16

Inheritance technigques

From the last two chapters we have learned to appreciate inheritance as a key ingredie
in the object-oriented approach to reusability and extendibility. To complete its study we
must explore a few more facilities — something of a mixed bag, but all showing striking
consequences of the beauty of the basic ideas:

* How the inheritance mechanism relates to assertions and Design by Contract.
» The global inheritance structure, where all classes fit.

* Frozen features: when the Open-Closed principle does not apply.

« Constrained genericity: how to put requirements on generic parameters.

* Assignment attempt: how to force a type — safely.

* When and how to change type properties in a redeclaration.

« The mechanism of anchored declaration, avoiding redeclaration avalanche.

» The tumultuous relationship between inheritance and information hiding.

Two later chapters will pursue inheritance-related topics: the reviéypiofgissues
in chapterl?7, and a detailed methodological discussiorhoiv to use inheritancéand
how not to misuse it) in chapt4.

Most of the following sections proceed in the same way: examining a consequenc
of the inheritance ideas of the last two chapters; discovering that it raises a challenge or.
apparent dilemma; analyzing the problem in more depth; and deducing the solution. Th
key step is usually the next-to-last one: by taking the time to pose the problem carefully
we will often be led directly to the answer.

16.1 INHERITANCE AND ASSERTIONS

Because of its very power, inheritance could be dangerous. Were it not for the assertic
mechanism, class developers could use redeclaration and dynamic binding to change |
semantics of operations treacherously, without much pdisgibf client control. But
assertions will do more: they will give us deeper insights into the nature of inheritance. |
is in fact not an exaggeration to state that only through the principles of Design by
Contract can one finally understand what inheritance is really about.

570 INHERITANCE TECHNIQUES §16.1

The basic rules governing the rapport between inheritance and assertions have already
been sketched: in a descendant class, all ancestors’ assertions (routine preconditions and
postconditions, class invariants) still apply. This section gives the rules more precisely and
uses the results obtained to take a new look at inheritance, viewed as subcontracting.

Invariants

We already encountered the rule for class invariants:

Parents’ Invariant rule

—

The invariants of all the parents of a class apply to the class itse

The parents’ invariants are added to the class’s own, “addition” being here a logical
and then. (If no invariant is given in a class, it is considered to fTrue as invariant.)
By induction the invariants of all ancestors, direct or indirect, apply.

As a consequence, you should not repeat the parents’ invariant clauses in the
invariant of a class (although such redundancy would be semantically harmless since
a and then ais the same thing).

The flat and flat-short forms of the class will show the complete reconstruSee‘FLATTENING
invariant, all ancestors’ clauses concatenated. THE STRUCTURE’,
15.3, page 541

Preconditions and postconditions in the presence of dynamic binding

The case of routine preconditions and postconditions is slightly more delicate. The general
idea, as noted, is that any redeclaration must satisfy the assertions on the original routine.
This is particularly important if that routine was deferred: without such a constraint on
possible effectings, attaching a precondition and a postcondition to a deferred routine
would be useless or, worse, misleading. But the need is just as bad with redefinitions of
effective routines.

The exact rule will follow directly from a careful analysis of the consequences of
redeclaration, polymorphism and dynamic binding. Let us construct a typical case and
deduce the rule from that analysis.

Consider a class and one of its routines with a preconditioa postcondition:

fis The routine,
require the client and
o
@ . Ci > the contract
ensure
B
end

The figure also shows a clieC of A. The typical way folC to be a client is to
include, in one of its routines, a declaration and call of the form

§16.1 INHERITANCE AND ASSERTIONS 571

al: A

alr

For simplicity, we ignore any arguments tir may require, and we assume tr is
a procedure, although the discussion applies to a function just as well.

Of course the call will only be correct if it satisfies the precondition. One weC for
to make sure that it observes its part of the contract is to protect the call by a precondi
test, writing it (instead of jusal.r) as

if al.a then
al.r
checkal.p end -- i.e. the postcondition holds
... Instructions that may assural.f3 ...
end

(As noted in the discussion of assertions, this is not required: it suffices to guarantee, v
or without anif instruction, thaia holds before the call. We will assume fif form for
simplicity, and ignore anelse¢ clause.)

Having guaranteed the precondition, the cliC is entitled to the postcondition on
return: after the call, it may expect ttal.3 will hold.

All this is the basics of Design by Contract: the climus ensure the precondition
on calling the routine and, as a recompemaycount on the postcondition being satisfied
when the routine exits.

What happens when inheritance er the picture?

ris
The routine, require
the clien, the @ @ o
contract and ensure
the descendant end B

r'tis
require

y
CA Sheure
5

end

Assume that a new claA' inherits fromA and redeclarer. How, if at all, can it
change the preconditica into a new onw and the postconditiop into a new on®?

To decide the answer, consider the plight of the client. In thealzr the targeal
may now, out of polymorphism, be of ty/A' rather than jusA. But C does not know
about this! The only declaration fal may still be the original one:

al: A

572 INHERITANCE TECHNIQUES §16.1

which names<A, notA'. In factC may well useA' without its author ever knowing about
the existence csuct a class; the call tr may for example be in a routine C of the form

some_routine_of ((al: A)is
do
.yalr; .
end

Then a call tsome_routine_of from another class may use an actual argument of
typeA', even though the text [contains no mention of claA'. Dynamic binding means
that the call tcr will in that case use the redefinA' version.

So we can have a situation wh«C is only a client oA but in fact will at run time
use theA' version of some features. (We could say C is a “dynamic client” oA’ even
though its text does not show it.)

What does this mean fiC? The answer, unless we do something, is: trolC can
be an honest client, observing its part of the deal, and still be cheated on the result. In

if al.a thenal.r end

if alis polymorphically attached to an object of tyA', the instruction calls a routine that
expectsy and guaranteed, whereas the client has been told to saio and expec 3. So
we have a potential discrepancy between the client’s and supplier’s views of the contract.

How to cheat clients

To understand how to satisfy the clients’ expectations, we have to play devil's advocate
and imagine for a second how we could fool them. It is all for a good cause, of course (as
with a crime unit that tries to emulate criminals’ thinking the better to fight it, or a
computer security expert who studies the techniques of computer intruders).

If we, the supplier, wanted to cheat our poor, hoC client, who guarante¢o and
expect 3, how would we proceed? There are actually two ways to evil:

* We could require mori: than the original preconditiora. With a stronger
precondition, we allow ourselves to exclude (that is to say, not to guarantee any
specific result) for cases that, according to the original specification, were perfectly
acceptable.

Remember the point emphasized repeatedly in the discussion of Design by
Contract: making a precondition stronger facilitates the task of the supplier
(“the client is more often wrong”), as illustrated by the extreme case of
preconditiorfalse (“the clientis always wrong”).

* We couldensure lesthan the original postconditic3. With a weaker postcondition,
we allow ourselves to produce less than what the original specification promised.

As we saw, an assertion is said to be stronger than another if it logically implies it,
and is different; for exampli >= 5 is stronger thax >= 0. If A is stronger thaB, B is
said to be weaker theA.

§16.1 INHERITANCE AND ASSERTIONS 573

For a more rigorous
definition see‘A
mathematical note”,
page 580

How to be honest

From understanding how to cheat we deduce how to be honest. When redeclarin
routine, we may keep the original assertions, but we may also:

* Replace the precondition byweake one.
* Replace the postcondition bystronge one.

The first case means being more generous than the original — accepting more ca
This can cause no harm to a client that satisfies the original precondition before the c
The second case means producing more than what was promised; this can cause no
to a client call that relies on the original postcondition being satisfied after the call.

Hence the basic rule:

Assertion Redeclaration rule (1)

A routine redeclaration may only replace the original precondition by one
equal or weaker, and the original postcondition by one equal or stronger.

The rule expresses that the new version must accept all calls that were acceptab
the original, and must guarantee at least as much as was guaranteed by the original. It
— but does not have to — accept more cases, or provide stronger guarantees.

As its name indicates, this rule applies to both forms of redeclaration: redefinitiot
and effectings. The second case is particularly important, since it allows you to ta
seriously the assertions that may be attached to a deferred feature; these assertions w
binding on all effective versions in descendants.

The assertions of a routine, deferred or effective, specify the essential semantic:
the routine, applicable not only to the routine itself but to any redeclaration in descendatr
More precisely, they specify range of acceptable behaviol for the routine and its
eventual redeclarations. A redeclaration may specialize this range, but not violate it.

A consequence for the class author is the need to be careful, when writing t
assertions of an effective routine, nooverspecif. The assertions must characterize the
intent of the routine — its abstract semantics —, not the properties of the origin
implementation. If you overspecify, you may be closing off the possibility for a futur
descendant to provide a different implementation.

An example

Assume | write a clasMATRIX implementing linear algebra operations. Among the
features | offer to my clients is a matrix inversion routine. It is actually a combination of
command and two queries: procedinverf inverts the matrix, and sets attribinverseto

the value of the inverse matrix, as well as a boolean attrinverse_vali. The value of
inverse is meaningful if and only iinverse valitis true; otherwise the inversion has failed
because the matrix was singular. For this discussion we can ignore the singularity case

574 INHERITANCE TECHNIQUES §16.1

Of course | can only compute an approximation of the inverse of a matrix. | am
prepared to guarantee a certain precision of the result, but since | am not very good at

numerical analysis, | shall only accept requests for a precision not better 5. The
resulting routine will look like this:

invert (epsilor: REAL) is
-- Inverse of current matrix, with precisiepsilon
require
epsilon>= 10 "~(-6)
do
“Computation of inverse”
ensure
((CurrentL inverse) |- One) <= epsilon
end

The postcondition assumes that the class has a fulinfix "|-" such tham1|-| m2
is /m1 — mj|, the norm of the matrix difference m1 andm2, and a functiorinfix "["
which yields the product of two matriceOneis assumed to denote the identity matrix.

| am not too proud of myself, so for the summer | hire a bright young programmer-
numerician who rewrites minvert routine using a much better algorithm, which
approximates the result more closely and accepts a srepsilor:

require W'T:mingt: sylnéacti-
H — Cally not valid as a
epsilon>= 10 *(-20) redefinitior. See
nex.
ensure

((CurrentL inverse) |- One) <= (epsilor/ 2)

The author of this new version is far too clever to rewrite eMATRIX class; only
a few routines need adaptation. They will be included in a descendMATRIX, say
NEW_MATRIK

If the new assertions are in a redefinition, they must use a different syntax than shown
above. The rule will be given shortly.

