
2
Criteria of object orientation
As a
e

iented

stem
hat we
 or tool

ding
e task
trailer.

 also
the
 case
g the
epth,
s

 You

r the
 may
r an
reject

Warning:
SPOILER!
In the previous chapter we explored the goals of the object-oriented method.
preparation for parts B and C, in which we will discover the technical details of th
method, it is useful to take a quick but wide glance at the key aspects of object-or
development. Such is the aim of this chapter.

One of the benefits will be to obtain a concise memento of what makes a sy
object-oriented. This expression has nowadays become so indiscriminately used t
need a list of precise properties under which we can assess any method, language
that its proponents claim to be O-O.

This chapter limits its explanations to a bare minimum, so if this is your first rea
you cannot expect to understand in detail all the criteria listed; explaining them is th
of the rest of the book. Consider this discussion a preview — not the real movie, just a

Actually a warning is in order because unlike any good trailer this chapter is
what film buffs call a spoiler — it gives away some of the plot early. As such it breaks
step-by-step progression of this book, especially part B, which patiently builds the
for object technology by looking at issue after issue before deducing and justifyin
solutions. If you like the idea of reading a broad overview before getting into more d
this chapter is for you. But if you prefer not to spoil the pleasure of seeing the problem
unfold and of discovering the solutions one by one, then you should simply skip it.
will not need to have read it to understand subsequent chapters.

2.1 ON THE CRITERIA

Let us first examine the choice of criteria for assessing objectness.

How dogmatic do we need to be?

The list presented below includes all the facilities which I believe to be essential fo
production of quality software using the object-oriented method. It is ambitious and
appear uncompromising or even dogmatic. What conclusion does this imply fo
environment which satisfies some but not all of these conditions? Should one just
such a half-hearted O-O environment as totally inadequate?

CRITERIA FOR OBJECT ORIENTATION§2.222

veral

0%
our
ice.

tware
tions.

tical
ure, as

ght
 to note
 the
hical,

ic

ia in
isms

ee of
been
revent
ment
ls.

cycle.
 and
ell as
le for
Only you, the reader, can answer this question relative to your own context. Se
reasons suggest that some compromises may be necessary:

• “Object-oriented” is not a boolean condition: environment A, although not 10
O-O, may be “more” O-O than environment B; so if external constraints limit y
choice to A and B you will have to pick A as the least bad object-oriented cho

• Not everyone will need all of the properties all the time.

• Object orientation may be just one of the factors guiding your search for a sof
solution, so you may have to balance the criteria given here with other considera

All this does not change the obvious: to make informed choices, even if prac
constraints impose less-than-perfect solutions, you need to know the complete pict
provided by the list below.

Categories

The set of criteria which follows has been divided into three parts:

• Method and language: these two almost indistinguishable aspects cover the thou
processes and the notations used to analyze and produce software. Be sure
that (especially in object technology) the term “language” covers not just
programming language in a strict sense, but also the notations, textual or grap
used for analysis and design.

• Implementation and environment: the criteria in this category describe the bas
properties of the tools which allow developers to apply object-oriented ideas.

• Libraries: object technology relies on the reuse of software components. Criter
this category cover both the availability of basic libraries and the mechan
needed to use libraries and produce new ones.

This division is convenient but not absolute, as some criteria straddle two or thr
the categories. For example the criterion labeled “memory management” has
classified under method and language because a language can support or p
automatic garbage collection, but it also belongs to the implementation and environ
category; the “assertion” criterion similarly includes a requirement for supporting too

2.2 METHOD AND LANGUAGE

The first set of criteria covers the method and the supporting notation.

Seamlessness

The object-oriented approach is ambitious: it encompasses the entire software life
When examining object-oriented solutions, you should check that the method
language, as well as the supporting tools, apply to analysis and design as w
implementation and maintenance. The language, in particular, should be a vehic
thought which will help you through all stages of your work.

