
16  
Inheritance techniques
redient
y we
iking

ence
e or an
. The
fully,

ertion
ge the

ce. It
n by
From the last two chapters we have learned to appreciate inheritance as a key ing
in the object-oriented approach to reusability and extendibility. To complete its stud
must explore a few more facilities — something of a mixed bag, but all showing str
consequences of the beauty of the basic ideas:

• How the inheritance mechanism relates to assertions and Design by Contract.

• The global inheritance structure, where all classes fit.

• Frozen features: when the Open-Closed principle does not apply.

• Constrained genericity: how to put requirements on generic parameters.

• Assignment attempt: how to force a type — safely.

• When and how to change type properties in a redeclaration.

• The mechanism of anchored declaration, avoiding redeclaration avalanche.

• The tumultuous relationship between inheritance and information hiding.

Two later chapters will pursue inheritance-related topics: the review of typing issues
in chapter 17, and a detailed methodological discussion of how to use inheritance (and
how not to misuse it) in chapter 24.

Most of the following sections proceed in the same way: examining a consequ
of the inheritance ideas of the last two chapters; discovering that it raises a challeng
apparent dilemma; analyzing the problem in more depth; and deducing the solution
key step is usually the next-to-last one: by taking the time to pose the problem care
we will often be led directly to the answer.

16.1  INHERITANCE AND ASSERTIONS 

Because of its very power, inheritance could be dangerous. Were it not for the ass
mechanism, class developers could use redeclaration and dynamic binding to chan
semantics of operations treacherously, without much possibility of client control. But
assertions will do more: they will give us deeper insights into the nature of inheritan
is in fact not an exaggeration to state that only through the principles of Desig
Contract can one finally understand what inheritance is really about.
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See “FLATTENING 
THE STRUCTURE”, 
15.3, page 541.

The routine, 
the client and 
the contract
The basic rules governing the rapport between inheritance and assertions have 
been sketched: in a descendant class, all ancestors’ assertions (routine preconditio
postconditions, class invariants) still apply. This section gives the rules more precise
uses the results obtained to take a new look at inheritance, viewed as subcontractin

Invariants 

We already encountered the rule for class invariants:

The parents’ invariants are added to the class’s own, “addition” being here a lo
and then. (If no invariant is given in a class, it is considered to have True as invariant.)
By induction the invariants of all ancestors, direct or indirect, apply. 

As a consequence, you should not repeat the parents’ invariant clauses 
invariant of a class (although such redundancy would be semantically harmless
a and then a is the same thing as a).

The flat and flat-short forms of the class will show the complete reconstru
invariant, all ancestors’ clauses concatenated.

Preconditions and postconditions in the presence of dynamic binding

The case of routine preconditions and postconditions is slightly more delicate. The g
idea, as noted, is that any redeclaration must satisfy the assertions on the original r
This is particularly important if that routine was deferred: without such a constrain
possible effectings, attaching a precondition and a postcondition to a deferred ro
would be useless or, worse, misleading. But the need is just as bad with redefinitio
effective routines.

The exact rule will follow directly from a careful analysis of the consequence
redeclaration, polymorphism and dynamic binding. Let us construct a typical cas
deduce the rule from that analysis.

Consider a class and one of its routines with a precondition and a postcondition:

The figure also shows a client C of A. The typical way for C to be a client is to
include, in one of its routines, a declaration and call of the form

Parents’ Invariant rule

The invariants of all the parents of a class apply to the class itself. 

A

r is
require

α
…
ensure

β
end

C
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The routine, 
the client, the 
contract and 
the descendan
a1: A
…
a1●r

For simplicity, we ignore any arguments that r may require, and we assume that r is
a procedure, although the discussion applies to a function just as well.

Of course the call will only be correct if it satisfies the precondition. One way foC
to make sure that it observes its part of the contract is to protect the call by a precon
test, writing it (instead of just a1● r) as

if  a1●α then
a1● r

check a1● β end -- i.e. the postcondition holds
… Instructions that may assume a1● β …

end

(As noted in the discussion of assertions, this is not required: it suffices to guarantee
or without an if instruction, that α holds before the call. We will assume the if  form for
simplicity, and ignore any else clause.)

Having guaranteed the precondition, the client C is entitled to the postcondition on
return: after the call, it may expect that a1●β will hold.

All this is the basics of Design by Contract: the client must ensure the precondition
on calling the routine and, as a recompense, may count on the postcondition being satisfie
when the routine exits.

What happens when inheritance enters the picture?

Assume that a new class A' inherits from A and redeclares r. How, if at all, can it
change the precondition α into a new one γ and the postcondition β into a new one δ?

To decide the answer, consider the plight of the client. In the call a1● r the target a1
may now, out of polymorphism, be of type A' rather than just A. But C does not know
about this! The only declaration for a1 may still be the original one:

a1: A

t

A

r is
require

α
…
ensure

β
end

C

A'

r++  is
require

γ
…
ensure

δ
end
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which names A, not A'. In fact C may well use A' without its author ever knowing abou
the existence of such a class; the call to r may for example be in a routine of C of the form

some_routine_of_C (a1: A) is

do

…; a1● r; …
end

Then a call to some_routine_of_C from another class may use an actual argumen
type A', even though the text of C contains no mention of class A'. Dynamic binding means
that the call to r will in that case use the redefined A' version.

So we can have a situation where C is only a client of A but in fact will at run time
use the A' version of some features. (We could say that C is a “dynamic client” of A' even
though its text does not show it.)

What does this mean for C? The answer, unless we do something, is: trouble. C can
be an honest client, observing its part of the deal, and still be cheated on the result

if  a1● α then a1● r end

if a1 is polymorphically attached to an object of type A', the instruction calls a routine tha
expects γ and guarantees δ, whereas the client has been told to satisfy α and expect β. So
we have a potential discrepancy between the client’s and supplier’s views of the co

How to cheat clients

To understand how to satisfy the clients’ expectations, we have to play devil’s adv
and imagine for a second how we could fool them. It is all for a good cause, of cour
with a crime unit that tries to emulate criminals’ thinking the better to fight it, o
computer security expert who studies the techniques of computer intruders).

If we, the supplier, wanted to cheat our poor, honest C client, who guarantees α and
expects β, how would we proceed? There are actually two ways to evil:

• We could require more than the original precondition α. With a stronger
precondition, we allow ourselves to exclude (that is to say, not to guarantee
specific result) for cases that, according to the original specification, were perf
acceptable.

Remember the point emphasized repeatedly in the discussion of Design by
Contract: making a precondition stronger facilitates the task of the supplier
(“the client is more often wrong”), as illustrated by the extreme case of
precondition false (“the client is always wrong”).

• We could ensure less than the original postcondition β. With a weaker postcondition
we allow ourselves to produce less than what the original specification promis

As we saw, an assertion is said to be stronger than another if it logically impli
and is different; for example, x >= 5 is stronger than x >= 0. If A is stronger than B, B is
said to be weaker than A.
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definition see “A 
mathematical note”
page 580
How to be honest

From understanding how to cheat we deduce how to be honest. When redecla
routine, we may keep the original assertions, but we may also:

• Replace the precondition by a weaker one.

• Replace the postcondition by a stronger one.

The first case means being more generous than the original — accepting more
This can cause no harm to a client that satisfies the original precondition before th
The second case means producing more than what was promised; this can cause n
to a client call that relies on the original postcondition being satisfied after the call.

Hence the basic rule:

The rule expresses that the new version must accept all calls that were accept
the original, and must guarantee at least as much as was guaranteed by the original
— but does not have to — accept more cases, or provide stronger guarantees.

As its name indicates, this rule applies to both forms of redeclaration: redefini
and effectings. The second case is particularly important, since it allows you to
seriously the assertions that may be attached to a deferred feature; these assertion
binding on all effective versions in descendants.

The assertions of a routine, deferred or effective, specify the essential seman
the routine, applicable not only to the routine itself but to any redeclaration in descen
More precisely, they specify a range of acceptable behaviors for the routine and its
eventual redeclarations. A redeclaration may specialize this range, but not violate it

A consequence for the class author is the need to be careful, when writin
assertions of an effective routine, not to overspecify. The assertions must characterize t
intent of the routine — its abstract semantics —, not the properties of the ori
implementation. If you overspecify, you may be closing off the possibility for a fut
descendant to provide a different implementation.

An example

Assume I write a class MATRIX implementing linear algebra operations. Among t
features I offer to my clients is a matrix inversion routine. It is actually a combination
command and two queries: procedure invert inverts the matrix, and sets attribute inverse to
the value of the inverse matrix, as well as a boolean attribute inverse_valid. The value of
inverse is meaningful if and only if inverse_valid is true; otherwise the inversion has faile
because the matrix was singular. For this discussion we can ignore the singularity c

Assertion Redeclaration rule (1)

A routine redeclaration may only replace the original precondition by one
equal or weaker, and the original postcondition by one equal or stronger.

 

, 
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Of course I can only compute an approximation of the inverse of a matrix. 
prepared to guarantee a certain precision of the result, but since I am not very g

numerical analysis, I shall only accept requests for a precision not better than 10–6. The
resulting routine will look like this: 

invert (epsilon: REAL) is
-- Inverse of current matrix, with precision epsilon

require
epsilon >= 10 ^ (–6)

do
“Computation of inverse”

ensure
((Current ∗ inverse) |–| One) <= epsilon

end

The postcondition assumes that the class has a function infix  "|–|" such that m1 |–| m2
is |m1 — m2|, the norm of the matrix difference of m1 and m2, and a function infix "∗"
which yields the product of two matrices; One is assumed to denote the identity matrix.