The change of assertions satisfies the Assertion Redeclaration rule: the new
preconditiol epsilon>= 10 *(-20) is weaker than (that is to say, implied by) the original
epsilon>= 10 ~(-6); and the new postcondition is stronger than the original.

This is how it should be. A client of the origirMATRIX may be requesting a matrix
inversion but, through dynamic binding, actually callingNEW_MATRIxvariant. The
client could contain a routine

some_client_routin(m1: MATRIX; precisior: REAL) is
do
. ; mlinvert(precisior); ...
-- May use either thMATRIX or theNEW_MATRI version
end

to which one of its own clients passes a first argument of NEW_MATRI.

§16.1 INHERITANCE AND ASSERTIONS 575

The routine,
the client and
the sub-
contractor

NEW _ MATRI; must be able to accept and handle correctly any calMATRIX
would accept. If we made the precondition of the iinvert stronger than the original (as
in epsilon>= " (-£)), calls which are correct f(MATRIXwould now be incorrect; if we
made the postcondition weaker, the result returned would not be as good as guarantee
MATRIX. By using a weaker precondition and a stronger postcondition we correctly tre
all calls from clients oMATRIX, while offering a better deal to our own clients.

Cutting out the middleman

The last comment points to an interesting consequence of the Assertion Redeclara
rule. In our genereéscheme
ris _
require

:’@ ’

D Sheure
B

end

NN rtis
D’ require
A

ensure
end

the assertions of the redeclared versiy and o, if different froma andf3, are more
favorable to the clients, in the sense explained earlier (weaker precondition, stron
postcondition). But a client oA which usesA' through polymorphism and dynamic
binding cannot make good use of this improved contract, since its only contract A. with

Only by becoming a direct client A’ (the shaded link with a question mark on the last
figure) can you take advantage of the new contract, as in

al: A

if al.ythenal.r end
checkal.dend -- i.e. the postcondition holds

But then of course you have specializal to be of typeA', not the genereA; you
have lost the polymorphic generality of going throlAh

The tradeoff is clear. A client cMATRIX must satisfy the original (stronger)
precondition, and may only expect the original (weaker) postcondition; even if i
request gets served dynamicallyNEW_MATRI. it has no way of benefiting from the
broader tolerance of inputs and tighter precision of results. To get this improve
specification it must declare the matrix to be of tNEW_MATRI, thereby losing
access to other implementations represented by descend MATRIX that are not also
descedantsof NEW_MATRI.

576 INHERITANCE TECHNIQUES §16.1

Subcontracting

The Assertion Redeclaration rule fits nicely in the Design by Contract theory introduced
in the chapter bearing that title.

We saw that the assertions of a routine describe the contract associated with that
routine: the client is bound by the precondition and entitled to the postcondition, and
conversely for the class implementer.

Inheritance, with redeclaration and dynamic binding, mesukcontracting. When
you have accepted a contract, you do not necessarily want to carry it out yourself.
Sometimes you know of somebody else who can do it cheaper and perhaps better. This is
exactly what happens when a client requests a routineMATRIx but, through dynamic
binding, may actually call at run time a version redefined in a proper descendant. Here
“cheaper” refers to routine redefinition for more efficiency, as in the rectangle perimeter
example of an earlier chapter, and “better” to improved assertions in the sense just seen.

The Assertion Redeclaration rule simply states that if you are an honest
subcontractor and accept a contract, you mustiltiegvto do the job originally requested,
or better than the requested job, but not less.

The scheme described in the last section — declial of type A' to benefit from the

improved contract — is similar to the behavior of a customer who tries to get a better deal
by bypassing his contractor to work directly with the contractor's own subcontractor

In the Design by Contract view, class invariants are general constraints applying to
both contractors and clients. The parents’ invariant rule expresses that all such constraints
are transmitted to subcontractors.

It is only with assertions, and with the two rules just seen, that inheritance takes on
its full meaning for object-oriented design. The contracting-subcontracting metaphor is a
powerful analogy to guide the development of correct object-oriented software; certainly
one of the central deas.

Abstract preconditions

The rule on weakening preconditions may appear too restrictive in the case of an heir that
restricts the abstraction provided by its parent. Fortunately, there is an easy workaround,
consistent with the theory.

A typical example arises if you want to make a cBOUNDED_STAC inherit
from a genereSTACk class. 'BOUNDED_STAC the procedure for pushing an element
onto the stackput, has a precondition, which requircount<= capacity, wherecoun is
the current number of stack elements capacity is the physically available size.

For the general notion (STACK, however, there is no notion capacity. So it
seems we need tstrengthel the precondition when we move down BOUNDED _
STACE How do we build this inheritance structure without violating the Assertion
Redeclaration rule?

The answer is straightforward if we take a closer look at client needs. What needs to
be kept or weakened is not necessarily the concrete piigoongs implemented by the

§16.1 INHERITANCE AND ASSERTIONS 577

supplier (which is the supplier's business), but the precondas seen by the clie.nt
Assume that we writputin STACk as
put(x: G) is
-- Pushx on top.
require
not full
deferred
ensure

end
with a functionfull defined always to return false, so that by default stacks are never fu

full: BOOLEANIs
-- Is representation full?
-- (Default: no)
do Result:= False end

Then it suffices irBOUNDED_STAC to redefinefull:

full: BOOLEANIs
-- Is representation full?
-- (Answer: if and only if number of items is capacity)
do Result:= (count= capacity end

A precondition such amnot full, based on a property that is redefinable in
descendants, is called an abstract precondition.

This use of abstract preconditions to satisfy the Assertion Redeclaration rule m
appear to be cheating, but it is not: although the concrete precondition is in fact be
strengthened, the abstract precondition remains the same. What counts is not how
assertion is implemented, but how it is presented to the clients as part of the class inter
(the short or flat-short form). A protected call of the form

if not s.full then s.put(a) end
will be valid regardless of the kind STACKattached tcs.

There is, however, a valid criticism of this approach: it goes against the Open-Clos
principle. We must foresee, at tSTACEk level, that some stacks will have a bounded
capacity; if we have not exerted such foresight, we must go biSTACk and change its
interface. But this is inevitable. Of the following two properties

* A bounded stack is a stack.
* Itis always possible to add an element to a stack.

one must go. If we want the first property, permitBOUNDED_STACHo inherit from
STACK, we must accept that the general notion of stack includes the provisionputat a
operation is not always possible, expressed abstractly by the presence of thfull.uery

578 INHERITANCE TECHNIQUES §16.1

It would clearly be a mistake, in clasSTACE, to include Resuli= False as a
postcondition fofull or (equivalently but following the recommended style) an invariant
clausenot full. This would be a case of overspecification as mentioned earlier, hampering
the descendants’ freedom to adapt the feature.

The language rule

The Assertion Redeclaration rule as given so far is a conceptual guideline. How do we
transform it into a safe, checkable language rule?

We should in principle rely on a logical analysis of the old and new assertions, to
verify that the old precondition logically implies the new one, and that the new
postcondition implies the old one. Unfortunately, such a goal would require a
sophisticatectheorem prove which, if at all feasible, is still far too difficult (in spite of
decades of research in artificial intelligence) to be integrated routinely among the checks
performed by a compiler.

Fortunately a low-tech solution is available. We can enforce the rule through a
simple language convention, based on the observation that for any as<o andp3:

* o impliesa or vy, regardless of whey is.
e B and dimplies3, regardless of whi is.

So to be sure that a new precondition is weaker than or equal to an oa, ital
suffices to accept ionly if it is of the forma or y; and to be sure that a new
postcondition is stronger than or equal to an orig(, it suffices to accept it only if it
is of the form Band 6. Hence the language rule implementing the original
methodological rule:

Assertion Redeclaration rule (2)

In the redeclared version of a routine, it is not permitted to require
or ensure clause. Instead you may:

* Use a clause introduced require elsg, to be or-ed with the origina
precondition.

*Use a clause introduced lensure ther, to be and-ed with the
original postcondition.

In the absence of such a clause, the original assertion is retained.

Note that the operators used for or-ing and for and-ing are the non-strict bo(See‘Non-strict
operatorsor elseandand ther rather than plailor andand, although in most cases theboolean operators”,
difference is irrelevant. page 454

Sometimes the resulting assertions will be more complicated than strictly necessary.
For example in our matrix routine, where the original read

§16.1 INHERITANCE AND ASSERTIONS 579

See‘Redeclaring a
function into an
attribute”, page 491

invert (epsilor: REAL) is
-- Inverse of current matrix, with precisiepsilon
require
epsilon>= 10 *(-6)

ensure
((CurrentL inversg) |- One) <= epsilon
the redefined version may not wrequire andensure but will appear as

require else
epsilon>= 10 "(-20)

ensure then
((CurrentL inverse¢) |- One) <= (epsilor/ 2)

so that formally the precondition (epsilon>= 10 ~(-20)) or else (epsilon>= 10 ~(—€)),

and similarly for the postcondition. But this does not really matter, since a weak
precondition or a stronger postcondition takes ovi impliesy, thena or elsey has the
same value ay; and if o implies 3, then3 and then & has the same value &. So
mathematically the precondition of the redefined versicepsilon>= 10 ~(—2C) and its
postcondition is((Current [inverse) |- One) <= (epsilor / 2), even though the software
assertions (and probably, in the absence of a symbolic expression simplifier, th
evaluation at run time if assertion checking is enabled) are more complicated.

Redeclaring into attributes

The Assertion Redeclaration rule needs a small complement because of the possibilit
redeclaring a function into an attribute. What happens to the original’s precondition a
postcondition, if any?

An attribute is always accessible, and so may be considered to have precondit
True. This means that we may consider the precondition to have been weakened, in |
with the Assertion Redeclaration rule.

An attribute, however, does not have a postcondition. Since it is necessary
guarantee that the attribute satisfy any property ensured by the original function, |
proper convention (an addition to the Assertion Redeclaration rule) is to consider that
postcondition is automatically added to the class invariant. The flat form of the class w
include the condition in its invariant.

When expressing a property of the value of a function without arguments, you always
have the choice between including it in the postcondition or in the invariant. As a matter
of style it is considered preferable to use the invariant. If you follow this rule there will
not be any change of assertions if you later redeclare the function as an attribute.