§2.2 METHOD AND LANGUAGE 23

ncepts
teps in

ually

d and

 for

 is a
tation.

uld be
utine
tures

; they
gging

ctions
ertions
stem.
The result is a seamless development process, where the generality of the co
and notations helps reduce the magnitude of the transitions between successive s
the lifecycle.

These requirements exclude two cases, still frequently encountered but eq
unsatisfactory:

• The use of object-oriented concepts for analysis and design only, with a metho
notation that cannot be used to write executable software.

• The use of an object-oriented programming language which is not suitable
analysis and design.

In summary:

Classes

The object-oriented method is based on the notion of class. Informally, a class
software element describing an abstract data type and its partial or total implemen
An abstract data type is a set of objects defined by the list of operations, or features,
applicable to these objects, and the properties of these operations.

Assertions

The features of an abstract data type have formally specified properties, which sho
reflected in the corresponding classes. Assertions — routine preconditions, ro
postconditions and class invariants — play this role. They describe the effect of fea
on objects, independently of how the features have been implemented.

Assertions have three major applications: they help produce reliable software
provide systematic documentation; and they are a central tool for testing and debu
object-oriented software.

In the society of software modules, with classes serving as the cities and instru
(the actual executable code) serving as the executive branch of government, ass
provide the legislative branch. We shall see below who takes care of the judicial sy

An object-oriented language and environment, together with the supporting
method, should apply to the entire lifecycle, in a way that minimizes the gaps
between successive activities.

The method and the language should have the notion of class as their
central concept.

The language should make it possible to equip a class and its features with
assertions (preconditions, postconditions and invariants), relying on tools to
produce documentation out of these assertions and, optionally, monitor them
at run time.

CRITERIA FOR OBJECT ORIENTATION§2.224

 the

ype of

ist as
lso no
nt for

nism:

ly

iven a
 class,
 on a
 of
loyee

rations
eneral

e

Classes as modules

Object orientation is primarily an architectural technique: its major effect is on
modular structure of software systems.

The key role here is again played by classes. A class describes not just a t
objects but also a modular unit. In a pure object-oriented approach:

In particular, there is no notion of main program, and subprograms do not ex
independent modular units. (They may only appear as part of classes.) There is a
need for the “packages” of languages such as Ada, although we may find it convenie
management purposes to group classes into administrative units, called clusters.

Classes as types

The notion of class is powerful enough to avoid the need for any other typing mecha

Even basic types such as INTEGER and REAL can be derived from classes; normal
such classes will be built-in rather than defined anew by each developer.

Feature-based computation

In object-oriented computation, there is only one basic computational mechanism: g
certain object, which (because of the previous rule) is always an instance of some
call a feature of that class on that object. For example, to display a certain window
screen, you call the feature display on an object representing the window — an instance
class WINDOW. Features may also have arguments: to increase the salary of an emp
e by n dollars, effective at date d, you call the feature raise on e, with n and d as arguments.

Just as we treat basic types as predefined classes, we may view basic ope
(such as addition of numbers) as special, predefined cases of feature call, a very g
mechanism for describing computations:

A class which contains a call to a feature of a class C is said to be a client of C.
Feature call is also known as message passing; in this terminology, a call such as th
above will be described as passing to e the message “raise your pay”, with arguments d and
n.

Classes should be the only modules.

Every type should be based on a class.

Feature call should be the primary computational mechanism.

§2.2 METHOD AND LANGUAGE 25

needs
ut not
ll the
.

lled
ution

rted
igners
s.

sses
offer
ugh

ented
 result
w in

 such

eption
orting

certain
sage

. This
Information hiding

When writing a class, you will sometimes have to include a feature which the class
for internal purposes only: a feature that is part of the implementation of the class, b
of its interface. Others features of the class — possibly available to clients — may ca
feature for their own needs; but it should not be possible for a client to call it directly

The mechanism which makes certain features unfit for clients’ calls is ca
information hiding. As explained in a later chapter, it is essential to the smooth evol
of software systems.