I am not too proud of myself, so for the summer I hire a bright young program
numerician who rewrites my invert routine using a much better algorithm, whic
approximates the result more closely and accepts a smaller epsilon: 

require
epsilon >= 10 ^ (–20)

…
ensure

((Current ∗ inverse) |–| One) <= (epsilon / 2)

The author of this new version is far too clever to rewrite a full MATRIX class; only
a few routines need adaptation. They will be included in a descendant of MATRIX, say
NEW_MATRIX.

If the new assertions are in a redefinition, they must use a different syntax than shown
above. The rule will be given shortly.

The change of assertions satisfies the Assertion Redeclaration rule: the
precondition epsilon >= 10 ^ (–20) is weaker than (that is to say, implied by) the origin
epsilon >= 10 ^ (–6); and the new postcondition is stronger than the original.

This is how it should be. A client of the original MATRIX may be requesting a matrix
inversion but, through dynamic binding, actually calling the NEW_MATRIX variant. The
client could contain a routine

some_client_routine (m1: MATRIX; precision: REAL) is
do

… ; m1● invert (precision); … 
-- May use either the MATRIX or the NEW_MATRIX version

end

to which one of its own clients passes a first argument of type NEW_MATRIX.
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The routine, 
the client and 
the sub-
contractor
NEW_MATRIX must be able to accept and handle correctly any call that MATRIX
would accept. If we made the precondition of the new invert stronger than the original (as
in epsilon>= ^ (–5)), calls which are correct for MATRIX would now be incorrect; if we
made the postcondition weaker, the result returned would not be as good as guaran
MATRIX. By using a weaker precondition and a stronger postcondition we correctly
all calls from clients of MATRIX, while offering a better deal to our own clients.

Cutting out the middleman

The last comment points to an interesting consequence of the Assertion Redecla
rule. In our general scheme

the assertions of the redeclared version, γ and δ, if different from α and β, are more
favorable to the clients, in the sense explained earlier (weaker precondition, str
postcondition). But a client of A which uses A' through polymorphism and dynamic
binding cannot make good use of this improved contract, since its only contract is wA.

Only by becoming a direct client of A' (the shaded link with a question mark on the la
figure) can you take advantage of the new contract, as in

a1: A'

…
if  a1●γ then a1● r end

check a1● δ end -- i.e. the postcondition holds

But then of course you have specialized a1 to be of type A', not the general A; you
have lost the polymorphic generality of going through A.

The tradeoff is clear. A client of MATRIX must satisfy the original (stronger
precondition, and may only expect the original (weaker) postcondition; even i
request gets served dynamically by NEW_MATRIX it has no way of benefiting from the
broader tolerance of inputs and tighter precision of results. To get this impr
specification it must declare the matrix to be of type NEW_MATRIX, thereby losing
access to other implementations represented by descendants of MATRIX that are not also
descendants of NEW_MATRIX.

A

r is
require

α
…
ensure

β
end

C

A'

r++  is
require

γ
…
ensure

δ
end

?
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The Assertion Redeclaration rule fits nicely in the Design by Contract theory introd
in the chapter bearing that title.

We saw that the assertions of a routine describe the contract associated wi
routine: the client is bound by the precondition and entitled to the postcondition
conversely for the class implementer.

Inheritance, with redeclaration and dynamic binding, means subcontracting. When
you have accepted a contract, you do not necessarily want to carry it out you
Sometimes you know of somebody else who can do it cheaper and perhaps better.
exactly what happens when a client requests a routine from MATRIX but, through dynamic
binding, may actually call at run time a version redefined in a proper descendant.
“cheaper” refers to routine redefinition for more efficiency, as in the rectangle perim
example of an earlier chapter, and “better” to improved assertions in the sense just

The Assertion Redeclaration rule simply states that if you are an ho
subcontractor and accept a contract, you must be willing to do the job originally requested
or better than the requested job, but not less.

The scheme described in the last section — declaring a1 of type A' to benefit from the
improved contract — is similar to the behavior of a customer who tries to get a better deal
by bypassing his contractor to work directly with the contractor’s own subcontractor

In the Design by Contract view, class invariants are general constraints apply
both contractors and clients. The parents’ invariant rule expresses that all such cons
are transmitted to subcontractors. 

It is only with assertions, and with the two rules just seen, that inheritance tak
its full meaning for object-oriented design. The contracting-subcontracting metapho
powerful analogy to guide the development of correct object-oriented software; cer
one of the central deas.

Abstract preconditions

The rule on weakening preconditions may appear too restrictive in the case of an he
restricts the abstraction provided by its parent. Fortunately, there is an easy worka
consistent with the theory.

A typical example arises if you want to make a class BOUNDED_STACK inherit
from a general STACK class. In BOUNDED_STACK the procedure for pushing an eleme
onto the stack, put, has a precondition, which requires count <= capacity, where count is
the current number of stack elements and capacity is the physically available size.

For the general notion of STACK, however, there is no notion of capacity. So it
seems we need to strengthen the precondition when we move down to BOUNDED_
STACK. How do we build this inheritance structure without violating the Assert
Redeclaration rule?

The answer is straightforward if we take a closer look at client needs. What ne
be kept or weakened is not necessarily the concrete precondition as implemented by the



§16.1  INHERITANCE AND ASSERTIONS 577

 full:

in

 may
being
ow the
terface

losed
ed

 a 
 

supplier (which is the supplier’s business), but the precondition as seen by the client.
Assume that we write put in STACK as

put (x: G) is
-- Push x on top.

require
not full

deferred
ensure

…
end

with a function full defined always to return false, so that by default stacks are never

full: BOOLEAN is
-- Is representation full?
-- (Default: no)

do Result := False end

Then it suffices in BOUNDED_STACK to redefine full:

full: BOOLEAN is
-- Is representation full?
-- (Answer: if and only if number of items is capacity)

do Result := (count = capacity) end

A precondition such as not full, based on a property that is redefinable 
descendants, is called an abstract precondition.

This use of abstract preconditions to satisfy the Assertion Redeclaration rule
appear to be cheating, but it is not: although the concrete precondition is in fact 
strengthened, the abstract precondition remains the same. What counts is not h
assertion is implemented, but how it is presented to the clients as part of the class in
(the short or flat-short form). A protected call of the form

if not s● full then s● put (a) end

will be valid regardless of the kind of STACK attached to s.

There is, however, a valid criticism of this approach: it goes against the Open-C
principle. We must foresee, at the STACK level, that some stacks will have a bound
capacity; if we have not exerted such foresight, we must go back to STACK and change its
interface. But this is inevitable. Of the following two properties

• A bounded stack is a stack.

• It is always possible to add an element to a stack.

one must go. If we want the first property, permitting BOUNDED_STACK to inherit from
STACK, we must accept that the general notion of stack includes the provision thatput
operation is not always possible, expressed abstractly by the presence of the queryfull.
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It would clearly be a mistake, in class STACK, to include Result= False as a
postcondition for full or (equivalently but following the recommended style) an invariant
clause not full. This would be a case of overspecification as mentioned earlier, hampering
the descendants’ freedom to adapt the feature.

The language rule

The Assertion Redeclaration rule as given so far is a conceptual guideline. How d
transform it into a safe, checkable language rule?

We should in principle rely on a logical analysis of the old and new assertion
verify that the old precondition logically implies the new one, and that the 
postcondition implies the old one. Unfortunately, such a goal would requir
sophisticated theorem prover which, if at all feasible, is still far too difficult (in spite o
decades of research in artificial intelligence) to be integrated routinely among the c
performed by a compiler.

Fortunately a low-tech solution is available. We can enforce the rule throu
simple language convention, based on the observation that for any assertions α and β:

• α implies α or γ, regardless of what γ is.

• β and δ implies β, regardless of what δ is.

So to be sure that a new precondition is weaker than or equal to an originaα, it
suffices to accept it only if it is of the form α or γ; and to be sure that a new
postcondition is stronger than or equal to an original β, it suffices to accept it only if it
is of the form β and δ. Hence the language rule implementing the origin
methodological rule:

Note that the operators used for or-ing and for and-ing are the non-strict bo
operators or else andand then rather than plain or andand, although in most cases th
difference is irrelevant.

Sometimes the resulting assertions will be more complicated than strictly nece
For example in our matrix routine, where the original read

Assertion Redeclaration rule (2)

In the redeclared version of a routine, it is not permitted to use a require
or ensure clause. Instead you may:

• Use a clause introduced by require else, to be or-ed with the original
precondition.

• Use a clause introduced by ensure then, to be and-ed with the
original postcondition.

In the absence of such a clause, the original assertion is retained.
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invert (epsilon: REAL) is

-- Inverse of current matrix, with precision epsilon

require

epsilon >= 10 ^ (–6)

…
ensure

((Current ∗ inverse) |–| One) <= epsilon

the redefined version may not use require and ensure but will appear as

…
require else

epsilon >= 10 ^ (–20)

…
ensure then

((Current ∗ inverse) |–| One) <= (epsilon / 2)

so that formally the precondition is (epsilon >= 10 ^ (–20)) or else (epsilon >= 10 ^ (–6)),
and similarly for the postcondition. But this does not really matter, since a we
precondition or a stronger postcondition takes over: if α implies γ, then α or else γ has the
same value as γ; and if δ implies β, then β and then δ has the same value as δ. So
mathematically the precondition of the redefined version is epsilon >= 10 ^ (–20) and its
postcondition is ((Current ∗ inverse) |–| One) <= (epsilon / 2), even though the software
assertions (and probably, in the absence of a symbolic expression simplifier, 
evaluation at run time if assertion checking is enabled) are more complicated.