580 INHERITANCE TECHNIQUES §16.2

A mathematical note

An informal comment on the Assertion Redeclaration rule stated: “A redeclaration Page57:.
specialize the range of acceptable behaviors, but not violate it”. Here, to conclude this
discussion, is a rigorous form of that property (for mathematically inclined readers only).

Consider that a routine implements a partial funcr from the set of possible input
states| to the set of possible output staO. The routine’s assertions define rules as to
whatr and its possible redeclarations may and may not do:

* The precondition specifies the doméDOM of r (the subset ol in whichr is
guaranteed to yield a result).

» The postcondition specifies, for each elenmxof DOM, a subseRESULTE(x) of O
such thar (x) [J RESULTE(x). This subset may have more than one element, since
a postcondition does not have to define the result uniquely.

The Assertion Redeclaration rule means that a redeclaration may broaden the domain
and restrict the result sets; writing the new sets in primed form, the rule requires that

poM' U DOM
RESULTS(x) U RESULT! (x) for anyx in DOM

A routine’s precondition specifies that the routine and its eventual redeclarations
must at leasaccept certain inputtDOM), although redeclarations may accept more. The
postcondition specifies that the outputs produced by the routine and its eventual
redeclarationmay at mo:include certain valueRESULT.(x)), although redeclarations’
postconditions may include fewer.

In this description a state of a system’s execution is defined by the contents of all
reachable objects; in addition, input states (elemenl) also include the values of the
arguments. For a more detailed introduction to the mathematical description of programs
and programming languages {M 1990].

16.2 THE GLOBAL INHERITANCE STRUCTURE

A few references have been made in earlier discussions to the universalGENERAL
andANY and to the objectless claNONE. It is time to clarify their role and present the
global inheritance structure.

Universal classes

It is convenient to use the following convention.

Universal Class rule

Any class that does not include an inheritance clause is considered to
include an implicit clause of the form

inherit ANY
referring to a Kernel library clasANY.

§16.2 THE GLOBAL INHERITANCE STRUCTURE 581

The global
inheritance
structure

This makes it possible to define a certain number of features that will be inherited
all classes. These features provide operations of universal interest: copy, clo
comparison, basic input and output.

For more flexibility, we will not put these featuresANY but in a clasGENERAL
of whichANY itself is an heirANY, in its default form, will have no features (being simply
of the formclassANYinherit GENERALend); but then a project leader or corporate reuse
manager who wants to make a certain number of features available across the board
adaptANY for local purposes without touchitGENERAI, which should be the same in
Versailles, Vanuatu, Venice and Veracruz.

To build a non-triviaANY, you may want to use inheritance. You can indeed rAN

inherit from some clasHOUSE _STYL, or several such classes, without introducing any
cycles in the inheritance hierarchy or violating the universal class rule: just make
HOUSE_STYL and its consorts explicit heirs GENERAI. In the following figure, “All
developer-written classes” means more precisely: all developer-written classes that do
not explicitly inherit romGENERAI.

Here then is a picture of t general structure:

582 INHERITANCE TECHNIQUES §16.2

The bottom of the pit

Also included in the figure is a claNONE, the nemesis (ANY: it inherits from any class

that does not have any other heir and makes the global inheritance class a lattice. You
probably do not want to see trename subclauses cNONE and, be relieved, you will

not. (It changes anyway each time someone writes a new (NONE is just a convenient
fiction. But its theoretical existence serves two practical purposes:

» The type ofVoid, the void reference used among other things to terminate linked
structures, is by conventioNONE. (Void is in fact one of the features of
GENERAL)

e To hide a feature from all clients, export itNONE only (in a feature clause of the
form feature { NONE}, equivalent in practice ffeature { } but more explicit, or in
an inheritance subclauexport {NONE}, also with the same practical effect as
export { }). This will make it unavailable to any developer class, SNONE has
no proper descendants. Note tNONE hides all its features.

On the first property, note that you may assign the vVoid to an entity of any
reference type; so until now the statusVoid was a little mysterious, since it had
somehow to be compatible to all types. MakNONE the type olVoid makes this status
clear, official, and consistent with the type system: by construlNONE is a descendant
of all classes, so that we can (Void as a valid value of any reference type without any
need to tamper with the type rules.

On the second property note that, symmetrically, a feature clause beginning with just
feature, which exports its features to all developer classes, is considered a shorthand for
feature { ANY}. To reexport to all classes a parent feature which had tighter availability,
you may useexport { ANY}, or the less explicit shorthalexport.

ANY andNONE ensure that our type system is closed and our inheritance structure
complete: the lattice has a top and it has eomt

Universal features

Here is a small sampling of the features founGENERAI and hence available to all
classes. Several of them were introduced and used in earlier chapters:

* clone for duplicating an object, and its deep varideep_clon for recursively See‘Object cloning

duplicating an entire object structure. and equality”, page
))) 24, and subsequent
» copy for copying the contents of an object into another. section s

* equa for field-by-field object comparison, and its deep vardeep eque.|
Other features include:
 print anc print_lineto print a simple default representation of any object.

» tagged_ oL, a string containing a default representation of any object, each field
accompanied by its tag (the corresponding attribute name).

e same_typ andconforms_t, boolean functions that compare the type of the current
object to the type of another.

§16.3 FROZEN FEATURES 583

e generato, which yields the name of an object's generating class — the class
which it is ¢ direct insance.

16.3 FROZEN FEATURES

The presentation of inheritance has repeatedly emphasized the Open-Closed principle
ability to take any feature from an ancestor class and redefine itto do it something differe
Can there be any reason for shutting off this possibility?

Prohibiting redefinition

The discussion of assertions at the beginning of this chapter has provided us with
theoretical understanding of redefinition: the “open” part of the Open-Closed principle -
the ability to change features in descendants — is kept in check by the original assertic
The only permitted redefinitions change the implementation while remaining consiste
with the specification given by the precondition and postcondition of the original.

In some rare cases, you may want to guarantee to your clients, and to the client:
your descendants, not only that a feature will satisfy the official specification, but also tt
it will use the exact original implementation. The only way to achieve this goal is to forbi
redeclarations altogether. A simple language construct provides this possibility:

frozen feature_nam.... is ... The rest of the feature declaration as u....al

With this declaration, no descendarredefine or undefine subclause may list the
feature, whether under its original name or (since renaming remains of course permitt
another. A deferred feature — meant, by definition, for redeclaration — may frozen.

Fixed semantics for copy, clone and equality features

The most common use of frozen features is for general-purpose operations of the kind
reviewed foGENERAIL For example there are two versions of the basic copy procedur

copy, frozen standard_cop(other: ...) is
-- Copy fields olother onto fields of current object.
require
other_not_voi: other/= Void
do

ensure
equal(Curreni, othel)
end

This declares two features as synonyms. (A general convention allows us to decl
two features together so that they can share the same declaration; just separate their n
with commas as here. The effect is as if there had been two separate declarations
identical declaration bodies.) But only one of the features is redefinable. So a descenc
class can redefincopy; this is necessary for example for clasARRA" and STRINC,

584 INHERITANCE TECHNIQUES §16.3

which redefinecopyso as to compare actual array and string contents, not the array or
string descriptors. It is convenient in such cases to have a frozen version as well, so that
we can use the default operatistandard cop, guaranteed to be the original.

In classGENERAI, featureclonealso has a similar doppelgén¢standard _clon,2
but here both versions are frozen. Why shcclone be frozen? The reason is not to
prevent the definition of a different cloning operation, but to ensure that clone and copy
semantics remain compatible, and as a side benefit to facilitate the redefiner’s task. The
declaration ocloneis of the general form

frozen clone(other: ...): ... is
-- Void if otheris void; otherwise new object with contents copied from
othel.
do
iFother/=Voidthen . If othel is void the
Result:= “New object of the same type othel’ defaultinitializations
Resultcopy(othel) yield VVoid for Resul.
end
ensure

equal(Resul, othel)
end

“New object of the same type other” informally denotes a call to some function
that creates and returns such an object, as provided by the implementation.

So even thougclone is frozen, it will follow any redefinition acopy, for example
in ARRAandSTRINC This is good for safety, as it would be a mistake to have different
semantics for these operations, and convenience, as you will only need to rcopytce
change the copy-clone semantics in a descendant.

Although you need not (and cannot) redeiclone, you will still need, in step with
a redefinition ofcopy, to redefine the semantics of equality. As indicated by the
postconditions given fccopyandclone, a copy must yield equal objects. Functequal
itself is in fact frozen in the same way tclone is — to ensure its dependency on another,
redefinable feature:

frozen equal(somg, other: ...): BOOLEANIs
-- Are som« andothel either both void
-- or attached to objects considered equal?
do
Resuli:= ((some= Void) and (other= Voic)) or elsesomeis_equal(othel)
ensure
Result= ((some= Voicd) and (other= Voic)) or elsesomeis_equal(othel)

end The matter was dis-

Functionequa is called under the foriequal(a, b), which does not quite enjoy thecussed irThe form
official O-O look of a.is_equal(b) but has the important practical advantage of beiggglfegﬁ)ﬁgg ep(;léae"ty
applicable whelta or b is void. The basic feature, howeveris_equa, not frozen, which 274, '

§16.4 CONSTRAINED GENERICITY 585

See"Static binding
as an optimization”,
page 51.L

“Polymorphic data
structures”, page
47C.

you should redefine in any class that redefcopy, to keep equality semantics compatible
with copy and clone semantics — so that the postconditiccopyandclone remaincorrect.

Besidesequa there is a functiorstandard_equi whose semantics is not affected by
redefinitions ofis_equa. (It uses the above algorithm but usistandard is_equl
frozen, rather thais_equa.)

Freeze only when needed

The examples of freezing that have just been given are typical of the use of tl
mechanism: guaranteeing the exact semantics of the original.

It is never appropriate to freeze a feature out of efficiency concerns. (This is
mistake sometimes made by developers with a C++ or Smalltalk background, who hs
been told that dynamic binding is expensive and that they must manually avoid it
possible.) Clearly, a call to a frozen feature will never need dynamic binding; but this i
side effect of thdrozen mechanism rather than its purpose. As discussed in detail in &
earlier chapter, applying static binding safely is a compiler optimization, not a concern f
software developers. In a well-designed language the compiler will have all it needs
perform this optimization when appropriate, along with even more far-reachin
optimizations such as routine inlining. Determining the appropriate cases is a job |
machines, not humans. Ufrozen in the rare although important cases in which you neec
it for conceptual purposes — to guarantee the exact semantics of the origit
implementation — and let the language and the compil their job.

