw
written with more conventional approaches.

Run-time type interrogation

Object-oriented software developers soon develop a healthy hatred for any style
computation based on explicit choices between various types for an object. Polymorphi
and dynamic binding provide a much preferable alternative. In some cases, however
object comes from the outside, so that the software author has no way to predict its t
with certainty. This occurs in particular if the object is retrieved from external storag
received from a network transmission or passed by some other system.

The software then needs a mechanism to access the object in a safe way, witt
violating the constraints of static typing. Such a mechanism should be designed with c:
S0 as not to cancel the benefits of polymorphism and dynamic binding.

The assignment attemp operation described in this book satisfies these
requirements. An assignment attempt is a conditional operation: it tries to attach an ob]
to an entity; if in a given execution the object’s type conforms to the type declared for t
entity, the effect is that of a normal assignment; otherwise the entity gets a special “vo

30 CRITERIA FOR OBJECT ORIENTATIONS2.2

value. So you can handle objects whose type you do not know for sure, without violating
the safety of the type system.

It should be possible to determine at run time whether the type of an pbject
conforms to a statically given type.

Deferred features and classes

In some cases for which dynamic binding provides an elegant solution, obviating the need
for explicit tests, there is no initial version of a feature to be redefined. For example class
BOATmay be too general to provide a default implementaticturn. Yet we want to be

able to call featurturn to an entity declared of tyfBOATIf we have ensured that at run
time it will actually be attached to objects of such fully defined typeMERCHANT _

SHIP anc SPORTS_BOA. T

In such caseBOAT may be declared as a deferred class (one which is not fully
implemented), and with a deferred featiturn. Deferred features and classes may still
possess assertions describing their abstract properties, but their implementation is
postponed to descendant classes. A non-deferres is sair to beeffective.

It should be possible to write a class or a feature as deferred, that is|to say
specified but not fully implemented.

Deferred classes (also called abstract classes) are particularly important for object-
oriented analysis and high-level design, as they make it possible to capture the essential
aspects of a system while leaving details to a latge.ta

Memory management and garbage collection

The last point on our list of method and language criteria may at first appear to belong
more properly to the next category — implementation and environment. In fact it belongs
to both. But the crucial requirements apply to the language; the rest is a matter of good
engineering.

Object-oriented systems, even more than traditional programs (except in the Lisp
world), tend to create many objects with sometimes complex interdependencies. A policy
leaving developers in charge of managing the associated memory, especially when it
comes to reclaiming the space occupied by objects that are no longer needed, would harm
both the efficiency of the development process, as it would complicate the software and
occupy a considerable part of the developers’ time, and the safety of the resulting systems,
as it raises the risk of improper recycling of memory areas. In a good object-oriented
environment memory management will be automatic, under the control garbage
collectol, a component of the runtime system.

The reason this is a language issue as much as an implementation requirement is that
a language that has not been explicitly designed for automatic memory management will
often render it impossible. This is the case with languages where a pointer to an object of

§2.3 IMPLEMENTATION AND ENVIRONMENT 31

a certain type may disguise itself (through conversions known as “casts”) as a pointel
another type or even as an integer, making it impossible to write a rbage collector.

The language should make safe automatic memory management passible,
and the implementation should provide an automatic memory mapager
taking care of garbage collection.

2.3 IMPLEMENTATION AND ENVIRONMENT

We come now to the essential features of a development environment supporting obj
oriented software construction.

Automatic update

Software development is an incremental process. Developers do not commonly wi
thousands of lines at a time; they proceed by addition and modification, starting most
the time from a system that is already of substantial size.

When performing such an update, it is essential to have the guarantee that
resulting system will be consistent. For example, if you change a fef of classC, you
must be certain that every descendanC which does not redefinf will be updated to
have the new version f, and that every call tf in a client ofC or of a descendant
will trigger the new version.

Conventional approaches to this problem are manual, forcing the developers
record all dependencies, and track their changes, using special mechanisms know
“make files” and “include files”. This is unacceptable in modern software developmen
especially in the object-oriented world where the dependencies between classes, resu
from the client and inheritance relations, are often complex but may be deduced fron
systematic examination of the software text.

System updating after a change should be automatic, the analysis of inter-
class dependencies being performed by tools, not manually by developers.

It is possible to meet this requirement in a compiled environment (where tt
compiler will work together with a tool for dependency analysis), in an interprete
environment, or in one combining both of these language implementation techniques.

Fast update

In practice, the mechanism for updating the system after some changes should not onl
automatic, it should also be fast. More precisely, it should be proportional to the size

32 CRITERIA FOR OBJECT ORIENTATIONS2.3

the changed parts, not to the size of the system as a whole. Without this property, the
method and environment may be applicable to small systems, but not to large ones.

The time to process a set of changes to a system, enabling execution of the
updated version, should be a function of the size of the changed components,
independent of the size of the system as a whole.