Redeclaring into attributes

The Assertion Redeclaration rule needs a small complement because of the possib
redeclaring a function into an attribute. What happens to the original’s precondition
postcondition, if any?

An attribute is always accessible, and so may be considered to have precon
True. This means that we may consider the precondition to have been weakened, 
with the Assertion Redeclaration rule.

An attribute, however, does not have a postcondition. Since it is necessa
guarantee that the attribute satisfy any property ensured by the original function
proper convention (an addition to the Assertion Redeclaration rule) is to consider th
postcondition is automatically added to the class invariant. The flat form of the clas
include the condition in its invariant.

When expressing a property of the value of a function without arguments, you always
have the choice between including it in the postcondition or in the invariant. As a matter
of style it is considered preferable to use the invariant. If you follow this rule there will
not be any change of assertions if you later redeclare the function as an attribute.
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A mathematical note

An informal comment on the Assertion Redeclaration rule stated: “A redeclaration
specialize the range of acceptable behaviors, but not violate it”. Here, to conclud
discussion, is a rigorous form of that property (for mathematically inclined readers o

Consider that a routine implements a partial function r from the set of possible inpu
states I to the set of possible output states O. The routine’s assertions define rules as
what r and its possible redeclarations may and may not do:

• The precondition specifies the domain DOM of r (the subset of I in which r is
guaranteed to yield a result).

• The postcondition specifies, for each element x of DOM, a subset RESULTS (x) of O
such that r (x) ∈ RESULTS (x). This subset may have more than one element, s
a postcondition does not have to define the result uniquely.

The Assertion Redeclaration rule means that a redeclaration may broaden the d
and restrict the result sets; writing the new sets in primed form, the rule requires tha

DOM' ⊇ DOM
RESULTS' (x) ⊆ RESULTS (x) for any x in DOM

A routine’s precondition specifies that the routine and its eventual redeclara
must at least accept certain inputs (DOM), although redeclarations may accept more. T
postcondition specifies that the outputs produced by the routine and its eve
redeclarations may at most include certain values (RESULTS (x)), although redeclarations’
postconditions may include fewer.

In this description a state of a system’s execution is defined by the contents 
reachable objects; in addition, input states (elements of I) also include the values of the
arguments. For a more detailed introduction to the mathematical description of prog
and programming languages see [M 1990].

16.2  THE GLOBAL INHERITANCE STRUCTURE

A few references have been made in earlier discussions to the universal classes GENERAL
and ANY and to the objectless class NONE. It is time to clarify their role and present th
global inheritance structure.

Universal classes

It is convenient to use the following convention.

Universal Class rule
Any class that does not include an inheritance clause is considered to
include an implicit clause of the form

inherit ANY

referring to a Kernel library class ANY.
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This makes it possible to define a certain number of features that will be inherite
all classes. These features provide operations of universal interest: copy, c
comparison, basic input and output.

For more flexibility, we will not put these features in ANY but in a class GENERAL
of which ANY itself is an heir. ANY, in its default form, will have no features (being simp
of the form class ANY inherit  GENERAL end); but then a project leader or corporate reu
manager who wants to make a certain number of features available across the boa
adapt ANY for local purposes without touching GENERAL, which should be the same in
Versailles, Vanuatu, Venice and Veracruz.

To build a non-trivial ANY, you may want to use inheritance. You can indeed make ANY
inherit from some class HOUSE_STYLE, or several such classes, without introducing any
cycles in the inheritance hierarchy or violating the universal class rule: just make
HOUSE_STYLE and its consorts explicit heirs of GENERAL. In the following figure, “All
developer-written classes” means more precisely: all developer-written classes that do
not explicitly inherit from GENERAL.

Here then is a picture of the general structure:

GENERAL

ANY

NONE

… All developer-written classes… 
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The bottom of the pit

Also included in the figure is a class NONE, the nemesis of ANY: it inherits from any class
that does not have any other heir and makes the global inheritance class a lattic
probably do not want to see the rename subclauses of NONE and, be relieved, you will
not. (It changes anyway each time someone writes a new class.) NONE is just a convenient
fiction. But its theoretical existence serves two practical purposes:

• The type of Void, the void reference used among other things to terminate lin
structures, is by convention NONE. (Void is in fact one of the features o
GENERAL.)

• To hide a feature from all clients, export it to NONE only (in a feature clause of the
form feature { NONE} , equivalent in practice to feature { }  but more explicit, or in
an inheritance subclause export { NONE} , also with the same practical effect a
export { } ). This will make it unavailable to any developer class, since NONE has
no proper descendants. Note that NONE hides all its features.

On the first property, note that you may assign the value Void to an entity of any
reference type; so until now the status of Void was a little mysterious, since it ha
somehow to be compatible to all types. Making NONE the type of Void makes this status
clear, official, and consistent with the type system: by construction, NONE is a descendant
of all classes, so that we can use Void as a valid value of any reference type without a
need to tamper with the type rules.

On the second property note that, symmetrically, a feature clause beginning wit
feature, which exports its features to all developer classes, is considered a shortha
feature { ANY} . To reexport to all classes a parent feature which had tighter availab
you may use export { ANY} , or the less explicit shorthand export.

ANY and NONE ensure that our type system is closed and our inheritance stru
complete: the lattice has a top and it has a bottom.

Universal features

Here is a small sampling of the features found in GENERAL and hence available to al
classes. Several of them were introduced and used in earlier chapters:

• clone for duplicating an object, and its deep variant deep_clone for recursively
duplicating an entire object structure.

• copy for copying the contents of an object into another.

• equal for field-by-field object comparison, and its deep variant deep_equal.

Other features include:

• print and print_line to print a simple default representation of any object.

• tagged_out, a string containing a default representation of any object, each 
accompanied by its tag (the corresponding attribute name).

• same_type and conforms_to, boolean functions that compare the type of the curr
object to the type of another.
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• generator, which yields the name of an object’s generating class — the clas
which it is a direct instance.

16.3  FROZEN FEATURES

The presentation of inheritance has repeatedly emphasized the Open-Closed princip
ability to take any feature from an ancestor class and redefine it to do it something diff
Can there be any reason for shutting off this possibility?

Prohibiting redefinition

The discussion of assertions at the beginning of this chapter has provided us wi
theoretical understanding of redefinition: the “open” part of the Open-Closed princip
the ability to change features in descendants — is kept in check by the original asse
The only permitted redefinitions change the implementation while remaining consi
with the specification given by the precondition and postcondition of the original.

In some rare cases, you may want to guarantee to your clients, and to the clie
your descendants, not only that a feature will satisfy the official specification, but also
it will use the exact original implementation. The only way to achieve this goal is to fo
redeclarations altogether. A simple language construct provides this possibility:

frozen feature_name … is … The rest of the feature declaration as usual …

With this declaration, no descendant’s redefine or undefine subclause may list the
feature, whether under its original name or (since renaming remains of course perm
another. A deferred feature — meant, by definition, for redeclaration — may not be frozen.

Fixed semantics for copy, clone and equality features

The most common use of frozen features is for general-purpose operations of the ki
reviewed for GENERAL. For example there are two versions of the basic copy proced

copy, frozen standard_copy (other: …) is
-- Copy fields of other onto fields of current object.

require
other_not_void: other /= Void

do
…

ensure
equal (Current, other)

end

This declares two features as synonyms. (A general convention allows us to d
two features together so that they can share the same declaration; just separate thei
with commas as here. The effect is as if there had been two separate declaration
identical declaration bodies.) But only one of the features is redefinable. So a desce
class can redefine copy; this is necessary for example for classes ARRAY and STRING,
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which redefine copy so as to compare actual array and string contents, not the arr
string descriptors. It is convenient in such cases to have a frozen version as well, 
we can use the default operation, standard_copy, guaranteed to be the original.

In class GENERAL, feature clone also has a similar doppelgänger standard_clone,
but here both versions are frozen. Why should clone be frozen? The reason is not t
prevent the definition of a different cloning operation, but to ensure that clone and
semantics remain compatible, and as a side benefit to facilitate the redefiner’s tas
declaration of clone is of the general form

frozen clone (other: …): … is
-- Void if other is void; otherwise new object with contents copied fro

other.
do

if other /= Void then
Result := “New object of the same type as other”
Result● copy (other)

end
ensure

equal (Result, other)
end

“New object of the same type as other”  informally denotes a call to some functio
that creates and returns such an object, as provided by the implementation.

So even though clone is frozen, it will follow any redefinition of copy, for example
in ARRAY and STRING. This is good for safety, as it would be a mistake to have diffe
semantics for these operations, and convenience, as you will only need to redefine copy to
change the copy-clone semantics in a descendant.

Although you need not (and cannot) redefine clone, you will still need, in step with
a redefinition of copy, to redefine the semantics of equality. As indicated by 
postconditions given for copy and clone, a copy must yield equal objects. Function equal
itself is in fact frozen in the same way that clone is — to ensure its dependency on anoth
redefinable feature:

frozen equal (some, other: …): BOOLEAN is
-- Are some and other either both void
-- or attached to objects considered equal?

do
Result := ((some = Void) and (other = Void)) or else some●is_equal (other)

ensure
Result = ((some = Void) and (other = Void)) or else some● is_equal (other)

end

Function equal is called under the form equal (a, b), which does not quite enjoy the
official O-O look of a● is_equal (b) but has the important practical advantage of be
applicable when a or b is void. The basic feature, however, is is_equal, not frozen, which



§16.4  CONSTRAINED GENERICITY 585

le

f this

 is a
 have
 it if
s is a
n an
n for
ds to
hing
b for
ed

iginal

tending
h the
pe
t 
ce

in class.

ty —
ct as a

h
learly

See “Static binding 
as an optimization”
page 511.
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470.
you should redefine in any class that redefines copy, to keep equality semantics compatib
with copy and clone semantics — so that the postconditions of copy and clone remain correct. 