16.4 CONSTRAINED GENERICITY

Inheritance and genericity have been presented as the two partners in the task of exter
the basic notion of class. We have already studied how to combine them through
notion ofpolymorphic data structu: into a container object described by an entity of type
SOME_CONTAINER_TYF[T] for someT, we can insert objects whose type is not Tust
butany descendant T. But there is another interesting combination, in which inheritance
serves to define what is and is not acceptable as actual generic parameter to a certain ¢

Addable vectors

A simple and typical example will allow us to see the need for constrained genericity -
and, as everywhere else in this book, to deduce the method and language construct
logical consequence of the problem’s statement.

Assume we want to declare a cliVECTOF to describe vectors of elements, with
an addition operation. There are vectors of elements of many different types, so we cle:
need a generic class. A first sketch may look like

586 INHERITANCE TECHNIQUES §16.4

indexing

descriptior: "Addable vector's
class

VECTOR[C]
feature -- Access

coun: INTEGER
-- Number of items
item, infix "@" (i: INTEGEF): Gis
-- Vector element of indei (numbering starts at 1)
require ... do

end

feature -- Basic operations
infix "+" (otherr VECTOR[G]): VECTOFis
-- The sum, element by element, of current vectorother
require ... do

end
... Other feature...
invariant
non_negative_cou: count>=0
end -- classVECTOR

The use of an infix feature is convenient for this class, but does not otherwise affect
the discussion. Also for convenience, we have two synonyms for the basic access feature,
so that we can denote ti-th element of a vector (as in tARRA" class, which could be
used to provide an implementation) as eitvitem (i) or justv @ .

Now let us see how we could write tH"+" function. At first it seems
straightforward: to add two vectors, we just add one by one their elements at
corresponding positions. The general scheme is

infix "+" (other VECTOR|[G]): VECTOFis
-- The sum, element by element, of current vectorother
require
count= other.count

local
ii INTEGER
do
“CreateResul as an array ccoun items”
from i := 1 until i > countloop
Resultput (item (i) + other.item (i)], i)
=i+l
end

end

§16.4 CONSTRAINED GENERICITY 587

Adding two
vectors item
by item

The boxed expression is the sum of the items at iii in the current vector and
othel, as illustrated by the figure on the facing page. The enclosing (putassigns its
value to thei-th item ofResul. (Procedur¢qui has not been shown in cleVECTOF, but

must obviously appear there, like its counterpaARRA".)
Current other

count count

item (i) other.item (i) i

But this does not work! Th+ operation in the boxed expression is an addition of
vector elements (not vectors); itis intended to add values oG, the generic parameter.
By definition a generic parameter represents an unknown type — the actual gene
parameter, to be provided only when we decide to use the generic class for good, thro
what has been callecgeneric derivation. If the generic derivation uses, as actual generic
parameter, a type such INTEGEF, or some other class which includes a funcinfix
"+" with the right signature, everything will work fine. But what if the actual generic
parameter iELLIPSE, or STACK[SOME_TYP], orEMPLOYEE, or any other type that
does not have an addition operation?

We did not have such a problem with the generic classes encountered previously
general container classes suctSTACK, LIST andARRAY— since the only operations
they needed to apply to container elements (represented by entities G, the formal
generic parameter) were universal, type-independent operations: assignment, compari
use as argument in feature calls. But for an abstraction such as addable vectors we ne
restrict the permissible actual generic parameters to make sure certain operations
available.

This is by no means an exceptional example. Here are two other typical ones:

* Assume you want to describe sortable structures, with a procsort that will
order the elements according to some criterion. You need to ensure the Byailabi
of a comparison operatiotinfix "<=", representing a total order, on the
corresponding objects.

« In building basic data structures such as dictionaries, you may want tchash-a
table, where the position of each element is determined by a key derived from t|
value of the element. This assumes the availability of a “hashing function” whic
computes the key (also known as the “hash value”) of ament:

588 INHERITANCE TECHNIQUES §16.4

A non-O-0 approach

Although there have been enough hints in the preceding paragraphs to suggest theThe hurried reader
inevitable solution to our problem, it is useful to pause for a moment and examinemay skip directly to
another approach, not object-oriented, has addressed the same problem the ©-O solution in

PP ’ J ’ P) the next _se_ctic, 1
Ada does not have classes, but has packages which serve to group related op1g%ﬁ2fit£"’gg'rg%nteht‘zr,,
and types. A package may be generic, with generic parameters representing types page 583 '
same problem arises: a packdVECTOR_PROCESSIM might include a declaration o

type VECTORand the equivalent of olinfix "+" function.

The solution in Ada is to treat the needed operations, suinfix "+", as generic
parameters themselves. The parameters of a package may include not only types, asin the
object-oriented approach, but also routines (called subprograms). For example:

generic
type Gis private;
with function "+" (a, b: G) return Gis <>;
with function "[C" (a, b: G) return Gis <>;
zerc: G; unity: G;
packageVECTOR_HANDLINCGs
... Package interfac...
end VECTOR_HANDLING

Note that along with the typG and the subprograms the package also uses, as
generic parameter, a valzerc representing the zero element of addition. A typical use of
the package will be

packageBOOLEAN_VECTOR_HANDLINis
new VECTOR_HANDLINCGBOOLEAN "or", "and", false, true);

which uses boolean “or” as the addition and boolean “and” as the multiplication, See“Constrained
corresponding values for zero and unity. We will study a more complete solution t@enericity”, page
example in a later chapter, as part of a systematic discussion of gervs. inheritance. e

Although appropriate for Ada, this technique is not acceptable in an O-O context.
The basic idea of object technology is the primacy of data types over operations in
software decomposition, implying that there is no such thing as a stand-alone operation.
Every operation belongs to some data , based on a cla. So it would be inconsistent
with the rest of the approach to let a function sucinfix "+", coming out of nhowhere,
serve as actual generic parameter along with types sSUNTEGEFandBOOLEAN. The
same holds for values suchzerc andunity, which will have to find their place as features
of some class — respectable members of object-oriented society.

Constraining the generic parameter

These observations yield the solution. We must work entirely in terms of classes and
types.

§16.4 CONSTRAINED GENERICITY 589

Conformance was
defined in“Limits to
polymorphism”,
page 47.}

See“Numeric and
comparable val-
ues”, page 522

What we are requiring is that any actual parameter useVECTOF (and similarly
for the other examples) be a type equipped with a set of operznfix "+", perhapzero
to initialize sums, and possibly a few others. But since we studied inheritance we kni
how to equip a type with certain operations: just make it a descendant of a class, defe
or effective, that has these operations.

A simple syntax is
class C[G -> CONSTRAINING_TYF] ... The rest as for any other cle...5

whereCONSTRAINING TYPis an arbitrary type. Th=>symbol, made of a hyphen and
a “greater than”, evokes the arrow of inheritance diagriCONSTRAINING TYPIs
called the generic constraint. The consequences of such a declaration are two-fold:

* Only types that conform tCONSTRAINING_ TYF will be acceptable as actual
generic parameters; remember that a type conforms to another if, roughly speaki
it is based on a descendant.

« Within the text of clasC, the operations permitted on an entity of tG are those
which would be permitted on an entity CONSTRAINING_TYF, that is to say
features of the base class of that type.

In theVECTORcase, what should we use as a generic constraint? A class introduc
in the discussion of multiple inheritancNUMERIC, describes the notion of objects to
which basic arithmetic operations are applicable: addition and multiplication with zel
and unity. (The underlying mathematical structure, as you may recall, is the ring.) Tt
seems appropriate even though for our immediate purposes we only need addition. Sc
class will be declared as

indexing

descriptior: "Addable vector's
class

VECTOR[G —> NUMERI(]
... The rest as before (but now vali...

Then within the class text, the loop instruction that was previously invalid

Resultput (item (i) + other.item(i)], i)

has become valid sinitem (i) ancother.item(i) are both of typG, so that aINUMERIC
operations such dnfix "+" are applicable to them.

Generic derivations such as the following are all correct, assuming the classes gi\
as actual generic parameters are all descendaNUMERIC:

VECTOR[NUMERI(]
VECTOR[REAI]
VECTOR[COMPLEY]

If, however, you try to use the tyWVECTOR[EMPLOYEE] you will get a compile-
time error, assuming claEMPLOYEEis not a descendant NUMERIC.

590 INHERITANCE TECHNIQUES §16.4

NUMERIC is a deferred class; this causes no particular problem. A generic
derivation can use an effective actual parameter, as in the preceding examples, or a
deferred one, as VECTOR[NUMERIC COMPARABL], assuming the class givenis a
deferred heir oONUMERIC.

Similarly, a dictionary class could be declared as
classDICTIONARY|[G, H -> HASHABLYF] ...

where the first parameter represents the type of the elements and the second represents the
type of their keys. A class supporting sorting may be declared as

classSORTABLE[G -> COMPARABE] ...

Playing it recursively

A nice twist of theVECTOF example appears if we ask whether it is possible to have a
vector of vectors. Is the tyfVECTOR[VECTOR[INTEGEF]] valid?

The answer follows from the preceding rules: only if the actual generic pararExerciseE16.2, page
conforms tctNUMERIC. Easy — just makVECTOFitself inherit fromNUMERIC: 61C.

indexing

descriptior: "Addable vector's
class

VECTOR[G -> NUMERI(]
inherit

NUMERIC
... The rest as befol...

It is indeed justified to consider vectors “numeric”, since addition and multiplication
operations give them a ring structure, wzerc being a vector oG zeroes anwnity a
vector ofG ones. The addition operation is precisely the veinfix "+" discussed earlier.

We can go further and uVECTOR[VECTOR[VECTOR[INTEGEF]]] and so on
— a pleasant recursive application of constrained genericity.

Unconstrained genericity revisited

Not all cases of genericity are constrained, of course. The original form of genericity, as
in STACK[G] or ARRAY|[G], is still available and is called unconstrained genericity. As
the example oIDICTIONARY[G, H -> HASHABLI] shows, a class can have both
constrained and unconstrained generic parameters.

The discussion of constrained genericity enables us to understand the unconstrained
case better. You have certainly come up with the rule by yourself as you were reading the
above: from now orclass C[G] will be understood as a shorthandclas: C [G —> ANY].