In practice, it is not enough for the information hiding mechanism to support expo
features (available to all clients) and secret features (available to no client); class des
must also have the ability to export a feature selectively to a set of designated client

An immediate consequence of this rule is that communication between cla
should be strictly limited. In particular, a good object-oriented language should not
any notion of global variable; classes will exchange information exclusively thro
feature calls, and through the inheritance mechanism.

Exception handling

Abnormal events may occur during the execution of a software system. In object-ori
computation, they often correspond to calls that cannot be executed properly, as a
of a hardware malfunction, of an unexpected impossibility (such as numerical overflo
an addition), or of a bug in the software.

To produce reliable software, it is necessary to have the ability to recover from
situations. This is the purpose of an exception mechanism.

In the society of software systems, as you may have guessed, the exc
mechanism is the third branch of government, the judicial system (and the supp
police force).

Static typing

When the execution of a software system causes the call of a certain feature on a
object, how do we know that this object will be able to handle the call? (In mes
terminology: how do we know that the object can process the message?)

To provide such a guarantee of correct execution, the language must be typed
means that it enforces a few compatibility rules; in particular:

It should be possible for the author of a class to specify that a feature is
available to all clients, to no client, or to specified clients.

The language should provide a mechanism to recover from unexpected
abnormal situations.

CRITERIA FOR OBJECT ORIENTATION§2.226

-time

s (and
).

type.

ts will

known
e
ists

ext.

rs. To
n as

es in

d has

 class
the
• Every entity (that is to say, every name used in the software text to refer to run
objects) is explicitly declared as being of a certain type, derived from a class.

• Every feature call on a certain entity uses a feature from the corresponding clas
the feature is available, in the sense of information hiding, to the caller’s class

• Assignment and argument passing are subject to conformance rules, based on
inheritance, which require the source’s type to be compatible with the target’s

In a language that imposes such a policy, it is possible to write a static type checker
which will accept or reject software systems, guaranteeing that the systems it accep
not cause any “feature not available on object” error at run time.

Genericity

For typing to be practical, it must be possible to define type-parameterized classes,
as generic. A generic class LIST[G] will describe lists of elements of an arbitrary typ
represented by G, the “formal generic parameter”; you may then declare specific l
through such derivations as LIST [INTEGER] and LIST [WINDOW], using types INTEGER
and WINDOW as “actual generic parameters”. All derivations share the same class t

This form of type parameterization is called unconstrained genericity. A
companion facility mentioned below, constrained genericity, involves inheritance.

Single inheritance

Software development involves a large number of classes; many are variants of othe
control the resulting potential complexity, we need a classification mechanism, know
inheritance. A class will be an heir of another if it incorporates the other’s featur
addition to its own. (A descendant is a direct or indirect heir; the reverse notion is ancestor.)

Inheritance is one of the central concepts of the object-oriented methods an
profound consequences on the software development process.

Multiple inheritance

We will often encounter the need to combine several abstractions. For example a
might model the notion of “infant”, which we may view both as a “person”, with

A well-defined type system should, by enforcing a number of type
declaration and compatibility rules, guarantee the run-time type safety of the
systems it accepts.

It should be possible to write classes with formal generic parameters
representing arbitrary types.

It should be possible to define a class as inheriting from another.

§2.2 METHOD AND LANGUAGE 27

 some

as is

n of
e the
uate

s

ens to

ture.

ique,
meter
ricity,

Repeated
inheritance
associated features, and, more prosaically, as a “tax-deductible item”, which earns
deduction at tax time. Inheritance is justified in both cases. Multiple inheritance is the
guarantee that a class may inherit not just from one other but from as many
conceptually justified.

Multiple inheritance raises a few technical problems, in particular the resolutio
name clashes (cases in which different features, inherited from different classes, hav
same name). Any notation offering multiple inheritance must provide an adeq
solution to these problems.

