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Executing an object-oriented application means creating and manipulating a c
number of objects. What happens to these objects when the current execution term
Transient objects will disappear with the current session; but many applications also 
persistent objects, which will stay around from session to session. Persistent objects
need to be shared by several applications, raising the need for databases.

In this overview of persistence issues and solutions we will examine the t
approaches that O-O developers have at their disposal for manipulating persistent o
They can rely on persistence mechanisms from the programming language an
development environment to get object structures to and from permanent storage
can combine object technology with databases of the most commonly available kin
O-O): relational databases. Or they can use one of the newer object-oriented database
systems, which undertake to transpose to databases the basic ideas of object techn

This chapter describes these techniques in turn, providing an overview o
technology of O-O databases with emphasis on two of the best-known products. I
with a more futuristic discussion of the fate of database ideas in an O-O context.

31.1  PERSISTENCE FROM THE LANGUAGE

For many persistence needs it suffices to have, associated with the develo
environment, a set of mechanisms for storing objects in files and retrieving them 
files. For simple objects such as integers and characters, we can use input-output fa
similar to those of traditional programming.

Storing and retrieving object structures

As soon as composite objects enter the picture, it is not sufficient to store and re
individual objects since they may contain references to other objects, and an o
deprived of its dependents would be inconsistent. This observation led us in an e
chapter to the Persistence Closure principle, stating that any storage and retriev
mechanism must handle, together with an object, all its direct and indirect dependent
following figure served to illustrate the issue:

-
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The Persistence Closure principle stated that any mechanism that stores O1
also store all the objects to which it refers, directly or indirectly; otherwise when
retrieve the structure you would get a meaningless value (“dangling reference”) in the
loved_one field for O1.

We saw the mechanisms of class STORABLE which provide the corresponding
facilities: store to store an object structure and retrieved to access it back. This is a
precious mechanism, whose presence in an O-O environment is by itself a 
advantage over traditional environments. The earlier discussion gave a typical exam
use: implementing the SAVE facility of an editor. Here is another, from ISE’s o
practice. Our compiler performs several passes on representations of the softwar
The first pass creates an internal representation, known as an Abstract Syntax Tree
Roughly speaking, the task of the subsequent passes is to add more and more s
information to the AST (to “decorate the tree”) until there is enough to generate
compiler’s target code. Each pass finishes by a store; the next pass starts by retrieving th
AST through retrieved.

The STORABLE mechanism works not only on files but also on network connecti
such as sockets; it indeed lies at the basis of the Net client-server library.

Storable format variants

Procedure store has several variants. One, basic_store, stores objects to be retrieved by th
same system running on the same machine architecture, as part of the same exec
of a later one. These assumptions make it possible to use the most compact format p
for representing objects.

Another variant, independent_store, removes all these assumptions; the obje
representation is platform-independent and system-independent. It consequently t
little more space, since it must use a portable data representation for floating-poin
other numerical values, and must include some elementary information about the c
of the system. But it is precious for client-server systems, which must exch
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potentially large and complex collections of objects among machines of widely diffe
architectures, running entirely different systems. For example a workstation server 
PC client can run two different applications and communicate through the Net library,
with the server application performing the fundamental computations and the c
application taking care of the user interface thanks to a graphical library such as Vision.

Note that the storing part is the only one to require several procedures — basic_store,
independent_store. Even though the implementation of retrieval is different for ea
format, you will always use a single feature retrieved, whose implementation will detec
the format actually used by the file or network data being retrieved, and will automati
apply the appropriate retrieval algorithm.

31.2  BEYOND PERSISTENCE CLOSURE

The Persistence Closure principle is, in theory, applicable to all forms of persisten
makes it possible, as we saw, to preserve the consistency of objects stored and ret

In some practical cases, however, you may need to adapt the data structure 
letting it be applied by mechanisms such as STORABLE or the O-O database tools
reviewed later in this chapter. Otherwise you may end up storing more than you wa

The problem arises in particular because of shared structures, as in this setup

A relatively small data structure needs to be archived. Because it contains one o
references to a large shared structure, the Persistence Closure principle requires ar
that structure too. In some cases you may not want this. For example, as illustrated
figure, you could be doing some genealogical research, or other processing on o
representing persons; a person object might, through an address field, reference a much
bigger set of objects representing geographical information. A similar situation occu
ISE’s ArchiText product, which enables users to manipulate structured documents, su
programs or specifications. Each document, like the FAMILY structure in the figure,
contains a reference to a structure representing the underlying grammar, playing th
of the CITY structure; we may want to store a document but not the grammar, which al
exists elsewhere and may be shared by many documents.