So if G is an unconstrained generic parameter (sSiSTACFK) andxis an entity of typG,
we know exactly what we can do wix: assign to or from it, compare it throu= and/=,

§16.5 ASSIGNMENT ATTEMPT 591

See“TYPING FOR
INHERITANCE”,
14.3, page 472

pass it as argument, and apply to it any of the universal feiclone, equa, deep_clone
and thelike.

16.5 ASSIGNMENT ATTEMPT

Our next technique addresses regions of Object Land in which, for fear of tyrannic
behavior, we cannot let simplistic type rules reign without opposition.

When type rules become obnoxious

The aim of the type rules introduced with inheritance is to yield statically verifiabl
dynamic behavior, so that a system that passes the compiler’'s checks will not end
applying inadequate operations to objects at run time.

The two basic rules were introduced in the first inheritance chapter:

e The Feature Call rule x.f is only valid if the base class x's type includes and
exports a featurf.

* TheType Conformance ru: to passa as argument to a routine, or to assign it to a
certain entity, requires thia's type conform to the expected type, that is to say, be
based on a descendant class.

The Feature Call rule will not cause any problem; it is the fundamental condition f
doing business with objects. Certainly, if we call a feature on an object, we need t
reassurance that the corresponding class offers and exports such a feature.

The Type Conformance rule requires more attention. It assumes that we have all
type information that we need about the objects that we manipulate. Usually that is
case; after all, we create the objects, so we know who they are. But sometimes part of
information may be missing. In particular:

* In a polymorphic data structure we are only supposed to know the information th
is common to all objects in the structure; but we may need to take advantage of sc
specific information that applies only to a particular object.

« If an object comes to our software from the outside world — a file, a network — w
usually cannot trust that it has a certain type.

Let us explore examples of these two cases. First consider a polymorphic d
structure such as a list of figures:

figlist: LIST[FIGURE]

This refers to the figure inheritance hierarchy of earlier chapters. What if someo
asks us to find out what is the longest diagonal of all rectangles in the list (with sor
convention, say —1, if there are no rectangles)? We have no easy way of answering
request, since the expressitem (i).diagona, whereitem (i) is thei-th list element for
some integei, violates the Feature Call rulitem (i) is of typeFIGURE, and there is no
featurediagona in classFIGURE— only in its proper descendsRECTANGLL:

592 INHERITANCE TECHNIQUES §16.5

The only solution with what we have seen so far is to change the class definitions so
as to associate with eaFIGURE class a code, different for each class, indicating the
figure type. This is not an attractive approach.

Now for an example of the second kind. Assume a mechanism to store objeciSee’Deep storage: a
a file, or transmit them over a network, such as the general-puSTORABL! facility Igf}tc‘é'f"ggep‘;rssf'
described in an earlier chapter. To retrieve an object or object structure you would ' '

my_last_boo: BOOK

my_last_bool:= retrieved(my_book_fil): WARNINC: type-

. . . . L invalid i at
The result of functioretrievecis of the Kernel library typSTORABLI, but it might mvelid assignmes

just as well be of typANY; in either case it is only an ancestor of the object’s generating
type (that is to say, the type of which it is a direct instance), presurBOOK or a
descendant. But you are not expectingANY or aSTORABLI: you are expecting a
BOOK. The assignment tmy last_boo violates the Type Conformance rule.

Even if instead of a general-purpose mecharretrievedwere a retrieval function
specific to your application and declared with the intended type, you could still not trust
its result blindly. Unlike an object that the software creates and then uses during the same
session, guaranteeing type consistency thanks to the type rules, this one comes from the
outside world. You may have chosen the wrong file name and retrieNEMPLOYEE
object rather than BOOK object; or someone may have tampered with the file; or, if this
is a network access, the transmission may have corrupted the data.

The challenge

It is clear from such examples that we may need a way to ascertain the type of an object.

The challenge is to satisfy this need — which arises only in specific cases, but in
those cases is crucial — without sacrificing the benefits of the object-oriented style of
development. In particular, we do not want to go back to the decried scheme

if “fis of type RECTANGLI" then
elseif“f is of type CIRCLE’ then

etc.

the exact antithesis of such principles of modularity as Single Choice and Open-Closed.
Two insights will help us avoid this risk:

* We do not need a general mechanism to determine the type of an object, at least not
for the purposes described. In the cases under discuss know the expected type
of the object. So all we require is a way to test our expectation. We will check an
object against a designated type; this is much more specific than asking for the
object’s type. It also means that we not need to introduce into our language any
operations on types, such as type comparisons — a frightening thought.

§16.5 ASSIGNMENT ATTEMPT 593

« As already noted, we should not tamper with the Feature Call rule. Under r
circumstances is there any justification for applying a feature (“sending a messag!
to an object unless we have statically ascertained that the corresponding clas
equipped to deal with it. All that we will need is a looser version of the other rule
type conformance, allowing us to “try a type” and check the result.

The mechanism

Once again the notational mechanism follows directly from the analysis of the issue. \
will use a new form of assignment, callassignment attemp, and written

target?= source

to be compared with the usual assignmtarget:= sourct. The question mark indicates
the tentative nature of the assignment. The effect of the assignment attempt, assuming
the entitytargethas been declared with tyT, is the following:

« If source is attached to an object of a type conformin(T, attach that object to
target exactly as a normal assignment would do.

» Otherwise (that is to say if the valuesource is void, or is a reference to an object
of a non-conforming type), maltargei void.

There is no type constraint on the instruction, except that theT of the target must
be a reference type. (Assignment attempt is polymorphic by nature, so an expanded te
would not make sense.)

This instruction immediately and elegantly solves problems of the kind mentione
above. First, type-specific access to objects of a polymorphic structure:

594 INHERITANCE TECHNIQUES §16.5

maxdiag(figlist: LIST[FIGURE]): REALIs
-- Maximum value of diagonals of rectangles in list; -1 if none
require
list_exist: figlist /= Void
local
r: RECTANGLE
do
from
figlist.starf; Result:= -1.0
until
figlist.after

loop

2= figlist. (7 i
r ?=figlist.item g \The assignment atte@)t
if r /= Voidthen

Result:= Resultmax(r.diagona)
end
figlist.forth
end
end
This routine uses the usual iteration mechanisms on sequential strustari to See¢'ACTIVE DATA
position the traversal on the first element if aafter to determine whether there is arSTRUCTURES”,

element left to examinedorth to advance by one positioitem (defined ifnot after) to 23.4, page 774
yield the element at the current cursor position.

The assignment attempt uses a local err of the appropriate typRECTANGLI.:
We know whether it succeeded by testr againsiVoid. Only if r is not void do we have
a rectangle; then we can safely accradiagona. This scheme of testing fc/oid right
after an assignment attempt is typical.

Note again that we never violate the Feature Call rule: any call of ther fdiagonal
is guarded, statically, by a compiler checkdiagonalis a feature of clasRECTANGLI,:
and, dynamically, by a guarantee tr is not void — has an attached object.

A list element of typeSQUARI, or some other descendantRECTANGLI, will
maker non-void, so that its diagonal will, rightly, participate in the computation.

The other example, using a general-purpose object retrieval function, is immediate:

§16.5 ASSIGNMENT ATTEMPT 595

Warning this isnot
the recommended
stylé

my_last_boo: BOOK

(Com pare with= in the first try (pagéQZD

my_last_bool?=retrieved(my_book_fil}
if my_last_bool/= Voidthen

... “Proceed normally with operations my_last_boo” ...
else

... “What we expected is not what we g...”
end

Using assignment attempt properly

Assignment attempt is an indispensable tool for those cases — typically of the two kin
shown: elements of polymorphic data structures, and objects coming from the outs
world — in which you cannot trust the statically declared type of an entity but need

ascertain at run time the type of the object actually attached to it.

Note how carefully the mechanism has been designed to discourage developers f
using it to go back to the old case-by-case style. If you really want to circumvent dynan
binding, and test separately for each type variant, you can — but you have to work re:
hard at it; for example instead of the norrfiidisplay, using the O-O mechanisms of
polymorphism and dynamic binding, you would write

display(f: FIGURE) is

-- Displayf, using the algorithm adapted to its exact nature.

local
r: RECTANGLI; t: TRIANGLE p: POLYGON s SQUARE
s¢: SEGMEN'; e ELLIPSE; c: CIRCLE; ...

do
r ?=f; if r /= Voidthen “Apply the rectangle display algorithnend
t ?2=1; if t /= Voidthen “Apply the triangle display algorithmend
c ?=1; if ¢ /= Voidthen “Apply the circle display algorithmend
.. etc...

end

This scheme will in practice be even worse than it seems because the inherita
structure has several levels; for example an object of SQUARE will make an
assignment attemx ?= f succeed fox of type POLYGOM andRECTANGLI as well as
SQUARL So you must complicate the control structure to avoid multiple matches.

Because of the difficulty of writing such contorted uses of the assignment attem,
there is little risk that novice developers will mistakenly use it instead of the normal O-
scheme. But even advanced developers must remain alert to the possibility for misuse

Java offers a mechanism called “narrowing” similar in some respects to assignment
attempt. But in case of a type mismatch, instead of yielding a void value, it produces an
exception. This looks like overkill, since an unsuccessful assignment is not an abnormal
case, simply one of several possible and expected cases; it does not justify adding

596 INHERITANCE TECHNIQUES §16.6

exception-handling code and setting in motion the exception machinery. Java also offers
theinstancec operator to test for type conformance.

These mechanisms are used particularly extensively in Java because of the absence of
genericity: you may have to rely on them, when retrieving elements from container data
structures (even single-type), to check the elements’ type against an expected type. Part
of the reason may be that, in the absence of multiple inheritance, JavaN ONE class

and hence no easy way to give the equivalelVoid a stable place in the type system.

16.6 TYPING AND REDECLARATION

When you redeclare a feature, you are not constrained to keep exactly the same signature.
The precise rule will give us a further degree of flexibility.

So far we have seen redeclaration as a mechanism for substituting an algorithm for
another — or, in the case of effecting a previously deferred routine, providing an
algorithm where only a specification was originally given.

But we may also need to change the types involved, to support the general idea that
a class may offer a more specialized version of an element declared in an ancestor. Let us
study two typical examples, which will suggest the precise Type Redeclaration rule.