The solution developed in this book is based on renaming the conflicting features in
the heir class.

Repeated inheritance

Multiple inheritance raises the possibility of repeated inheritance, the case in which a clas
inherits from another through two or more paths, as shown.

In such a case the language must provide precise rules defining what happ
features inherited repeatedly from the common ancestor, A in the figure. As the discussion
of repeated inheritance will show, it may be desirable for a feature of A to yield just one
feature of D in some cases (sharing), but in others it should yield two (replication).
Developers must have the flexibility to prescribe either policy separately for each fea

Constrained genericity

The combination of genericity and inheritance brings about an important techn
constrained genericity, through which you can specify a class with a generic para
that represents not an arbitrary type as with the earlier (unconstrained) form of gene
but a type that is a descendant of a given class.

It should be possible for a class to inherit from as many others as necessary,
with an adequate mechanism for disambiguating name clashes.

Precise rules should govern the fate of features under repeated inheritance,
allowing developers to choose, separately for each repeatedly inherited
feature, between sharing and replication.

Inherits from

A

D

CRITERIA FOR OBJECT ORIENTATION§2.228

ameter
order

 library

ined

 other
n

he

a

uires

e of

ould

of

 type

m

rious

, but
A generic class SORTABLE_LIST, describing lists with a sort feature that will

reorder them sequentially according to a certain order relation, needs a generic par
representing the list elements’ type. That type is not arbitrary: it must support an

relation. To state that any actual generic parameter must be a descendant of the

class COMPARABLE, describing objects equipped with an order relation, use constra

genericity to declare the class as SORTABLE_LIST [G –> COMPARABLE].

Redefinition

When a class is an heir of another, it may need to change the implementation or
properties of some of the inherited features. A class SESSION describing user sessions i

an operating system may have a feature terminate to take care of cleanup operations at t

end of a session; an heir might be REMOTE_SESSION, handling sessions started from

different computer on a network. If the termination of a remote session req

supplementary actions (such as notifying the remote computer), class REMOTE_SESSION
will redefine feature terminate.

Redefinition may affect the implementation of a feature, its signature (typ
arguments and result), and its specification.

Polymorphism

With inheritance brought into the picture, the static typing requirement listed earlier w

be too restrictive if it were taken to mean that every entity declared of type C may only

refer to objects whose type is exactly C. This would mean for example that an entity

type C (in a navigation control system) could not be used to refer to an object of

MERCHANT_SHIP or SPORTS_BOAT, both assumed to be classes inheriting fro
BOAT.

As noted earlier, an “entity” is a name to which various values may become attached at
run time. This is a generalization of the traditional notion of variable.

Polymorphism is the ability for an entity to become attached to objects of va

possible types. In a statically typed environment, polymorphism will not be arbitrary

controlled by inheritance; for example, we should not allow our BOAT entity to become

The genericity mechanism should support the constrained form of
genericity.

It should be possible to redefine the specification, signature and
implementation of an inherited feature.

§2.2 METHOD AND LANGUAGE 29

it

ism,
entity,

ust

d. This

ted
 “call
lls
 of the
ftware

le of
phism
er, an
s type
age,

ithout
 care,

se
object
r the
void”
attached to an object representing an object of type BUOY, a class which does not inher
from BOAT.

Dynamic binding

The combination of the last two mechanisms mentioned, redefinition and polymorph
immediately suggests the next one. Assume a call whose target is a polymorphic
for example a call to the feature turn on an entity declared of type BOAT. The various
descendants of BOAT may have redefined the feature in various ways. Clearly, there m
be an automatic mechanism to guarantee that the version of turn will always be the one
deduced from the actual object’s type, regardless of how the entity has been declare
property is called dynamic binding.