Besides equal there is a function standard_equal whose semantics is not affected by
redefinitions of is_equal. (It uses the above algorithm but using standard_is_equal,
frozen, rather than is_equal.)

Freeze only when needed

The examples of freezing that have just been given are typical of the use o
mechanism: guaranteeing the exact semantics of the original.

It is never appropriate to freeze a feature out of efficiency concerns. (This
mistake sometimes made by developers with a C++ or Smalltalk background, who
been told that dynamic binding is expensive and that they must manually avoid
possible.) Clearly, a call to a frozen feature will never need dynamic binding; but thi
side effect of the frozen mechanism rather than its purpose. As discussed in detail i
earlier chapter, applying static binding safely is a compiler optimization, not a concer
software developers. In a well-designed language the compiler will have all it nee
perform this optimization when appropriate, along with even more far-reac
optimizations such as routine inlining. Determining the appropriate cases is a jo
machines, not humans. Use frozen in the rare although important cases in which you ne
it for conceptual purposes — to guarantee the exact semantics of the or
implementation — and let the language and the compiler do their job.

16.4  CONSTRAINED GENERICITY

Inheritance and genericity have been presented as the two partners in the task of ex
the basic notion of class. We have already studied how to combine them throug
notion of polymorphic data structure: into a container object described by an entity of ty
SOME_CONTAINER_TYPE [T] for some T, we can insert objects whose type is not jusT
but any descendant of T. But there is another interesting combination, in which inheritan
serves to define what is and is not acceptable as actual generic parameter to a certa

Addable vectors

A simple and typical example will allow us to see the need for constrained generici
and, as everywhere else in this book, to deduce the method and language constru
logical consequence of the problem’s statement.

Assume we want to declare a class VECTOR to describe vectors of elements, wit
an addition operation. There are vectors of elements of many different types, so we c
need a generic class. A first sketch may look like

, 
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class
VECTOR [G]

feature -- Access
count: INTEGER

-- Number of items

item, infix "@"  (i: INTEGER): G is
-- Vector element of index i (numbering starts at 1)

require … do
…

end

feature -- Basic operations
infix "+ " (other: VECTOR [G]): VECTOR is

-- The sum, element by element, of current vector and other
require … do

…
end

… Other features …
invariant

non_negative_count: count >= 0
end -- class VECTOR

The use of an infix feature is convenient for this class, but does not otherwise 
the discussion. Also for convenience, we have two synonyms for the basic access f
so that we can denote the i-th element of a vector (as in the ARRAY class, which could be
used to provide an implementation) as either v●item (i) or just v @ i.

Now let us see how we could write the "+ " function. At first it seems
straightforward: to add two vectors, we just add one by one their elemen
corresponding positions. The general scheme is

infix "+ " (other: VECTOR [G]): VECTOR is
-- The sum, element by element, of current vector and other

require
count = other● count

local
i: INTEGER

do
“Create Result as an array of count items”
from i := 1 until i > count loop

Result●put ( , i)
i := i + 1

end
end

item (i) + other● item (i)
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The boxed expression is the sum of the items at index i in the current vector and
other, as illustrated by the figure on the facing page. The enclosing call to put assigns its
value to the i-th item of Result. (Procedure put has not been shown in class VECTOR, but
must obviously appear there, like its counterpart in ARRAY.)

But this does not work! The + operation in the boxed expression is an addition
vector elements (not vectors); it is intended to add values of type G, the generic parameter
By definition a generic parameter represents an unknown type — the actual ge
parameter, to be provided only when we decide to use the generic class for good, th
what has been called a generic derivation. If the generic derivation uses, as actual gene
parameter, a type such as INTEGER, or some other class which includes a function infix
"+ " with the right signature, everything will work fine. But what if the actual gene
parameter is ELLIPSE, or STACK [SOME_TYPE], or EMPLOYEE, or any other type that
does not have an addition operation?

We did not have such a problem with the generic classes encountered previou
general container classes such as STACK, LIST and ARRAY — since the only operations
they needed to apply to container elements (represented by entities of type G, the formal
generic parameter) were universal, type-independent operations: assignment, comp
use as argument in feature calls. But for an abstraction such as addable vectors we 
restrict the permissible actual generic parameters to make sure certain operatio
available.

This is by no means an exceptional example. Here are two other typical ones:

• Assume you want to describe sortable structures, with a procedure sort that will
order the elements according to some criterion. You need to ensure the availality
of a comparison operation infix "<=" , representing a total order, on th
corresponding objects.

• In building basic data structures such as dictionaries, you may want to use a hash-
table, where the position of each element is determined by a key derived from
value of the element. This assumes the availability of a “hashing function” w
computes the key (also known as the “hash value”) of any element.

other●item (i)item (i)

1

count

i

Current other

1

count
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The hurried reader 
may skip directly to 
the O-O solution in 
the next section, 
“Constraining the 
generic parameter”, 
page 588.

See “Constrained 
genericity”, page 
1170.
A non-O-O approach

Although there have been enough hints in the preceding paragraphs to suggest the
inevitable solution to our problem, it is useful to pause for a moment and examine
another approach, not object-oriented, has addressed the same problem. 

Ada does not have classes, but has packages which serve to group related ope
and types. A package may be generic, with generic parameters representing types
same problem arises: a package VECTOR_PROCESSING might include a declaration of
type VECTOR and the equivalent of our infix "+ " function.

The solution in Ada is to treat the needed operations, such as infix "+ " , as generic
parameters themselves. The parameters of a package may include not only types, a
object-oriented approach, but also routines (called subprograms). For example:

generic
type G is private;

with  function "+ " (a, b: G) return  G is <>;

with  function "∗"  (a, b: G) return  G is <>;

zero: G; unity: G;

package VECTOR_HANDLING is
… Package interface …

end VECTOR_HANDLING

Note that along with the type G and the subprograms the package also uses
generic parameter, a value zero representing the zero element of addition. A typical use
the package will be

package BOOLEAN_VECTOR_HANDLING is
new VECTOR_HANDLING (BOOLEAN, "or ", "and", false, true);

which uses boolean “or” as the addition and boolean “and” as the multiplication, 
corresponding values for zero and unity. We will study a more complete solution to
example in a later chapter, as part of a systematic discussion of genericity vs. inheritance.

Although appropriate for Ada, this technique is not acceptable in an O-O con
The basic idea of object technology is the primacy of data types over operatio
software decomposition, implying that there is no such thing as a stand-alone ope
Every operation belongs to some data type, based on a class. So it would be inconsisten
with the rest of the approach to let a function such as infix "+ ", coming out of nowhere,
serve as actual generic parameter along with types such as INTEGER and BOOLEAN. The
same holds for values such as zero and unity, which will have to find their place as feature
of some class — respectable members of object-oriented society.

Constraining the generic parameter

These observations yield the solution. We must work entirely in terms of classe
types.
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What we are requiring is that any actual parameter used for VECTOR (and similarly
for the other examples) be a type equipped with a set of operations: infix "+ ", perhaps zero
to initialize sums, and possibly a few others. But since we studied inheritance we 
how to equip a type with certain operations: just make it a descendant of a class, de
or effective, that has these operations.

A simple syntax is

class C [G –> CONSTRAINING_TYPE] … The rest as for any other class …

where CONSTRAINING_TYPE is an arbitrary type. The –> symbol, made of a hyphen an
a “greater than”, evokes the arrow of inheritance diagrams. CONSTRAINING_TYPE is
called the generic constraint. The consequences of such a declaration are two-fold:

• Only types that conform to CONSTRAINING_TYPE will be acceptable as actua
generic parameters; remember that a type conforms to another if, roughly spe
it is based on a descendant.

• Within the text of class C, the operations permitted on an entity of type G are those
which would be permitted on an entity of CONSTRAINING_TYPE, that is to say
features of the base class of that type.

In the VECTOR case, what should we use as a generic constraint? A class introd
in the discussion of multiple inheritance, NUMERIC, describes the notion of objects t
which basic arithmetic operations are applicable: addition and multiplication with 
and unity. (The underlying mathematical structure, as you may recall, is the ring.)
seems appropriate even though for our immediate purposes we only need addition.
class will be declared as

indexing
description: "Addable vectors"

class
VECTOR [G –> NUMERIC]

… The rest as before (but now valid!) …

Then within the class text, the loop instruction that was previously invalid

Result● put ( , i)

has become valid since item (i) and other● item (i) are both of type G, so that all NUMERIC
operations such as infix "+ "  are applicable to them.

Generic derivations such as the following are all correct, assuming the classes
as actual generic parameters are all descendants of NUMERIC:

VECTOR [NUMERIC]
VECTOR [REAL]

VECTOR [COMPLEX]

If, however, you try to use the type VECTOR [EMPLOYEE] you will get a compile-
time error, assuming class EMPLOYEE is not a descendant of NUMERIC.

item (i) + other● item (i)
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NUMERIC is a deferred class; this causes no particular problem. A gen
derivation can use an effective actual parameter, as in the preceding examples
deferred one, as in VECTOR [NUMERIC_COMPARABLE], assuming the class given is 
deferred heir of NUMERIC.