Devices and printers

Here is a simple example of type redefinition. Consider a notion of device including the
provision that for every device there is an alternate, to be used if for some reason the first
one is not available:

classDEVICE feature
alternate: DEVICE

set_alternat¢(a: DEVICE) is
-- Designatea as alternate.
do
alternate:=a
end
... Other feature...

end -- classDEVICE
Printers are a special kind of device, justifying the use of inheritance. But the

alternate of a printer can only be a printer — not a CD-ROM reader or a network
transceiver! — so we must redefine the types:

§16.6 TYPING AND REDECLARATION 597

classPRINTERIinherit

alternate
DEVICE ~
redefine alternate, set_alternate .
feature
alternate: PRINTER
set_alternat¢((a: PRINTEF) is
alternate

-- Designatea as alternate.
... Body as inDEVICE ... @
... Other feature...
end -- classDEVICE

These redefinitions reflect the specializing nature of inheritance.

Linkable and bi-linkable elements

Here is another example, involving fundamental data structures. Consider the library cl
LINKABLE describing the linked list elements used LINKED_LIST, one of the
implementations of lists. A partial view of the class is:
indexing
descriptior: "Cells to be linked in a li"t
class LINKABLE[G] feature
item: G
right: LINKABLE[G]
put_right(other LINKABLE[G]) is
-- Putothel to the right of current cell.
do right := otherend
... Other feature...
end -- classLINKABLE

A linkable cell

item right

Some applications need lists chained both ways (each element linked to
successor and its predecessor). The corresponding TWO_WAY _LIS, is an heir of
LINKED_LIST, and will need an heBI LINKABLE of LINKABLE:

598 INHERITANCE TECHNIQUES §16.6

Parallel
} hierarchies

Bl
»(LINKABLE

A bi-linkable element is like a linkable but with one more field:
A bi-linkable
-} i cell

left item right

In a two-way list, bi-linkables should only be chained to bi-linkables (although it is
harmless to introduce bi-linkables in a one-way list: this is polymorphism). So we should
redefineright andput_righi to guarantee that two-way lists remain homogeneous.

indexing

descriptior: "Cells to be linked both ways in a "st
class Bl_LINKABLE[G] inherit

LINKABLE[G]

redefine right, put_rightend

feature

left, right: BI_LINKABLE[G]

put_right(other BI_LINKABLE[G]) is

-- Putothel to the right of current element.

do
right := other

if other/= Voidthen other.put_left(Curreni) end
end
put_left(other BI_LINKABLE[G]) is
-- Putothel to the left of current element
... Left to the reade...
... Other feature...
invariant
right = Void or else right.left = Current
left = Void or else left.right = Current
end

(Try writing put_lef. There is a pitfall! See appencA.)

§16.7 ANCHORED DECLARATION 599

The diagram is on
page597.

The Type Redeclaration rule

Although addressing abstractions of widely different kinds, the two examples show t
same need for type redeclaration. Going down an inheritance hierarchy mee
specializing, and some types will follow that change pattern: types of routine argumer
such asa in set_alternateand otherin put_righ; types of queries, such as the attributes
alternateandright, as well as functions.

The following rule captures this type aspect of redeclaration:

Type Redeclaration rule

A redeclaration of a feature may replace the type of the feature (if an
attribute or function), or the type of a formal argument (if a routine), by
any type that conforms to the original.

Here “conforms to” refers to the notion of type conformance, as defined on the ba
of the descendant relation. The rule uses “or” non-exclusively: a function redeclarati
may change both the type of the function’s result and the type of one or more argumer

The permitted forms of redeclaration all go in the same direction: the direction
specialization. As illustrated by the last inheritance diagram, when you go down fro
LINKED_LISTto TWO_WAY_LIS, arguments and results will concomitantly go down
from LINKABLE to BI_LINKABLE. In the first example, when you go frcDEVICE to
PRINTEEF, the attributealternateand the argument set_alternat follow. This explains
the name often use to characterize this type redeclaration pcovariant typing, where
the “co” indicates that as we descend the inheritance diagram all the types go down in s

Covariant typing, as we will see in the next chapter, creates for the compiler writel
few headaches which, fortunately, he can often avassing on to the softwe developer.

16.7 ANCHORED DECLARATION

The Type Redeclaration rule could make life quite unpleasant in some cases, and ¢
cancel some of the benefits of inheritance. Let us see how and discover the solutior
anchored declaration.

Type inconsistencies

As an example of the problems that may arise with the Type Redeclaration rule, consi
the following example fronLINKED_LIST. Here is the procedure for inserting a new

element with a given value to the right of the current cursor position. Although there
nothing mysterious with the details, all you need to note at this stage is the need for a Ic
entity newof typeLINKABLE, representing the list cell to be created and added to the lis

600 INHERITANCE TECHNIQUES §16.7

put_right(v: G) is
-- Insert an element of valwv to the right of cursor position.
-- Do not move cursor.

require
not after
local
new: LINKABLE[T]
do
Il new make(v) cufsor
put_linkable_righi(new) element
ensure
... See appendix ...
end

To insert a new item of valwy, we must create a cell of tylLINKABLE [G]; the
actual insertion is carried out by the secret proceput_linkable_righ, which takes a
LINKABLE as argument (and chains it to the cursor item usinput_righ' procedure of
classLINKABLE.) This procedure performs the appropriate reference manipulations.

In proper descendants LINKED_LIST, such asTWO_WAY_LIS or LINKED _
TREE, procedureput_right should still be applicable. Unfortunately, it will not work as
given: although the algorithm is still correct, the ernew should be declared and created
as aBl_LINKABLE or aLINKED_ TREE rather than {LINKABLE. So we must redefine
and rewrite the whole procedure for each descendant — a particularly wasteful task since
the new body will be identical to the original except for a single declarationew). For
an approach meant to solve the reusability issue, this is a serious deficiency.

Application-oriented examples

It would be a mistake to believe that the spurious redefinition problem only arises for
implementation-oriented structures suctLINKED LIST. With any scheme of the form

some_attribut: SOME_TYPE
set_attribute(a: SOME_TYP)isdc ... end

aredefinition osome_attribut will imply the corresponding redefinition set_attribut. Bl LINKABLEs put
In the case cput_rightfor Bl LINKABLE, the redefinition actually changed the algoritrfright (not to be_Cﬁ;'
(because of the necessity, if you chain O1 right to O2, also to chain O2 left to O1), Lﬁeﬁggtml_lljé—ﬂ'gvasor
many other cases, suchset_alternat, the new algorithm is identical to the original. Thon page597.

pattern is so common that we may expect to have to write many redundant routine buuies.

Here is one more example, showing how general the problem is (and not just tied to
set_xx procedures, themselves a result of information hiding principles). Assume we add
to classPOINT a function yielding the conjugate of a point, that is to say its mirror image
across the horizontal axis:

§16.7 ANCHORED DECLARATION 601

A pointand its
conjugate

T

The conjugate op l

The function may appear as followsPOINT:

conjugate POINTIs
-- Conjugate of current point
do
Result:= clone(Curreni -- Get a copy of current point
Resultmove(0, —2Ly) -- Translate result vertically
end

Now consider a descendant POINT, perhapsPARTICLE, where particles have
attributes other thax andy: perhaps a mass and a speed. Concepticonjugateis still
applicable to particles; it should yield a particle result when applied to a particle argume
The conjugate of a particle is identical to that particle except foy coordinate. But if
we leave the function as it stands, it will not work for particles, since instructions such
the following violate the conformance rule:

pl, p2: PARTICLE !! pl.make(...); ...
p2:= pl.conjugate

In theunderline(assignment, the source (right-hand side) is of POINT, but the
target is of typiPARTICLE; the Type Conformance rule would require the reverse. So w
must redefineconjugatein PARTICLE, for no purposes but type conformance.

Assignment attempt is not the solution here: although valid, it will result in ap2,id
since the source object’s type will, at execution time, be of POINT, notPARTICLE.

A serious problem

If you look more closely at claLINKED_LISTin appendi:A you will realize that the

problem is of even greater scojLINKED_LIST contains more than a few declarations
referring to typeL INKABLE[G], and most will need to be redefined for two-way lists. For
example a possible representation of a list keeps four references to linkable elements

first_elemer, previouy, active, nex: LINKABLE[G]

All of these must be redefined iTWO_WAY_LIS, and similarly for other
descendants. Many routines suctput_righitake linkables as arguments, and must also
be redefined. It seems that we will end up repeatirTWO_WAY LIS, for purposes of
declaration only, most of the features written LINKED _LIS.

602 INHERITANCE TECHNIQUES §16.7

The notion of anchor

Unlike other type-related problems solved earlier in this chapter — such as the problems
whose analysis led to constrained genericity and assignment attempt — the Case of the
Useless Code Duplication is not that the type system prevents us from doing something
that we need: thanks to the covariant Type Redeclaration rule we can redefine types to our
heart’s content, but this forces us to perform tedious code duplication.

To obtain a solution, we may note that the examples do require a type redefinition,
but only one: all others ensue from it. The answer follows: provide a mechanism to declare
an entity’s type not absolutely, brelative to another entity.

This will be called an anchored declaration. An anchored type has the form

like anchor

whereancho, called the anchor of the declaration, is either a query (attribute or function)
of the current class or the predefined expres:Current. To declaremy entit: like
anchorin a clas¢A, whereanchol is a query, means to declare it as being of the same type
asancho, but with the provision that any redefinition anchoi in a proper descendant
will implicitly cause the same redefinition fmy_enfit

So, assuming thianchol has been declared of some tT, the anchored declaration
will causemy_entit to be treated within the text of clsA as if it too had been declared
of typeT. If you only consideA there is no difference between the two declarations

* my_entit: like anchol
« my_entit: X
The difference only comes up in descendant classeA. Being declared “like”

anchol, my_entitywill automatically follow any redefinition of the type @nchol,
without the need for explicit redefinition by the author of the descendant class.

So if you find that a class includes a group of entities — attributes, function results,
formal routine arguments, local entities — which descendants will have to redefine
identically, you can dispense with all but one of the redefinitions: just declare all elements
like the first one, and redefine only that first one. All others will automatically follow.