Dynamic binding has a major influence on the structure of object-orien
applications, as it enables developers to write simple calls (meaning, for example,
feature turn on entity my_boat”) to denote what is actually several possible ca
depending on the corresponding run-time situations. This avoids the need for many
repeated tests (“Is this a merchant ship? Is this a sports boat?”) which plague so
written with more conventional approaches.

Run-time type interrogation

Object-oriented software developers soon develop a healthy hatred for any sty
computation based on explicit choices between various types for an object. Polymor
and dynamic binding provide a much preferable alternative. In some cases, howev
object comes from the outside, so that the software author has no way to predict it
with certainty. This occurs in particular if the object is retrieved from external stor
received from a network transmission or passed by some other system.

The software then needs a mechanism to access the object in a safe way, w
violating the constraints of static typing. Such a mechanism should be designed with
so as not to cancel the benefits of polymorphism and dynamic binding.

The assignment attempt operation described in this book satisfies the
requirements. An assignment attempt is a conditional operation: it tries to attach an
to an entity; if in a given execution the object’s type conforms to the type declared fo
entity, the effect is that of a normal assignment; otherwise the entity gets a special “

It should be possible to attach entities (names in the software texts
representing run-time objects) to run-time objects of various possible types,
under the control of the inheritance-based type system.

Calling a feature on an entity should always trigger the feature corresponding
to the type of the attached run-time object, which is not necessarily the same
in different executions of the call.

CRITERIA FOR OBJECT ORIENTATION§2.230

lating

 need
 class

n

ully
till
ion is

bject-
sential

elong
longs
f good

 Lisp
policy
hen it
d harm
e and
stems,
nted

t is that
nt will
ject of
value. So you can handle objects whose type you do not know for sure, without vio
the safety of the type system.

Deferred features and classes

In some cases for which dynamic binding provides an elegant solution, obviating the
for explicit tests, there is no initial version of a feature to be redefined. For example
BOAT may be too general to provide a default implementation of turn. Yet we want to be
able to call feature turn to an entity declared of type BOAT if we have ensured that at ru
time it will actually be attached to objects of such fully defined types as MERCHANT_
SHIP and SPORTS_BOAT.

In such cases BOAT may be declared as a deferred class (one which is not f
implemented), and with a deferred feature turn. Deferred features and classes may s
possess assertions describing their abstract properties, but their implementat
postponed to descendant classes. A non-deferred class is said to be effective.

Deferred classes (also called abstract classes) are particularly important for o
oriented analysis and high-level design, as they make it possible to capture the es
aspects of a system while leaving details to a later stage.

Memory management and garbage collection

The last point on our list of method and language criteria may at first appear to b
more properly to the next category — implementation and environment. In fact it be
to both. But the crucial requirements apply to the language; the rest is a matter o
engineering.

Object-oriented systems, even more than traditional programs (except in the
world), tend to create many objects with sometimes complex interdependencies. A
leaving developers in charge of managing the associated memory, especially w
comes to reclaiming the space occupied by objects that are no longer needed, woul
both the efficiency of the development process, as it would complicate the softwar
occupy a considerable part of the developers’ time, and the safety of the resulting sy
as it raises the risk of improper recycling of memory areas. In a good object-orie
environment memory management will be automatic, under the control of the garbage
collector, a component of the runtime system.

The reason this is a language issue as much as an implementation requiremen
a language that has not been explicitly designed for automatic memory manageme
often render it impossible. This is the case with languages where a pointer to an ob

It should be possible to determine at run time whether the type of an object
conforms to a statically given type.

It should be possible to write a class or a feature as deferred, that is to say
specified but not fully implemented.

§2.3 IMPLEMENTATION AND ENVIRONMENT 31

ter of

bject-

 write
ost of

at the

rs to
wn as
ent,
sulting
rom a

 the
ted
s.

nly be
ize of
a certain type may disguise itself (through conversions known as “casts”) as a poin
another type or even as an integer, making it impossible to write a safe garbage collector.