Similarly, a dictionary class could be declared as

class DICTIONARY [G, H –> HASHABLE] …

where the first parameter represents the type of the elements and the second repres
type of their keys. A class supporting sorting may be declared as 

class SORTABLE [G –> COMPARABLE] …

Playing it recursively

A nice twist of the VECTOR example appears if we ask whether it is possible to hav
vector of vectors. Is the type VECTOR [VECTOR [INTEGER]]  valid?

The answer follows from the preceding rules: only if the actual generic param
conforms to NUMERIC. Easy — just make VECTOR itself inherit from NUMERIC:

indexing

description: "Addable vectors"

class

VECTOR [G –> NUMERIC]

inherit

NUMERIC

… The rest as before …

It is indeed justified to consider vectors “numeric”, since addition and multiplica
operations give them a ring structure, with zero being a vector of G zeroes and unity a
vector of G ones. The addition operation is precisely the vector infix "+ " discussed earlier.

We can go further and use VECTOR [VECTOR[VECTOR [INTEGER]]]  and so on
— a pleasant recursive application of constrained genericity.

Unconstrained genericity revisited

Not all cases of genericity are constrained, of course. The original form of generici
in STACK [G] or ARRAY [G], is still available and is called unconstrained genericity. 
the example of DICTIONARY [G, H –> HASHABLE] shows, a class can have bo
constrained and unconstrained generic parameters.

The discussion of constrained genericity enables us to understand the uncons
case better. You have certainly come up with the rule by yourself as you were readi
above: from now on, class C [G] will be understood as a shorthand for class C [G –> ANY].
So if G is an unconstrained generic parameter (say in STACK) and x is an entity of type G,
we know exactly what we can do with x: assign to or from it, compare it through = and /=,
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14.3, page 472.
pass it as argument, and apply to it any of the universal features clone, equal, deep_clone
and the li ke.

16.5  ASSIGNMENT ATTEMPT

Our next technique addresses regions of Object Land in which, for fear of tyran
behavior, we cannot let simplistic type rules reign without opposition.

When type rules become obnoxious

The aim of the type rules introduced with inheritance is to yield statically verifia
dynamic behavior, so that a system that passes the compiler’s checks will not e
applying inadequate operations to objects at run time.

The two basic rules were introduced in the first inheritance chapter:

• The Feature Call rule: x● f is only valid if the base class of x’s type includes and
exports a feature f.

• The Type Conformance rule: to pass a as argument to a routine, or to assign it to
certain entity, requires that a’s type conform to the expected type, that is to say,
based on a descendant class.

The Feature Call rule will not cause any problem; it is the fundamental conditio
doing business with objects. Certainly, if we call a feature on an object, we nee
reassurance that the corresponding class offers and exports such a feature.

The Type Conformance rule requires more attention. It assumes that we have 
type information that we need about the objects that we manipulate. Usually that 
case; after all, we create the objects, so we know who they are. But sometimes par
information may be missing. In particular:

• In a polymorphic data structure we are only supposed to know the information
is common to all objects in the structure; but we may need to take advantage of
specific information that applies only to a particular object.

• If an object comes to our software from the outside world — a file, a network —
usually cannot trust that it has a certain type.

Let us explore examples of these two cases. First consider a polymorphic
structure such as a list of figures:

figlist: LIST [FIGURE]

This refers to the figure inheritance hierarchy of earlier chapters. What if som
asks us to find out what is the longest diagonal of all rectangles in the list (with s
convention, say –1, if there are no rectangles)? We have no easy way of answeri
request, since the expression item (i)● diagonal, where item (i) is the i-th list element for
some integer i, violates the Feature Call rule; item (i) is of type FIGURE, and there is no
feature diagonal in class FIGURE — only in its proper descendant RECTANGLE.
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WARNING: type-
invalid assignment.
The only solution with what we have seen so far is to change the class definitio
as to associate with each FIGURE class a code, different for each class, indicating 
figure type. This is not an attractive approach.

Now for an example of the second kind. Assume a mechanism to store object
a file, or transmit them over a network, such as the general-purpose STORABLE facility
described in an earlier chapter. To retrieve an object or object structure you would 

my_last_book: BOOK

…
my_last_book := retrieved (my_book_file)

The result of function retrieved is of the Kernel library type STORABLE, but it might
just as well be of type ANY; in either case it is only an ancestor of the object’s genera
type (that is to say, the type of which it is a direct instance), presumably BOOK or a
descendant. But you are not expecting an ANY or a STORABLE: you are expecting a
BOOK. The assignment to my_last_book violates the Type Conformance rule.

Even if instead of a general-purpose mechanism retrieved were a retrieval function
specific to your application and declared with the intended type, you could still not 
its result blindly. Unlike an object that the software creates and then uses during the
session, guaranteeing type consistency thanks to the type rules, this one comes fr
outside world. You may have chosen the wrong file name and retrieved an EMPLOYEE
object rather than a BOOK object; or someone may have tampered with the file; or, if t
is a network access, the transmission may have corrupted the data.

The challenge

It is clear from such examples that we may need a way to ascertain the type of an o

The challenge is to satisfy this need — which arises only in specific cases, b
those cases is crucial — without sacrificing the benefits of the object-oriented sty
development. In particular, we do not want to go back to the decried scheme

if  “f is of type RECTANGLE” then
…

elseif “f is of type CIRCLE” then
…

etc.

the exact antithesis of such principles of modularity as Single Choice and Open-C
Two insights will help us avoid this risk:

• We do not need a general mechanism to determine the type of an object, at le
for the purposes described. In the cases under discussion we know the expected type
of the object. So all we require is a way to test our expectation. We will chec
object against a designated type; this is much more specific than asking fo
object’s type. It also means that we do not need to introduce into our language an
operations on types, such as type comparisons — a frightening thought.
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• As already noted, we should not tamper with the Feature Call rule. Unde
circumstances is there any justification for applying a feature (“sending a mess
to an object unless we have statically ascertained that the corresponding cl
equipped to deal with it. All that we will need is a looser version of the other r
type conformance, allowing us to “try a type” and check the result.

The mechanism

Once again the notational mechanism follows directly from the analysis of the issue
will use a new form of assignment, called assignment attempt, and written

target ?= source

to be compared with the usual assignment, target := source. The question mark indicates
the tentative nature of the assignment. The effect of the assignment attempt, assum
the entity target has been declared with type T, is the following:

• If source is attached to an object of a type conforming to T, attach that object to
target exactly as a normal assignment would do.

• Otherwise (that is to say if the value of source is void, or is a reference to an objec
of a non-conforming type), make target void.

There is no type constraint on the instruction, except that the type T of the target must
be a reference type. (Assignment attempt is polymorphic by nature, so an expanded
would not make sense.)

This instruction immediately and elegantly solves problems of the kind mentio
above. First, type-specific access to objects of a polymorphic structure:
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maxdiag ( figlist: LIST [FIGURE]): REAL is

-- Maximum value of diagonals of rectangles in list; –1 if none

require

list_exists: figlist /= Void

local

r: RECTANGLE

do

from

figlist ●start; Result := –1.0

until

figlist ●after

loop

r ?= figlist ● item

if  r /= Void then

Result := Result● max (r ●diagonal)

end

figlist ●forth

end

end

This routine uses the usual iteration mechanisms on sequential structures: start to
position the traversal on the first element if any, after to determine whether there is an
element left to examine, forth to advance by one position, item (defined if not after) to
yield the element at the current cursor position.

The assignment attempt uses a local entity r of the appropriate type RECTANGLE.
We know whether it succeeded by testing r against Void. Only if r is not void do we have
a rectangle; then we can safely access r ●diagonal. This scheme of testing for Void right
after an assignment attempt is typical.

Note again that we never violate the Feature Call rule: any call of the form r ● diagonal
is guarded, statically, by a compiler check that diagonal is a feature of class RECTANGLE,
and, dynamically, by a guarantee that r is not void — has an attached object. 

A list element of type SQUARE, or some other descendant of RECTANGLE, will
make r non-void, so that its diagonal will, rightly, participate in the computation.

The other example, using a general-purpose object retrieval function, is imme

The assignment attempt
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my_last_book: BOOK
…
my_last_book ?= retrieved (my_book_file)

if my_last_book /= Void then
… “Proceed normally with operations on my_last_book” …

else
… “What we expected is not what we got”…

end

Using assignment attempt properly

Assignment attempt is an indispensable tool for those cases — typically of the two 
shown: elements of polymorphic data structures, and objects coming from the ou
world — in which you cannot trust the statically declared type of an entity but nee
ascertain at run time the type of the object actually attached to it.

Note how carefully the mechanism has been designed to discourage developer
using it to go back to the old case-by-case style. If you really want to circumvent dyn
binding, and test separately for each type variant, you can — but you have to work 
hard at it; for example instead of the normal f ● display, using the O-O mechanisms o
polymorphism and dynamic binding, you would write

display ( f: FIGURE) is
-- Display f, using the algorithm adapted to its exact nature.

local
r: RECTANGLE; t: TRIANGLE; p: POLYGON; s: SQUARE
sg: SEGMENT; e: ELLIPSE; c: CIRCLE; …

do
r ?= f; if r /= Void then “Apply the rectangle display algorithm” end
t ?= f; if t /= Void then “Apply the triangle display algorithm” end
c ?= f; if c /= Void then “Apply the circle display algorithm” end
… etc …

end

This scheme will in practice be even worse than it seems because the inher
structure has several levels; for example an object of type SQUARE will make an
assignment attempt x ?= f succeed for x of type POLYGON and RECTANGLE as well as
SQUARE. So you must complicate the control structure to avoid multiple matches.