Let us apply this technique LINKED _LIST. We can choosfirst_elemer as anchor
for the other entities of typLINKABLE[G]. The attribute declarations become:

first_elemer: LINKABLE[G]
previous, active, nex: like first_element

In the put_right procedure olLINKED_LIST, the local entitynew should also beput_right from
declared of typdike first_elemer; this is the only change to the procedure. With th¢-/NKED_LISTis on
declarations, it suffices to redefifirst_elemer as ¢8_LINKABLE in classTWO_WAY Pages9¢:
LIST,as eLINKED TREEIin classLINKED TREEetc.; all entities declarelike it follow
automatically and need not be listed in redefine clause. Neither is redefinition
necessary any more for procedput_righ.

Anchored declarations are an essential tool to preserve reusability in a statically
typed object-oriented context.

§16.7 ANCHORED DECLARATION 603

Currentas anchor

See'The current Instead of the name of a query you canCurrentas anchor. The expressiCurrent, as

instance”, page 181 yoy know, denotes the current instance. An entity declike Curren in a classA will
be treated within the class as being of tA and, in any descendaB of A, as being of
type B — without any need for redefinition.

Original: page60C. This form of anchored declaration addresses the remaining examples. To get
correct type for functioiconjugatein classPOINT, amend its declaration to read

conjugate like Currentis
... The rest exactly as befo...

Then the result type (conjugatt gets automatically redefined, in every descendant,
to the associated type, for example tPARTICLE in classPARTICLE.

In classLINKABLE, you should similarly, in the earlier declarations

right: LINKABLE[G]
put_right(other: LINKABLE[G]) is...

replaceLINKABLE [G] by like Curren. Featureleft in Bl _LINKABLE should also be
declared alike Curreni,

Class DEVICI, fol- This scheme applies to maset_attributt procedures. In thDEVICE case we get:
lowed by PRINTE,R

appeared on page classDEVICE feature

595,

alternate: like Current

set_alternate(a: like Curren) is
-- Designatea as alternate.
do
alternate:= a
end
... Other feature...
end -- classDEVICE

No redefinition is then necessary in a descendant SUPRINTEF.

Base classes revisited

With the introduction of anchored types, we need to extend the notion of base classofat

See“Types and You will remember the idea. At the beginning, classes and types were a sing

classes”, page 325 concept. That property, the starting point of the object-oriented method, remai
essentiall true, but we have had to extend the type system a little by adding gene
parameters to classes. Every type is still fundamentally based on a class; for a generic
derived type such eLIST [INTEGEF] you obtain the base class by removing the actual
generic parameters, givirLIST in this example. We also added expanded types, agai
based on classes; the base typexpandec SOME_CLASY...] isSOME_CLASS

604 INHERITANCE TECHNIQUES §16.7

With anchored types we have another extension of the type system which, like the
previous two, leaves intact the property that each type directly follows from a class. The
base class clike anchoris the base class of the typeanchorin the current class; if
anchoris Curreni, the base class is the enclosilass.

Rules on anchored types

There is no theoretical obstacle to acceplike anchoifor ananchoithat is itself of an
anchored type; we must simply add a rule that prohibits cycles in declaration chains.

Initially the notation disallowed anchored anchors; although this rule is acceptable, the
more liberal one that only prohibits anchor cycles allows more flexibility.

Let T be the type oanchor(given by the current classanchor is Curreni). The
typelike anchorconforms to itself, and tT.

In the other direction, the only type that conformslike anchoi is itself. In
particularT does not conform tlike ancho. If we allowed

anchol, other: T; x: like anchor

Il other

X := other WARNINC invalid

. .) . i i1t
then in a descendant class whanchoiis redefined to be of tyfU (conforming taT but assignmet

based on a proper descendant) the assignment would x to an object of typeT,
whereas we should only accept objects of {U or conforming tcU.

Of course you may assignh to and from the anchor, x:=1anchorandanchor:= x,
and more generally between anchor-equivalent elements, defx to be anchor-
equivalent tey if it is y or declared alike zwherezis (recursively) anchor-equivalenty.

In the case of anchoring a formal argument or result of a routine, as in
r (other: like Curreni)

the actual argument in a call, suchb in a.r (b), must be anchor-equivalent to the target
a.

The discussion of typing issues in chafl7 will further explore the conformance
properties of anchored types.

When not to use anchored declaration

Not every declaration of the forx: A within a clasA should be replaced Ix: like Curren,
and not every pair of features with the same type should be delike one another.

An anchored declaration is a commitment: it indicates that whenever the anchor
changes types in the future, the anchored entity must change too. As we just saw with the
type rules, this commitment is not reversible: once you have declared an entity of type
like anchoryou cannot redefine its type any further (since the new type would have to
conform to the original, and no type conforms to an anchored type but itself). As long as

§16.7 ANCHORED DECLARATION 605

you have not chosen an anchored type, everything is still possilx is of typeT, you
can redeclarix as being of a conforming tyfU in a descendant; and you can in fact
redeclare it alike ancho for some compatiblanchoito close off further variations.

The pros and cons are clear. Anchoring an entity guarantees that you will never h;
to redeclare it for type purposes; but it binds it irrevocably to the type of the anchor. It
a typical case of trading freedom for convenience — like signing up with the military, c
taking vows. (In a certain sense Faust declared hirlike Mephistophele.)

As an example of when anchoring may not be desirable, consider a ffirst re
child of trees, describing the first child of a given tree node. (In the construction of tre
explained in the last chapter it comes frdirst_elemer of lists, originally of type
CELL[G] orLINKABLE[G].) In a tree class it must be declared or redeclared to denote
tree. It may seem appropriate to use an anchored declaration:

first_child: like Current

This may, however, be too restrictive in practice. The tree class may ha
descendants, representing various kinds of tree (or tree node). Examples may incl
UNARY_TRE (nodes with just one childBINARY_ TRE (nodes with two children) and
BOUNDED_ARITY_TRE (nodes with a bounded number of children)first child is
anchored t«Curreni, every node must have children of the same type: unary if it is unan
and so on.

This is probably not the desired effect, since you may want more flexible structure
permitting for example a binary node to have a unary child. This is obtained by declari
the feature not by an anchored declaration but simply as

first_child: TREE[G]

This solution is not restrictive: if you later need trees with nodes guaranteed to be
of the same type, you may leaxTREE as it is and give it a new descendant
HOMOGENEOUS_TREwhich redefinesirst_child as

first_child: like Current
ensuring consistency of all the nodes in a tree.

To facilitate such a redefinition the other featureTREE representing nodes, such
asparen andcurrent_chil, may and probably should be declaredikeifirst_child; but
first_child itself is not anchred inTREE.

A static mechanism

One last comment on anchored declaration, to dispel any possible misunderstanding
might remain about this mechanism: it is a purely static rule, not implying any change
object forms at run-time. The constraints may be checked at compile time.

Anchored declaration may be viewed as a syntactic device, avoiding many spuric
redeclarations by having the compiler insert them. As it stands, it is an essential tool
reconciling reusability and type checking.

606 INHERITANCE TECHNIQUES §16.8

16.8 INHERITANCE AND INFORMATION HIDING
One last question needs to be answered to complete this panorama of inheritance issues:
how inheritance interacts with the principle of information hiding.

For the other intermodule relation, client, the answer is clear: the author of each class
is responsible for granting access privileges to the clients of the class. He specifies a policy
for every feature: exported (generally available); selectively available; secret.

The policies

What happens to the export status of a feature when it is passed on to a descendant?
Whatever you want to happen. Information hiding and inheritance are orthogonal
mechanisms. A clasB is free to export or hide any featuf that it inherits from an
ancestolA. All possible combinations are indeed open:

» f exported in botlA andB (although not necessarily to the same clients).
« f secretin bottA andB.

» f secretirA, but exported, generally or selectively,B.

» fexported irA, but secret iIB.

The language rule is the following. By default — reflecting the most common case
— f will keep the export status it had A. But you may change this by addingexport
subclause to thinheritance clause folA, as in

classB inherit
A
export {NONE} fend-- Makesf secret (it may have been exporte@d)n

or
classB inherit
A
export {ANY} fend-- Makesf exported (it may have been secreA)n
or
classB inherit
A
export {X, Y, Z} fend-- Makesf selectively available to certain classes
Applications

A typical application of this flexibility is to provide several views of a certain basic notion.

§16.8 INHERITANCE AND INFORMATION HIDING 607

Imagine a classGENERAL ACCOUN containing all the necessary tools for
dealing with bank accounts, with procedures sucoper, withdraw, deposi, code (for
withdrawal from automatic teller machinechange coc etc.; but this class is not meant
to be used directly by clients and so does not export anything. Descendants prov
various views: they do not add any features, but simply differ in their export clauses. O
will exportoper anddeposi only, another will also includwithdrawandcode, and sion.

Views of a
basic
abstraction

GENERAL_
ACCOUNT

MANAGER \
ACC_VIEW,

Sed'Facility inherit- This scheme belongs to what the discussion of inheritance methodology will cé
ance’, page 832 “facility inheritance”.

The notion of view is a classical one in databases, where it is often necessary
provide different users with different abstract notions of an underlying set of data.

“Trees are lists and list Classes sketched the discussion of multiple inheritance provide another applicati

elements”, page 525 Featureright of classCELL is secret in this class or, more precisely, is exported only tc
LIST; this is in fact true of all the featuresCELL, since this class was initially designed
only for the purpose of lists. But in claTREE, implemented as heir CELL as well as
LIST, right now denotes access to the right sibling of a node, a respectable public feat
which should be exported.

Why the flexibility?

The policy of letting each descendant choose its own export policy (only by overriding t
default, which keeps the parent’s policy) makes type checking more difficult, as discuss
in the next chapter, but provides the necessary filéxilo the class developer. Anything
more restrictive hinders the goals of object-oriented software development.

Other solutions have been tried. Some O-O languages, beginning with a revision
Simula, let a class specify not only whether a feature will be exported to its clients, k
whether it will be available to its descendants. The benefits are not clear. In particular:

* | am not aware of any published methodological advice on how to use this facilit
when to bequeath a feature to descendants, when to hide it from them. A notatio
mechanism with no accompanying theory is of dubious value. (In comparison, t

608 INHERITANCE TECHNIQUES §16.8

methodological rule governing information hiding policy for clients is limpid: what
belongs to the underlying ADT should be exported; the rest should be secret.)

« More pragmatically, it seems that few developers in Simula and languages offering
similar descendant restriction mechanisms bother to use them.

On closer examination, the lack of clear methodological guidelines is not surprising.
Inheritance is the embodiment of the Open-Closed principle: a mechanism that enables
you to pick an existing class, written yesterday or twenty years ago by you or by someone
else, and discover that you can do something useful with it, far beyond what had been
foreseen by the original design. Letting a class author define what eventual descendants
may or may not use would eliminate this basic property of inheritance.