2.3 IMPLEMENTATION AND ENVIRONMENT

We come now to the essential features of a development environment supporting o
oriented software construction.

Automatic update

Software development is an incremental process. Developers do not commonly
thousands of lines at a time; they proceed by addition and modification, starting m
the time from a system that is already of substantial size.

When performing such an update, it is essential to have the guarantee th
resulting system will be consistent. For example, if you change a feature f of class C, you
must be certain that every descendant of C which does not redefine f will be updated to
have the new version of f, and that every call to f in a client of C or of a descendant of C
will trigger the new version.

Conventional approaches to this problem are manual, forcing the develope
record all dependencies, and track their changes, using special mechanisms kno
“make files” and “include files”. This is unacceptable in modern software developm
especially in the object-oriented world where the dependencies between classes, re
from the client and inheritance relations, are often complex but may be deduced f
systematic examination of the software text.

It is possible to meet this requirement in a compiled environment (where
compiler will work together with a tool for dependency analysis), in an interpre
environment, or in one combining both of these language implementation technique

Fast update

In practice, the mechanism for updating the system after some changes should not o
automatic, it should also be fast. More precisely, it should be proportional to the s

The language should make safe automatic memory management possible,
and the implementation should provide an automatic memory manager
taking care of garbage collection.

System updating after a change should be automatic, the analysis of inter-
class dependencies being performed by tools, not manually by developers.

CRITERIA FOR OBJECT ORIENTATION§2.332

ty, the
.

rion,
ental

king
a final

 to the

e true

ould
direct
ject’s

ations
n a

d other
 need
uld be
 make
the changed parts, not to the size of the system as a whole. Without this proper
method and environment may be applicable to small systems, but not to large ones

Here too both interpreted and compiled environments may meet the crite
although in the latter case the compiler must be incremental. Along with an increm
compiler, the environment may of course include a global optimizing compiler wor
on an entire system, as long as that compiler only needs to be used for delivering
product; development will rely on the incremental compiler.

Persistence

Many applications, perhaps most, will need to conserve objects from one session
next. The environment should provide a mechanism to do this in a simple way.

An object will often contain references to other objects; since the same may b
of these objects, this means that every object may have a large number of dependent
objects, with a possibly complex dependency graph (which may involve cycles). It w
usually make no sense to store or retrieve the object without all its direct and in
dependents. A persistence mechanism which can automatically store an ob
dependents along with the object is said to support persistence closure.

For some applications, mere persistence support is not sufficient; such applic
will need full database support. The notion of object-oriented database is covered i
later chapter, which also explores other persistent issues such as schema evolution, the
ability to retrieve objects safely even if the corresponding classes have changed.

Documentation

Developers of classes and systems must provide management, customers an
developers with clear, high-level descriptions of the software they produce. They
tools to assist them in this effort; as much as possible of the documentation sho
produced automatically from the software texts. Assertions, as already noted, help
such software-extracted documents precise and informative.

The time to process a set of changes to a system, enabling execution of the
updated version, should be a function of the size of the changed components,
independent of the size of the system as a whole.

A persistent storage mechanism supporting persistence closure should be
available to store an object and all its dependents into external devices, and
to retrieve them in the same or another session.

Automatic tools should be available to produce documentation about classes
and systems.

§2.4 LIBRARIES 33

es; in
self but
lopers
switch

ols
ll the

is the
ries,

 are
loper
teful
per

f some

sses

ough
 object-
to rely

S is a “supplier” of
C if C is a client of S.
“Client” was
defined on page 24.
Browsing

When looking at a class, you will often need to obtain information about other class
particular, the features used in a class may have been introduced not in the class it
in its various ancestors. This puts on the environment the burden of providing deve
with tools to examine a class text, find its dependencies on other classes, and
rapidly from one class text to another.

This task is called browsing. Typical facilities offered by good browsing to
include: find the clients, suppliers, descendants, ancestors of a class; find a
redefinitions of a feature; find the original declaration of a redefined feature.