Because of the difficulty of writing such contorted uses of the assignment atte
there is little risk that novice developers will mistakenly use it instead of the normal 
scheme. But even advanced developers must remain alert to the possibility for misu

Java offers a mechanism called “narrowing” similar in some respects to assignment
attempt. But in case of a type mismatch, instead of yielding a void value, it produces an
exception. This looks like overkill, since an unsuccessful assignment is not an abnormal
case, simply one of several possible and expected cases; it does not justify adding

Compare with := in the first try (page 592)
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exception-handling code and setting in motion the exception machinery. Java also offers
the instanceof operator to test for type conformance.

These mechanisms are used particularly extensively in Java because of the absence 
genericity: you may have to rely on them, when retrieving elements from container data
structures (even single-type), to check the elements’ type against an expected type. Pa
of the reason may be that, in the absence of multiple inheritance, Java has no NONE class
and hence no easy way to give the equivalent of Void a stable place in the type system.

16.6  TYPING AND REDECLARATION

When you redeclare a feature, you are not constrained to keep exactly the same sig

The precise rule will give us a further degree of flexibility.

So far we have seen redeclaration as a mechanism for substituting an algorith

another — or, in the case of effecting a previously deferred routine, providing
algorithm where only a specification was originally given.

But we may also need to change the types involved, to support the general ide
a class may offer a more specialized version of an element declared in an ancestor

study two typical examples, which will suggest the precise Type Redeclaration rule

Devices and printers

Here is a simple example of type redefinition. Consider a notion of device includin

provision that for every device there is an alternate, to be used if for some reason th

one is not available:

class DEVICE feature

alternate: DEVICE

set_alternate (a: DEVICE) is

-- Designate a as alternate.

do

alternate := a

end

… Other features …

end -- class DEVICE

Printers are a special kind of device, justifying the use of inheritance. But

alternate of a printer can only be a printer — not a CD-ROM reader or a net

transceiver! — so we must redefine the types:
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class PRINTER inherit

DEVICE

redefine alternate, set_alternate

feature

alternate: PRINTER

set_alternate (a: PRINTER) is

-- Designate a as alternate.

… Body as in DEVICE …

… Other features …

end -- class DEVICE

These redefinitions reflect the specializing nature of inheritance.

Linkable and bi-linkable elements

Here is another example, involving fundamental data structures. Consider the library
LINKABLE describing the linked list elements used in LINKED_LIST, one of the
implementations of lists. A partial view of the class is: 

indexing

description: "Cells to be linked in a list"

class LINKABLE [G] feature

item: G

right: LINKABLE [G]

put_right (other: LINKABLE [G]) is

-- Put other to the right of current cell.

do right := other end

… Other features …

end -- class LINKABLE

Some applications need lists chained both ways (each element linked t
successor and its predecessor). The corresponding class, TWO_WAY_LIST, is an heir of
LINKED_LIST, and will need an heir BI_LINKABLE of LINKABLE:

DEVICE

PRINTER

alternate

alternate

item right
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A bi-l inkable element is like a linkable but with one more field:

In a two-way list, bi-linkables should only be chained to bi-linkables (although 
harmless to introduce bi-linkables in a one-way list: this is polymorphism). So we sh
redefine right and put_right to guarantee that two-way lists remain homogeneous. 

indexing
description: "Cells to be linked both ways in a list"

class BI_LINKABLE [G] inherit
LINKABLE [G]

redefine right, put_right end
feature

left, right: BI_LINKABLE [G]

put_right (other: BI_LINKABLE [G]) is
-- Put other to the right of current element.

do
right := other
if  other /= Void then other●put_left (Current) end

end
put_left (other: BI_LINKABLE [G]) is

-- Put other to the left of current element
… Left to the reader …

… Other features …
invariant

right = Void or else right● left = Current
left = Void or else left● right = Current

end

(Try writing put_left. There is a pitfall! See appendix A.)

LINKED_
LIST

LINKABLE

BI_
LINKABLE

TWO_WAY_
LIST

item rightleft
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The Type Redeclaration rule

Although addressing abstractions of widely different kinds, the two examples show
same need for type redeclaration. Going down an inheritance hierarchy m
specializing, and some types will follow that change pattern: types of routine argum
such as a in set_alternate and other in put_right; types of queries, such as the attribut
alternate and right, as well as functions.

The following rule captures this type aspect of redeclaration:

Here “conforms to” refers to the notion of type conformance, as defined on the 
of the descendant relation. The rule uses “or” non-exclusively: a function redeclar
may change both the type of the function’s result and the type of one or more argum

The permitted forms of redeclaration all go in the same direction: the directio
specialization. As illustrated by the last inheritance diagram, when you go down 
LINKED_LIST to TWO_WAY_LIST, arguments and results will concomitantly go dow
from LINKABLE to BI_LINKABLE. In the first example, when you go from DEVICE to
PRINTER, the attribute alternate and the argument of set_alternate follow. This explains
the name often use to characterize this type redeclaration policy: covariant typing, where
the “co” indicates that as we descend the inheritance diagram all the types go down i

Covariant typing, as we will see in the next chapter, creates for the compiler wr
few headaches which, fortunately, he can often avoid passing on to the software developer.

16.7  ANCHORED DECLARATION

The Type Redeclaration rule could make life quite unpleasant in some cases, an
cancel some of the benefits of inheritance. Let us see how and discover the solut
anchored declaration. 

Type inconsistencies 

As an example of the problems that may arise with the Type Redeclaration rule, co
the following example from LINKED_LIST. Here is the procedure for inserting a ne
element with a given value to the right of the current cursor position. Although the
nothing mysterious with the details, all you need to note at this stage is the need for 
entity new of type LINKABLE, representing the list cell to be created and added to the

Type Redeclaration rule

A redeclaration of a feature may replace the type of the feature (if an
attribute or function), or the type of a formal argument (if a routine), by
any type that conforms to the original.
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put_right (v: G) is
-- Insert an element of value v to the right of cursor position.

-- Do not move cursor.

require
not after

local
new: LINKABLE [T]

do
!!  new● make (v)

put_linkable_right (new)

… 

ensure

… See appendix A …
end

To insert a new item of value v, we must create a cell of type LINKABLE [G]; the
actual insertion is carried out by the secret procedure put_linkable_right, which takes a
LINKABLE as argument (and chains it to the cursor item using the put_right procedure of
class LINKABLE.) This procedure performs the appropriate reference manipulations

In proper descendants of LINKED_LIST, such as TWO_WAY_LIST or LINKED_
TREE, procedure put_right should still be applicable. Unfortunately, it will not work a
given: although the algorithm is still correct, the entity new should be declared and create
as a BI_LINKABLE or a LINKED_TREE rather than a LINKABLE. So we must redefine
and rewrite the whole procedure for each descendant — a particularly wasteful task
the new body will be identical to the original except for a single declaration (for new). For
an approach meant to solve the reusability issue, this is a serious deficiency.

Application-oriented examples

It would be a mistake to believe that the spurious redefinition problem only arise
implementation-oriented structures such as LINKED_LIST. With any scheme of the form

some_attribute: SOME_TYPE

set_attribute (a: SOME_TYPE) is do … end

a redefinition of some_attribute will imply the corresponding redefinition of set_attribute.
In the case of put_right for BI_LINKABLE, the redefinition actually changed the algorith
(because of the necessity, if you chain O1 right to O2, also to chain O2 left to O1), 
many other cases, such as set_alternate, the new algorithm is identical to the original. Th
pattern is so common that we may expect to have to write many redundant routine b

Here is one more example, showing how general the problem is (and not just t
set_xxx procedures, themselves a result of information hiding principles). Assume w
to class POINT a function yielding the conjugate of a point, that is to say its mirror im
across the horizontal axis: 

newCursor
element

v

B
r
f
L
o
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The function may appear as follows in POINT: 

conjugate: POINT is
-- Conjugate of current point

do
Result := clone (Current) -- Get a copy of current point
Result●move (0, –2∗y) -- Translate result vertically

end

Now consider a descendant of POINT, perhaps PARTICLE, where particles have
attributes other than x and y: perhaps a mass and a speed. Conceptually, conjugate is still
applicable to particles; it should yield a particle result when applied to a particle argum
The conjugate of a particle is identical to that particle except for the y coordinate. But if
we leave the function as it stands, it will not work for particles, since instructions su
the following violate the conformance rule: 

p1, p2: PARTICLE; !!  p1● make (…); … 

In the underlined assignment, the source (right-hand side) is of type POINT, but the
target is of type PARTICLE; the Type Conformance rule would require the reverse. So
must redefine conjugate in PARTICLE, for no purposes but type conformance.

Assignment attempt is not the solution here: although valid, it will result in a void p2,
since the source object’s type will, at execution time, be of type POINT, not PARTICLE.

A serious problem 

If you look more closely at class LINKED_LIST in appendix A you will realize that the
problem is of even greater scope. LINKED_LIST contains more than a few declaration
referring to type LINKABLE [G], and most will need to be redefined for two-way lists. F
example a possible representation of a list keeps four references to linkable elemen

first_element, previous, active, next: LINKABLE [G]

All of these must be redefined in TWO_WAY_LIST, and similarly for other
descendants. Many routines such as put_right take linkables as arguments, and must a
be redefined. It seems that we will end up repeating in TWO_WAY_LIST, for purposes of
declaration only, most of the features written for LINKED_LIST. 

x

y

p

The conjugate of p

p2 := p1●conjugate
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The notion of anchor

Unlike other type-related problems solved earlier in this chapter — such as the pro
whose analysis led to constrained genericity and assignment attempt — the Case
Useless Code Duplication is not that the type system prevents us from doing som
that we need: thanks to the covariant Type Redeclaration rule we can redefine types
heart’s content, but this forces us to perform tedious code duplication.