The example oCELLandTREEis typical: in the design (CELL, the only goal was
to satisfy the needs (LIST classes, sright andput_right served only internal purposes.
Only later did these features suddenly find a new application for a desceTREE,,
Without such openness, inheritance would lose much of its appeal.

If a class designer has no basis for deciding which features the class should pass on
to its descendants, it would be even more preposterous for him to predict what they may
or may not export to theown client. Any such attempt is guesswork, with the knowledge
that a wrong guess will make the descendant developers’ task impossible.

These descendant developers have only one task: to provide their clients with the
best possible class. In such an effort, inheritance is only a tool, enabling the developers to
get a good result faster and better. The only rules of the game are the typing constraints
and the assertions. Beyond that, anything goes. A useful ancestor feature is a godsend;
whether the ancestor exported it or not is a matter between the ancestor and its own clients:
the descendant developer could not care less.

In summary, the only policy compatible with the fundamental openness of
inheritance seems to be the one described: let every descendant developer take its pick of
ancestor features, and decide on its own export policy in the interest of its own clients.

Interface and implementation reuse

If you have read some of the more superficial O-O presentations, or follow newsgroup
discussions, you may have been subjected to warnings against “inheriting
implementation”. But (as we shall see in more detail in the inheritance methodology
chapter) there is nothing wrong about using inheritance for implementation.

There are two forms of reuse: reuse through interface, and reuse of implemen See the figure on page
We can understand them as follows from the theoretical picture. Any class 144
implementation (possibly partial) of an abstract data type. It contains both the intertace,
as expressed by the ADT specification — the tip of the iceberg, if you remember the
pictures that accompanied the presentation of information hiding and ADTs — and a set
of implementation choices. Interface reuse means that you are content to rely on the
specification; implementation reuse, that you need to rely on properties that belong to the
class but not to the ADT.

§16.8 INHERITANCE AND INFORMATION HIDING 609

“WOULD YOU
RATHER BUY OR
INHERIT?", 24.2,
page 812

You will not use these two possibilities for the same purposes. If you can reuse
certain set of facilities through their abstract properties only, and want to be protect
against future changes in the reused elements, go for interface reuse. But in some ¢
you will just fall in love with a certain implementatioedause it provides the right basis
for what you are building.

These forms of reuse are complementary, and are both perfectly legitimate.

The two inter-module relations of object-oriented software construction cover ther
client provides interface reuse, inheritance supports implementation reuse.

Reusing an implementation is, of course, a more committing decision than ju
reusing an interface: you cannot reasonably expect, as in the other case, to be prote
against changes in implementation! For that reason, inheriting is a more committi
decision than just being a client. But in some cases it is what you need.

It is not always easy in practice to determine which one of the client and inheritance
relations is appropriate in a certain case. A later chapter contains a detailed discussion of
how to choose between them.

Rehabilitating implementation

Why the distrust of implementation inheritance? | have come to think that the answer
less technical than psychological. A thirty-year legacy of less-than-pristine programmi
has left us with a distrust of the very idea of implementation. The word itself has in sor
circles come to take on an almost indecent character, as if it were an insult to abstract
(H.L. Mencken, irThe American Langua, similarly tells of how words such legcame

to be banished from late-nineteenth-century polite conversation for fear of the immod
connotations they evoke, even when the matter was limbs of a piano or of a chicken.)
we talk of analysis and design, and when we mention implementation at all we make s
to precede it by “but’, “just” or “only”, as in “this is just an implementation issue”.

Object technology, of course, is the reverse of all that: producing implementatio
that are so elegant, useful and clearly correct that we do not have to watch our langu:
What for us is a program is often more abstract, more high-level, more understanda
than much of what the analysis and design view presents as the highest of the high.

The two styles

In the picture that comes out of this discussion, we merge a set of original
separate distinctions.

We have two relations, client and inheritance; two forms of reuse, interface ai
implementation; information hiding, or not; protection against internal changes |
provider modules, or not.

In each case the existence of a choice is not controversial, and both of the oppo:
options are defensible depending on the context. The slightly bolder step is to treat
these oppositions as just one:

610 INHERITANCE TECHNIQUES §16.9

Client :: Inheritance Merging four
oppositions

Reuse through interface:: Reuse of implementation

Information hiding :: No information hiding

Protection against changes ir:: No protection against original’
original implementation changes

[%2)

Other approaches may be possible. But | do not know of any that is as simple, easy
to teach and practical.

Selective exports

As a consequence of the information hiding properties of inheritance we must clarify the
effects of selective exports. A cleA which exportsf selectively tcB, as in

class Afeature {B, ...}
f..

makesf available toB for the implementation oB's own features. What about the
descendants (B? As we have just seen, they have acceB's implementation; so they
should be able to access whatever is accessilB — for examplef.

Experimental observation confirms this theoretical reasoning: what a class needs, its
descendants tend to need too. But we do not want to have to come back ancA (tadify
extend its export clause) whenever a new descendantis adB.d to

Here the principle of information hiding should be combined with the Open-Closed
principle. The designer (A is entitled to decide whether or not to mi available tcB;
but he has no right to limit the freedom of the designer oB line of classes to provide
new extensions and implementation variants. In fact, what desceiB has, if any, is
none his business. Hence the rule:

Selective Export Inheritance rule
A feature selectively exported to a class is available to all its descendants.

16.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

« Invariants of parents are automatically added to a class’s invariant.

« In the Design by Contract approach, inheritance, redefinition and dynamic binding
introduce the concept of subcontracting.

< A routine redeclaration (redefinition or effecting) may keep or weaken the
precondition; it may keep or strengthen the postcondition.

« An assertion redeclaration may only wequire else (for or-ing of preconditions)
andand ther (for and-ing of postconditions). It may not use jrequire orensure.
In the absence of these clauses the routine keeps the original assertions.

§16.10 BIBLIOGRAPHICAL NOTE 611

“A tolerant mod-
ule”, page 361)

e The universal clasGENERAI and its customizable heANY provide redefinable
features of interest to all developer-defined clasNONE closes down the lattice.

« It is possible to freeze a feature to guarantee eternal semantic uniqueness.
< To entrust generic parameters with specific features, use constrained genericity.

« Assignment attempt makes it possible to verify dynamically that an object has t
expected type. It should not be used as a substitute for dynamic binding.

» A descendant may redefine the type of any entity (attribute, function result, form
routine argument). The redefinition must be covariant, that is to say replace t
original type with a conforming one, based on a descendant.

e Anchored declarationlike ancho) is an important part of the type system.
facilitating the application of covariant typing and avoiding redundant redeclaration:

« Inheritance and information hiding are orthogonal mechanisms. Descendants may f
features that were exported by their ancestors, and export features that were secre

* A feature available to a class is available to its descendants.

16.10 BIBLIOGRAPHICAL NOTE

See[Snyder 198¢ for a different viewpoint on the relationship between inheritance anc
information hiding.

EXERCISES

E16.1 Inheriting for simplicity and efficiency

Rewrite and simplify the protected stack example of an earlier chapter, making cle
STACK: a descendant rather than a clientSTACK to avoid unneeded indirections.
(Hint: see the rules governing the relationship between inheritance and informati
hiding.)

E16.2 Vectors

Write a classVECTOF describing vectors of a numeric type (ring), with the usual
mathematical operations, and itself treated recursively as a numeric type. You may h
to complete clasNUMERIC for yourself (or get a version fro[M 1994a).

E16.3 Extract?

The assignmeryl:= x1is not permitted ix1 is of a typeX, y1 of typeY, andX is a proper
ancestor oY. It might seem useful, however, to include a universal feiextrac such
that the instructiolyl. extract(x1) copies the values of the fields of the object attached tc
x1 to the corresponding fields in the object attacheyl, assuming neither reference is
void.

Explain why the notation does not include suchextrac feature. Hint: examine
correctness issues, in particular the notion of invariant.) Examine whether it is possible
design a satisfactory mechanism that achieves the same general goal in a different w:

612 INHERITANCE TECHNIQUES §E16.3

	16 16 Inheritance techniques
	16.1 INHERITANCE AND ASSERTIONS
	Invariants
	Parents’ Invariant rule

	Preconditions and postconditions in the presence o...
	The routine, the client and the contract
	The routine, the client, the contract and the desc...

	How to cheat clients
	How to be honest
	Assertion Redeclaration rule (1)

	An example
	Cutting out the middleman
	The routine, the client and the sub- contractor

	Subcontracting
	Abstract preconditions
	The language rule
	Assertion Redeclaration rule (2)

	Redeclaring into attributes
	A mathematical note

	16.2 THE GLOBAL INHERITANCE STRUCTURE
	Universal classes
	Universal Class rule
	The global inheritance structure

	The bottom of the pit
	Universal features

	16.3 FROZEN FEATURES
	Prohibiting redefinition
	Fixed semantics for copy, clone and equality featu...
	Freeze only when needed

	16.4 CONSTRAINED GENERICITY
	Addable vectors
	Adding two vectors, item by item

	A non-O-O approach
	Constraining the generic parameter
	Playing it recursively
	Unconstrained genericity revisited

	16.5 ASSIGNMENT ATTEMPT
	When type rules become obnoxious
	The challenge
	The mechanism
	Using assignment attempt properly

	16.6 TYPING AND REDECLARATION
	Devices and printers
	Linkable and bi-linkable elements
	A linkable cell
	A bi-linkable cell
	Parallel hierarchies

	The Type Redeclaration rule
	Type Redeclaration rule

	16.7 ANCHORED DECLARATION
	Type inconsistencies
	Application-oriented examples
	A point and its conjugate

	A serious problem
	The notion of anchor
	Current as anchor
	Base classes revisited
	Rules on anchored types
	When not to use anchored declaration
	A static mechanism

	16.8 INHERITANCE AND INFORMATION HIDING
	The policies
	Applications
	Views of a basic abstraction

	Why the flexibility?
	Interface and implementation reuse
	Rehabilitating implementation
	The two styles
	Merging four oppositions

	Selective exports
	Selective Export Inheritance rule

	16.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
	16.10 BIBLIOGRAPHICAL NOTE
	EXERCISES
	E16.1 Inheriting for simplicity and efficiency
	E16.2 Vectors
	E16.3 Extract?