2.4 LIBRARIES

One of the characteristic aspects of developing software the object-oriented way
ability to rely on libraries. An object-oriented environment should provide good libra
and mechanisms to write more.

Basic libraries

The fundamental data structures of computing science — sets, lists, trees, stacks… — and
the associated algorithms — sorting, searching, traversing, pattern matching —
ubiquitous in software development. In conventional approaches, each deve
implements and re-implements them independently all the time; this is not only was
of efforts but detrimental to software quality, as it is unlikely that an individual develo
who implements a data structure not as a goal in itself but merely as a component o
application will attain the optimum in reliability and efficiency.

An object-oriented development environment must provide reusable cla
addressing these common needs of software systems.

Graphics and user interfaces

Many modern software systems are interactive, interacting with their users thr
graphics and other pleasant interface techniques. This is one of the areas where the
oriented model has proved most impressive and helpful. Developers should be able
on graphical libraries to build interactive applications quickly and effectively.

Interactive browsing facilities should enable software developers to follow up
quickly and conveniently the dependencies between classes and features.

Reusable classes should be available to cover the most frequently needed
data structures and algorithms.

Reusable classes should be available for developing applications which
provide their users with pleasant graphical user interface.

CRITERIA FOR OBJECT ORIENTATION§2.534

antee
hen,
avoc

o the

asses
ge (as
 tools

book
rview
 point
 O-O

ntials
 peek,
g with

t a

sing

hat
 to a
Library evolution mechanisms

Developing high-quality libraries is a long and arduous task. It is impossible to guar
that the design of library will be perfect the first time around. An important problem, t
is to enable library developers to update and modify their designs without wreaking h
in existing systems that depend on the library. This important criterion belongs t
library category, but also to the method and language category.

Library indexing mechanisms

Another problem raised by libraries is the need for mechanisms to identify the cl
addressing a certain need. This criterion affects all three categories: libraries, langua
there must be a way to enter indexing information within the text of each class) and
(to process queries for classes satisfying certain conditions).

2.5 FOR MORE SNEAK PREVIEW

Although to understand the concepts in depth it is preferable to read this
sequentially, readers who would like to complement the preceding theoretical ove
with an advance glimpse of the method at work on a practical example can at this
read chapter 20, a case study of a practical design problem, on which it compares an
solution with one employing more traditional techniques.

That case study is mostly self-contained, so that you will understand the esse
without having read the intermediate chapters. (But if you do go ahead for this quick
you must promise to come back to the rest of the sequential presentation, startin
chapter 3, as soon as you are done.)

2.6 BIBLIOGRAPHICAL NOTES AND OBJECT RESOURCES

This introduction to the criteria of object orientation is a good opportunity to lis
selection of books that offer quality introductions to object technology in general.

[Waldén 1995] discusses the most important issues of object technology, focu
on analysis and design, on which it is probably the best reference.

[Page-Jones 1995] provides an excellent overview of the method.

[Cox 1990] (whose first edition was published in 1986) is based on a somew
different view of object technology and was instrumental in bringing O-O concepts
much larger audience than before.

Mechanisms should be available to facilitate library evolution with minimal
disruption of client software.

Library classes should be equipped with indexing information allowing
property-based retrieval.

§2.6 BIBLIOGRAPHICAL NOTES AND OBJECT RESOURCES 35

d out
sters,

There
r
y for
s and
 reuse

nted
logical
r might
 them
n these

ge

bject-
geny”,

o my

 data

re

the
such
bject
5,

Chapter 29 dis-
cusses teaching
the technology.
[Henderson-Sellers 1991] (a second edition is announced) provides a short overview
of O-O ideas. Meant for people who are asked by their company to “go out and fin
what that object stuff is about”, it includes ready-to-be-photocopied transparency ma
precious on such occasions. Another overview is [Eliëns 1995].