To obtain a solution, we may note that the examples do require a type redefin
but only one: all others ensue from it. The answer follows: provide a mechanism to d
an entity’s type not absolutely, but relative to another entity.

This will be called an anchored declaration. An anchored type has the form

like anchor

where anchor, called the anchor of the declaration, is either a query (attribute or func
of the current class or the predefined expression Current. To declare my_entity: like
anchor in a class A, where anchor is a query, means to declare it as being of the same 
as anchor, but with the provision that any redefinition of anchor in a proper descendan
will implicitly cause the same redefinition for my_entity.

So, assuming that anchor has been declared of some type T, the anchored declaration
will cause my_entity to be treated within the text of class A as if it too had been declare
of type T. If you only consider A there is no difference between the two declarations 

• my_entity: like  anchor 

• my_entity: X 

The difference only comes up in descendant classes of A. Being declared “like”
anchor, my_entity will automatically follow any redefinition of the type of anchor,
without the need for explicit redefinition by the author of the descendant class. 

So if you find that a class includes a group of entities — attributes, function res
formal routine arguments, local entities — which descendants will have to red
identically, you can dispense with all but one of the redefinitions: just declare all elem
like the first one, and redefine only that first one. All others will automatically follow

Let us apply this technique to LINKED_LIST. We can choose first_element as anchor
for the other entities of type LINKABLE [G]. The attribute declarations become: 

first_element: LINKABLE [G]
previous, active, next: like first_element

In the put_right procedure of LINKED_LIST, the local entity new should also be
declared of type like first_element; this is the only change to the procedure. With the
declarations, it suffices to redefine first_element as a BI_LINKABLE in class TWO_WAY_
LIST, as a LINKED_TREE in class LINKED_TREE etc.; all entities declared like it follow
automatically and need not be listed in the redefine clause. Neither is redefinition
necessary any more for procedure put_right. 

Anchored declarations are an essential tool to preserve reusability in a stat
typed object-oriented context.
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Current as anchor 

Instead of the name of a query you can use Current as anchor. The expression Current, as
you know, denotes the current instance. An entity declared like Current in a class A will
be treated within the class as being of type A and, in any descendant B of A, as being of
type B — without any need for redefinition. 

This form of anchored declaration addresses the remaining examples. To g
correct type for function conjugate in class POINT, amend its declaration to read

conjugate: like Current is

… The rest exactly as before …

Then the result type of conjugate gets automatically redefined, in every descenda
to the associated type, for example type PARTICLE in class PARTICLE.

In class LINKABLE, you should similarly, in the earlier declarations

right: LINKABLE [G]

put_right (other: LINKABLE [G]) is…

replace LINKABLE [G] by like Current. Feature left in BI_LINKABLE should also be
declared as like Current. 

This scheme applies to many set_attribute procedures. In the DEVICE case we get:

class DEVICE feature
alternate: like Current

set_alternate (a: like Current) is
-- Designate a as alternate.

do
alternate := a

end

… Other features …
end -- class DEVICE

No redefinition is then necessary in a descendant such as PRINTER.

Base classes revisited

With the introduction of anchored types, we need to extend the notion of base class of 

You will remember the idea. At the beginning, classes and types were a s
concept. That property, the starting point of the object-oriented method, rem
essentially true, but we have had to extend the type system a little by adding ge
parameters to classes. Every type is still fundamentally based on a class; for a gene
derived type such as LIST [INTEGER] you obtain the base class by removing the act
generic parameters, giving LIST in this example. We also added expanded types, ag
based on classes; the base type of expanded SOME_CLASS […] is SOME_CLASS.

1
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With anchored types we have another extension of the type system which, lik
previous two, leaves intact the property that each type directly follows from a class
base class of like anchor is the base class of the type of anchor in the current class; if
anchor is Current, the base class is the enclosing class.

Rules on anchored types

There is no theoretical obstacle to accepting like anchor for an anchor that is itself of an
anchored type; we must simply add a rule that prohibits cycles in declaration chains

Initially the notation disallowed anchored anchors; although this rule is acceptable, the
more liberal one that only prohibits anchor cycles allows more flexibility.

Let T be the type of anchor (given by the current class if anchor is Current). The
type like anchor conforms to itself, and to T.

In the other direction, the only type that conforms to like anchor is itself. In
particular T does not conform to like anchor. If we allowed

anchor, other: T; x: like  anchor
…
!!  other
x := other

then in a descendant class where anchor is redefined to be of type U (conforming to T but
based on a proper descendant) the assignment would attach x to an object of type T,
whereas we should only accept objects of type U or conforming to U.

Of course you may assign to and from the anchor, as in x := anchor and anchor := x,
and more generally between anchor-equivalent elements, defining x to be anchor-
equivalent to y if it is y or declared as like z where z is (recursively) anchor-equivalent to y.

In the case of anchoring a formal argument or result of a routine, as in

r (other: like Current)

the actual argument in a call, such as b in a● r (b), must be anchor-equivalent to the targ
a.

The discussion of typing issues in chapter 17 will further explore the conformance
properties of anchored types.

When not to use anchored declaration

Not every declaration of the form x: A within a class A should be replaced by x: like Current,
and not every pair of features with the same type should be declared like one another.

An anchored declaration is a commitment: it indicates that whenever the an
changes types in the future, the anchored entity must change too. As we just saw w
type rules, this commitment is not reversible: once you have declared an entity o
like anchor you cannot redefine its type any further (since the new type would hav
conform to the original, and no type conforms to an anchored type but itself). As lo
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you have not chosen an anchored type, everything is still possible: if x is of type T, you
can redeclare x as being of a conforming type U in a descendant; and you can in fa
redeclare it as like anchor for some compatible anchor to close off further variations.

The pros and cons are clear. Anchoring an entity guarantees that you will neve
to redeclare it for type purposes; but it binds it irrevocably to the type of the anchor
a typical case of trading freedom for convenience — like signing up with the military
taking vows. (In a certain sense Faust declared himself like  Mephistopheles.)

As an example of when anchoring may not be desirable, consider a feature first_
child of trees, describing the first child of a given tree node. (In the construction of 
explained in the last chapter it comes from first_element of lists, originally of type
CELL [G] or LINKABLE [G].) In a tree class it must be declared or redeclared to deno
tree. It may seem appropriate to use an anchored declaration: 

first_child: like Current

This may, however, be too restrictive in practice. The tree class may 
descendants, representing various kinds of tree (or tree node). Examples may i
UNARY_TREE (nodes with just one child), BINARY_TREE (nodes with two children) and
BOUNDED_ARITY_TREE (nodes with a bounded number of children). If first_child is
anchored to Current, every node must have children of the same type: unary if it is un
and so on. 

This is probably not the desired effect, since you may want more flexible struct
permitting for example a binary node to have a unary child. This is obtained by decl
the feature not by an anchored declaration but simply as 

first_child: TREE [G]

This solution is not restrictive: if you later need trees with nodes guaranteed to 
of the same type, you may leave TREE as it is and give it a new descenda
HOMOGENEOUS_TREE which redefines first_child as 

first_child: like Current

ensuring consistency of all the nodes in a tree.

To facilitate such a redefinition the other features of TREE representing nodes, suc
as parent and current_child, may and probably should be declared as like first_child; but
first_child itself is not anchored in TREE. 

A static mechanism 

One last comment on anchored declaration, to dispel any possible misunderstandi
might remain about this mechanism: it is a purely static rule, not implying any chan
object forms at run-time. The constraints may be checked at compile time. 

Anchored declaration may be viewed as a syntactic device, avoiding many spu
redeclarations by having the compiler insert them. As it stands, it is an essential to
reconciling reusability and type checking. 
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16.8  INHERITANCE AND INFORMATION HIDING 

One last question needs to be answered to complete this panorama of inheritance
how inheritance interacts with the principle of information hiding.

For the other intermodule relation, client, the answer is clear: the author of each
is responsible for granting access privileges to the clients of the class. He specifies a
for every feature: exported (generally available); selectively available; secret.

The policies

What happens to the export status of a feature when it is passed on to a desce
Whatever you want to happen. Information hiding and inheritance are orthog
mechanisms. A class B is free to export or hide any feature f that it inherits from an
ancestor A. All possible combinations are indeed open: 

• f exported in both A and B (although not necessarily to the same clients).

• f secret in both A and B. 

• f secret in A, but exported, generally or selectively, in B. 

• f exported in A, but secret in B. 

The language rule is the following. By default — reflecting the most common 
— f will keep the export status it had in A. But you may change this by adding an export
subclause to the inheritance clause for A, as in

class B inherit
A

export { NONE}  f end -- Makes f secret (it may have been exported in A)

…

or

class B inherit
A

export { ANY}  f end -- Makes f exported (it may have been secret in A)

…

or

class B inherit
A

export { X, Y, Z}  f end -- Makes f selectively available to certain classe

…

Applications

A typical application of this flexibility is to provide several views of a certain basic not
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Imagine a class GENERAL_ACCOUNT containing all the necessary tools fo
dealing with bank accounts, with procedures such as open, withdraw, deposit, code (for
withdrawal from automatic teller machines), change_code etc.; but this class is not mean
to be used directly by clients and so does not export anything. Descendants p
various views: they do not add any features, but simply differ in their export clauses
will export open and deposit only, another will also include withdraw and code, and so on. 