Here too both interpreted and compiled environments may meet the criterion,
although in the latter case the compiler must be incremental. Along with an incremental
compiler, the environment may of course include a global optimizing compiler working
on an entire system, as long as that compiler only needs to be used for delivering a final
product; development will rely on the incremental compiler.

Persistence

Many applications, perhaps most, will need to conserve objects from one session to the
next. The environment should provide a mechanism to do this in a simple way.

An object will often contain references to other objects; since the same may be true
of these objects, this means that every object may have a large nurrdependent
objects, with a possibly complex dependency graph (which may involve cycles). It would
usually make no sense to store or retrieve the object without all its direct and indirect
dependents. A persistence mechanism which can automatically store an object's
dependents along with the object is said to sugpersistence closur.2

A persistent storage mechanism supporting persistence closure shguld be
available to store an object and all its dependents into external devices, and
to retrieve them in the same or another session.

For some applications, mere persistence support is not sufficient; such applications
will need full database suppor. The notion of object-oriented database is covered in a
later chapter, which also explores other persistent issues sischema evolutic, the
ability to retrieve objects safely even if the corresponding classes have changed.

Documentation

Developers of classes and systems must provide management, customers and other
developers with clear, high-level descriptions of the software they produce. They need
tools to assist them in this effort; as much as possible of the documentation should be
produced automatically from the software texts. Assertions, as already noted, help make
such software-extracted documents precise and informative.

Automatic tools should be available to produce documentation about classes
and systems.

§2.4 LIBRARIES

33

Sis a “supplier” of
CifCisacliento€.
“Client” was

defined on pag24.

Browsing

When looking at a class, you will often need to obtain information about other classes;
particular, the features used in a class may have been introduced not in the class itsel
in its various ancestors. This puts on the environment the burden of providing develop
with tools to examine a class text, find its dependencies on other classes, and sw
rapidly from one class text to another.

This task is called browsing. Typical facilities offered by good browsing tools
include: find the clients, suppliers, descendants, ancestors of a class; find all -
redefinitions of a feature; find the original declaration of a redefined feature.

Interactive browsing facilities should enable software developers to follgw up
quickly and conveniently the dependencies between classes and featurgs.

2.4 LIBRARIES

One of the characteristic aspects of developing software the object-oriented way is
ability to rely on libraries. An object-oriented environment should provide good libraries
and mechanisms to write more.

Basic libraries

The fundamental data structures of computing science — sets, lists, trees... — and

the associated algorithms — sorting, searching, traversing, pattern matching —
ubiquitous in software development. In conventional approaches, each develoj
implements and re-implements them independently all the time; this is not only waste
of efforts but detrimental to software quality, as it is unlikely that an individual develope
who implements a data structure not as a goal in itself but merely as a component of s
application will attain the optimum in reliability and efficiency.

An object-oriented development environment must provide reusable class
addressing these common needs of software systems.

Reusable classes should be available to cover the most frequently needed
data structures and algorithms.

Graphics and user interfaces

Many modern software systems are interactive, interacting with their users throu
graphics and other pleasant interface techniques. This is one of the areas where the ok
oriented model has proved most impressive and helpful. Developers should be able to
on graphical libraries to build interactive applications quickly and effectively.

Reusable classes should be available for developing applications which
provide their users with pleasant graphical user interface.

34 CRITERIA FOR OBJECT ORIENTATIONS2.5

Library evolution mechanisms

Developing high-quality libraries is a long and arduous task. It is impossible to guarantee
that the design of library will be perfect the first time around. An important problem, then,
is to enable library developers to update and modify their designs without wreaking havoc
in existing systems that depend on the library. This important criterion belongs to the
library category, but also to the method and language category.

Mechanisms should be available to facilitate library evolution with minjimal
disruption of client software.

Library indexing mechanisms

Another problem raised by libraries is the need for mechanisms to identify the classes
addressing a certain need. This criterion affects all three categories: libraries, language (as
there must be a way to enter indexing information within the text of each class) and tools
(to process queries for classes satisfying certain conditions).

Library classes should be equipped with indexing information allowing
property-based retrieval.

2.5 FOR MORE SNEAK PREVIEW

Although to understand the concepts in depth it is preferable to read this book
sequentially, readers who would like to complement the preceding theoretical overview
with an advance glimpse of the method at work on a practical example can at this point
read chapte¢ 20, a case study of a practical design problem, on which it compares an O-O
solution with one employing more traditional techniques.

That case study is mostly self-contained, so that you will understand the essentials
without having read the intermediate chapters. (But if you do go ahead for this quick peek,
you must promise to come back to the rest of the sequential presentation, starting with
chapter3, as soon as you are done.)

2.6 BIBLIOGRAPHICAL NOTES AND OBJECT RESOURCES

This introduction to the criteria of object orientation is a good opportunity to list a
selection of books that offer quality introductions to object technology in general.