The Dictionary of Object Technology [Firesmith 1995] provides a comprehensive
reference on many aspects of the method.

All these books are to various degrees intended for technically-minded people.
is also a need to educate managers. [M 1995] grew out of a chapter originally planned fo
the present book, which became a full-fledged discussion of object technolog
executives. It starts with a short technical presentation couched in business term
continues with an analysis of management issues (lifecycle, project management,
policies). Another management-oriented book, [Goldberg 1995], provides a
complementary perspective on many important topics. [Baudoin 1996] stresses lifecycle
issues and the importance of standards.

Coming back to technical presentations, three influential books on object-orie
languages, written by the designers of these languages, contain general methodo
discussions that make them of interest to readers who do not use the languages o
even be critical of them. (The history of programming languages and books about
shows that designers are not always the best to write about their own creations, but i
cases they were.) The books are:

• Simula BEGIN [Birtwistle 1973]. (Here two other authors joined the langua
designers Nygaard and Dahl.)

• Smalltalk-80: The Language and its Implementation [Goldberg 1983].

• The C++ Programming Language, second edition [Stroustrup 1991].

More recently, some introductory programming textbooks have started to use o
oriented ideas right from the start, as there is no reason to let “ontogeny repeat phylo
that is to say, take the poor students through the history of the hesitations and mistakes
through which their predecessors arrived at the right ideas. The first such text (t
knowledge) was [Rist 1995]. Another good book covering similar needs is [Wiener
1996]. At the next level — textbooks for a second course on programming, discussing
structures and algorithms based on the notation of this book — you will find [Gore 1996]
and [Wiener 1997]; [Jézéquel 1996] presents the principles of object-oriented softwa
engineering.

The Usenet newsgroup comp.object, archived on several sites around the Web, is
natural medium of discussion for many issues of object technology. As with all
forums, be prepared for a mixture of the good, the bad and the ugly. The O
Technology department of Computer (IEEE), which I have edited since it started in 199
has frequent invited columns by leading experts.

Magazines devoted to Object Technology include:

CRITERIA FOR OBJECT ORIENTATION§2.636

, see
at
nd
hose

logy
• The Journal of Object-Oriented Programming (the first journal in the field,
emphasizing technical discussions but for a large audience), Object Magazine (of a
more general scope, with some articles for managers), Objekt Spektrum (German),
Object Currents (on-line), all described at http://www.sigs.com.

• Theory and Practice of Object Systems, an archival journal.

• L’OBJET (French), described at http://www.tools.com/lobjet.

The major international O-O conferences are OOPSLA (yearly, USA or Canada
http://www.acm.org); Object Expo (variable frequency and locations, described
http://www.sigs.com); and TOOLS (Technology of Object-Oriented Languages a
Systems), organized by ISE with three sessions a year (USA, Europe, Pacific), w
home page at http://www.tools.com also serves as a general resource on object techno
and the topics of this book.

	2 2 Criteria of object orientation
	2.1 ON THE CRITERIA
	How dogmatic do we need to be?
	Categories

	2.2 METHOD AND LANGUAGE
	Seamlessness
	Classes
	Assertions
	Classes as modules
	Classes as types
	Feature-based computation
	Information hiding
	Exception handling
	Static typing
	Genericity
	Single inheritance
	Multiple inheritance
	Repeated inheritance
	Repeated inheritance

	Constrained genericity
	Redefinition
	Polymorphism
	Dynamic binding
	Run-time type interrogation
	Deferred features and classes
	Memory management and garbage collection

	2.3 IMPLEMENTATION AND ENVIRONMENT
	Automatic update
	Fast update
	Persistence
	Documentation
	Browsing

	2.4 LIBRARIES
	Basic libraries
	Graphics and user interfaces
	Library evolution mechanisms
	Library indexing mechanisms

	2.5 FOR MORE SNEAK PREVIEW
	2.6 BIBLIOGRAPHICAL NOTES AND OBJECT RESOURCES