This scheme belongs to what the discussion of inheritance methodology wil
“facility inheritance”.

The notion of view is a classical one in databases, where it is often necess
provide different users with different abstract notions of an underlying set of data. 

Classes sketched the discussion of multiple inheritance provide another applic
Feature right of class CELL is secret in this class or, more precisely, is exported only
LIST; this is in fact true of all the features of CELL, since this class was initially designe
only for the purpose of lists. But in class TREE, implemented as heir to CELL as well as
LIST, right now denotes access to the right sibling of a node, a respectable public fe
which should be exported.

Why the flexibility?

The policy of letting each descendant choose its own export policy (only by overridin
default, which keeps the parent’s policy) makes type checking more difficult, as discu
in the next chapter, but provides the necessary flexibility to the class developer. Anything
more restrictive hinders the goals of object-oriented software development.

Other solutions have been tried. Some O-O languages, beginning with a revis
Simula, let a class specify not only whether a feature will be exported to its clients
whether it will be available to its descendants. The benefits are not clear. In particu

• I am not aware of any published methodological advice on how to use this fac
when to bequeath a feature to descendants, when to hide it from them. A nota
mechanism with no accompanying theory is of dubious value. (In comparison

GENERAL_
ACCOUNT

MANAGER_
ACC_VIEW

CLERK_
ACC_VIEW

CUSTOMER_
ACC_VIEW

st 
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methodological rule governing information hiding policy for clients is limpid: wh
belongs to the underlying ADT should be exported; the rest should be secret.)

• More pragmatically, it seems that few developers in Simula and languages off
similar descendant restriction mechanisms bother to use them.

On closer examination, the lack of clear methodological guidelines is not surpri
Inheritance is the embodiment of the Open-Closed principle: a mechanism that en
you to pick an existing class, written yesterday or twenty years ago by you or by som
else, and discover that you can do something useful with it, far beyond what had
foreseen by the original design. Letting a class author define what eventual desce
may or may not use would eliminate this basic property of inheritance.

The example of CELL and TREE is typical: in the design of CELL, the only goal was
to satisfy the needs of LIST classes, so right and put_right served only internal purposes
Only later did these features suddenly find a new application for a descendant, TREE.
Without such openness, inheritance would lose much of its appeal.

If a class designer has no basis for deciding which features the class should p
to its descendants, it would be even more preposterous for him to predict what the
or may not export to their own clients. Any such attempt is guesswork, with the knowled
that a wrong guess will make the descendant developers’ task impossible.

These descendant developers have only one task: to provide their clients wi
best possible class. In such an effort, inheritance is only a tool, enabling the develop
get a good result faster and better. The only rules of the game are the typing cons
and the assertions. Beyond that, anything goes. A useful ancestor feature is a go
whether the ancestor exported it or not is a matter between the ancestor and its own 
the descendant developer could not care less.

In summary, the only policy compatible with the fundamental openness
inheritance seems to be the one described: let every descendant developer take its
ancestor features, and decide on its own export policy in the interest of its own clien

Interface and implementation reuse

If you have read some of the more superficial O-O presentations, or follow newsg
discussions, you may have been subjected to warnings against “inhe
implementation”. But (as we shall see in more detail in the inheritance methodo
chapter) there is nothing wrong about using inheritance for implementation.

There are two forms of reuse: reuse through interface, and reuse of implemen
We can understand them as follows from the theoretical picture. Any class 
implementation (possibly partial) of an abstract data type. It contains both the inte
as expressed by the ADT specification — the tip of the iceberg, if you remembe
pictures that accompanied the presentation of information hiding and ADTs — and
of implementation choices. Interface reuse means that you are content to rely o
specification; implementation reuse, that you need to rely on properties that belong
class but not to the ADT.
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“WOULD YOU 
RATHER BUY OR
INHERIT?”, 24.2, 
page 812.
You will not use these two possibilities for the same purposes. If you can reu
certain set of facilities through their abstract properties only, and want to be prot
against future changes in the reused elements, go for interface reuse. But in som
you will just fall in love with a certain implementation because it provides the right basi
for what you are building.

These forms of reuse are complementary, and are both perfectly legitimate.

The two inter-module relations of object-oriented software construction cover th
client provides interface reuse, inheritance supports implementation reuse.

Reusing an implementation is, of course, a more committing decision than
reusing an interface: you cannot reasonably expect, as in the other case, to be pr
against changes in implementation! For that reason, inheriting is a more comm
decision than just being a client. But in some cases it is what you need.

It is not always easy in practice to determine which one of the client and inheritance
relations is appropriate in a certain case. A later chapter contains a detailed discussion o
how to choose between them.

Rehabilitating implementation

Why the distrust of implementation inheritance? I have come to think that the answ
less technical than psychological. A thirty-year legacy of less-than-pristine program
has left us with a distrust of the very idea of implementation. The word itself has in s
circles come to take on an almost indecent character, as if it were an insult to abstr
(H.L. Mencken, in The American Language, similarly tells of how words such as leg came
to be banished from late-nineteenth-century polite conversation for fear of the imm
connotations they evoke, even when the matter was limbs of a piano or of a chicke
we talk of analysis and design, and when we mention implementation at all we mak
to precede it by “but”, “just” or “only”, as in “this is just an implementation issue”.

Object technology, of course, is the reverse of all that: producing implementa
that are so elegant, useful and clearly correct that we do not have to watch our lan
What for us is a program is often more abstract, more high-level, more understan
than much of what the analysis and design view presents as the highest of the high

The two styles

In the picture that comes out of this discussion, we merge a set of origin
separate distinctions.

We have two relations, client and inheritance; two forms of reuse, interface
implementation; information hiding, or not; protection against internal change
provider modules, or not.

In each case the existence of a choice is not controversial, and both of the opp
options are defensible depending on the context. The slightly bolder step is to tre
these oppositions as just one:
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Merging four 
oppositions
Other approaches may be possible. But I do not know of any that is as simple
to teach and practical.

Selective exports

As a consequence of the information hiding properties of inheritance we must clarif
effects of selective exports. A class A which exports f selectively to B, as in 

class A feature { B, …}
f …
…

makes f available to B for the implementation of B’s own features. What about th
descendants of B? As we have just seen, they have access to B’s implementation; so they
should be able to access whatever is accessible to B — for example f.

Experimental observation confirms this theoretical reasoning: what a class nee
descendants tend to need too. But we do not want to have to come back and modifA (to
extend its export clause) whenever a new descendant is added to B. 

Here the principle of information hiding should be combined with the Open-Clo
principle. The designer of A is entitled to decide whether or not to make f available to B;
but he has no right to limit the freedom of the designer of the B line of classes to provide
new extensions and implementation variants. In fact, what descendants B has, if any, is
none his business. Hence the rule: 

16.9  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• Invariants of parents are automatically added to a class’s invariant. 

• In the Design by Contract approach, inheritance, redefinition and dynamic bin
introduce the concept of subcontracting.

• A routine redeclaration (redefinition or effecting) may keep or weaken 
precondition; it may keep or strengthen the postcondition. 

• An assertion redeclaration may only use require else (for or-ing of preconditions)
andand then (for and-ing of postconditions). It may not use just require  or ensure.
In the absence of these clauses the routine keeps the original assertions.

Client :: Inheritance

Reuse through interface:: Reuse of implementation

Information hiding :: No information hiding

Protection against changes in
original implementation

:: No protection against original’s
changes

Selective Export Inheritance rule
A feature selectively exported to a class is available to all its descendants.
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“A tolerant mod-
ule”, page 360.
• The universal class GENERAL and its customizable heir ANY provide redefinable
features of interest to all developer-defined classes. NONE closes down the lattice.

• It is possible to freeze a feature to guarantee eternal semantic uniqueness.

• To entrust generic parameters with specific features, use constrained generici

• Assignment attempt makes it possible to verify dynamically that an object ha
expected type. It should not be used as a substitute for dynamic binding.

• A descendant may redefine the type of any entity (attribute, function result, fo
routine argument). The redefinition must be covariant, that is to say replace
original type with a conforming one, based on a descendant.

• Anchored declaration (like anchor) is an important part of the type system
facilitating the application of covariant typing and avoiding redundant redeclarati

• Inheritance and information hiding are orthogonal mechanisms. Descendants ma
features that were exported by their ancestors, and export features that were se

• A feature available to a class is available to its descendants.

16.10  BIBLIOGRAPHICAL NOTE 

See [Snyder 1986] for a different viewpoint on the relationship between inheritance a
information hiding. 

EXERCISES

E16.1  Inheriting for simplicity and efficiency

Rewrite and simplify the protected stack example of an earlier chapter, making 
STACK3 a descendant rather than a client of STACK to avoid unneeded indirections
(Hint : see the rules governing the relationship between inheritance and inform
hiding.) 

E16.2  Vectors

Write a class VECTOR describing vectors of a numeric type (ring), with the usu
mathematical operations, and itself treated recursively as a numeric type. You may
to complete class NUMERIC for yourself (or get a version from [M 1994a]).

E16.3  Extract?

The assignment y1 := x1 is not permitted if x1 is of a type X, y1 of type Y, and X is a proper
ancestor of Y. It might seem useful, however, to include a universal feature extract such
that the instruction y1● extract (x1) copies the values of the fields of the object attached
x1 to the corresponding fields in the object attached to y1, assuming neither reference i
void.

Explain why the notation does not include such an extract feature. (Hint : examine
correctness issues, in particular the notion of invariant.) Examine whether it is possi
design a satisfactory mechanism that achieves the same general goal in a different
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