[Waldén 1995 [discusses the most important issues of object technology, focusing
on analysis and design, on which it is probably the best reference.

[Page-Jones 199 provides an excellent overview of the method.

[Cox 1990 (whose first edition was published in 1986) is based on a somewhat
different view of object technology and was instrumental in bringing O-O concepts to a
much larger audience than before.

§2.6 BIBLIOGRAPHICAL NOTES AND OBJECT RESOURCES 35

Chapte 28 dis-
cusses teaching
the technology.

[Henderson-Sellers 19¢ (a second edition is announceprovides a short overview
of O-0O ideas. Meant for people who are asked by their company to “go out and find c
what that object stuff is about”, it includes ready-to-be-photocopied transparency maste
precious on such occasions. Another overvie[Eliéns 1995

The Dictionary of Object Technolo j[Firesmith 1995 provides a comprehensive
reference on many aspects of the method.

All these books are to various degrees intended for technically-minded people. Thi
is also a need to educate manag[M 1995] grew out of a chapter originally planned for
the present book, which became a full-fledged discussion of object technology f
executives. It starts with a short technical presentation couched in business terms
continues with an analysis of management issues (lifecycle, project management, re
policies). Another management-oriented boo[Goldberg 1995 provides a
complementary perspective on many important toj[Baudoin 1996 stresses lifecycle
issues and the importance of standards.

Coming back to technical presentations, three influential books on object-orient
languages, written by the designers of these languages, contain general methodolog
discussions that make them of interest to readers who do not use the languages or n
even be critical of them. (The history of programming languages and books about th
shows that designers are not always the best to write about their own creations, but in tf
cases they were.) The books are:

e Simula BEGIN[Birtwistle 1973. (Here two other authors joined the language
designers Nygaard and Dahl.)

¢ Smalltalk-8(: The Language and its Implementai [Goldberg 198%]
e The C++ Programming Languay, second editio [Stroustrup 1991]

More recently, some introductory programming textbooks have started to use obje
oriented ideas right from the start, as there is no reason to let “ontogeny repeat phyloge!
that is to say, take the poor students through the history of the hesitatiomistakes
through which their predecessors arrived at the right ideas. The first such text (to 1
knowledge) waqRist 1995. Another good book covering similar needs[Wiener
1996. At the nextlevel — textbooks for a second course on programming, discussing d
structures and algorithms based on the notation of this book — you wi[Gore 1996]
and [Wiener 1997; [Jézéquel 199(presents the principles of object-oriented software
engineering.

The Usenet newsgrolcomp.obje¢, archived on several sites around the Web, is the
natural medium of discussion for many issues of object technology. As with all su
forums, be prepared for a mixture of the good, the bad and the ugly. The Obje
Technology department Computel(IEEE), which | have edited since it started in 1995,
has frequent invited columns by leading experts.

Magazines devoted to Object Technology include:

36 CRITERIA FOR OBJECT ORIENTATIONS2.6

e The Journal of Object-Oriented Programmi (the first journal in the field,
emphasizing technical discussions but for a large audieObject Magazin (of a
more general scope, with some articles for managObjekt Spektrun(German,
Object Currenty(on-line), all described ttp://www.sigs.coin

* Theory and Practice of Object Systt, an archival journal.
* L’OBJET (French), described http://www.tools.com/Iobj.:t

The major international O-O conferences are OOPSLA (yearly, USA or Canada, see
http://www.acm.or); Object Expo(variable frequency and locations, described at
http://www.sigs.col); and TOOLS (Technology of Object-Oriented Languages and
Systems), organized by ISE with three sessions a year (USA, Europe, Pacific), whose
home page http://www.tools.cor also serves as a general resource on object technology
and the topics of this book.

	2 2 Criteria of object orientation
	2.1 ON THE CRITERIA
	How dogmatic do we need to be?
	Categories

	2.2 METHOD AND LANGUAGE
	Seamlessness
	Classes
	Assertions
	Classes as modules
	Classes as types
	Feature-based computation
	Information hiding
	Exception handling
	Static typing
	Genericity
	Single inheritance
	Multiple inheritance
	Repeated inheritance
	Repeated inheritance

	Constrained genericity
	Redefinition
	Polymorphism
	Dynamic binding
	Run-time type interrogation
	Deferred features and classes
	Memory management and garbage collection

	2.3 IMPLEMENTATION AND ENVIRONMENT
	Automatic update
	Fast update
	Persistence
	Documentation
	Browsing

	2.4 LIBRARIES
	Basic libraries
	Graphics and user interfaces
	Library evolution mechanisms
	Library indexing mechanisms

	2.5 FOR MORE SNEAK PREVIEW
	2.6 BIBLIOGRAPHICAL NOTES AND OBJECT RESOURCES