address

FAMILY structure

CITY structure
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In such cases you may want to “cut out” the references to the shared structure 
storing the referring structure. This is, however, a delicate process. First, you must as 
make sure that at retrieval time the objects will still be consistent — satisfy their invar
But there is also a practical problem: to avoid complication and errors, you do not 
want to modify the original structure; only in the stored version should references be c

Once again the techniques of object-oriented software construction provid
elegant solution, based on the ideas of behavior class reviewed in the discussion o
inheritance. One of the versions of the storing procedure, custom_independent_store, has
the same effect as independent_store by default, but also lets any descendant of a libra
class ACTIONABLE redefine a number of procedures which do nothing by default, s
as pre_store which will be executed just before an object is stored and post_store which
will be executed after. So you can for example have pre_store perform

preserve; address:= Void

where preserve, also a feature of ACTIONABLE, copies the object safely somewher
Then post_action will perform a call to

restore

which restores the object from the preserved copy.

For this common case it is in fact possible to obtain the same effect through a c
the form

store_ignore ("address")

where ignore takes a field name as argument. Since the implementation of store_ignore
may simply skip the field, avoiding the two-way copy of preserve and restore, it will be
more efficient in this case, but the pre_store-post_store mechanism is more genera
allowing any actions before and after storage. Again, you must make sure that
actions will not adversely affect the objects.

You may in fact use a similar mechanism to remove an inconsistency pro
arising at retrieval time; it suffices to redefine the procedure post_retrieve which will be
executed just before the retrieved object rejoins the community of approved object
example an application might redefine post_retrieve, in the appropriate class inheritin
from ACTIONABLE, to execute something like

address:= my_city_structure●address_value (…)

hence making the object presentable again before it has had the opportunity to vio
class invariant or any informal consistency constraint.

There are clearly some rules associated with the ACTIONABLE mechanism; in
particular, pre_store must not perform any change of the data structure unless post_store
corrects it immediately thereafter. You must also make sure that post_retrieve will
perform the necessary actions (often the same as those of post_store) to correct any
inconsistency introduced into the stored structure by pre_store. Used under these rules, th
mechanism lets you remain faithful to the spirit of the Persistent Closure principle w
making its application more flexible. 
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which it is a direct 
instance. See “Basic
form”, page 219.
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31.3  SCHEMA EVOLUTION
A general issue arises in all approaches to O-O persistence. Classes can change.
you change a class of which instances exist somewhere in a persistent store? This is
as the schema evolution problem.

The word schema comes from the relational database world, where it describes the
architecture of a database: its set of relations (as defined in the next section) with, for every
relation, what we would call its type — number of fields and type of each. In an O-O
context the schema will also be the set of types, given here by the classes.

Although some development environments and database systems have pro
interesting tools for O-O schema evolution, none has yet provided a fully satisfa
solution. Let us define the components of a comprehensive approach.

Some precise terminology will be useful. Schema evolution occurs if at least one
class used by a system that attempts to retrieve some objects (the retrieving system)
differs from its counterpart in the system that stored these objects (the storing system).
Object retrieval mismatch, or just object mismatch for short, occurs when the retrieving
system actually retrieves a particular object whose own generating class was differ
the storing system. Object mismatch is an individual consequence, for one particu
object, of the general phenomenon of schema evolution for one or more classes.

Remember that in spite of the terms “storing system” and “retrieving system” this whole
discussion is applicable not only to storage and retrieval using files or databases, but also
to object transmission over a network, as with the Net library. In such a case the more
accurate terms would be “sending system” and “receiving system”.

To keep the discussion simple, we will make the usual assumption that a sof
system does not change while it is being executed. This means in particular that 
instances of a class stored by a particular system execution refer to the same versio
class; so at retrieval time either all of them will produce an object mismatch, or none of
them will. This assumption is not too restrictive; note in particular that it does not rule
the case of a database that contains instances of many different versions of the sam
produced by different system executions.

Naïve approaches

We can rule out two extreme approaches to schema evolution:

• You might be tempted to forsake previously stored objects (schema revolution!).
The developers of the new application will like the idea, which makes their lif
much easier. But the users of the application will not be amused.

• You may offer a migration path from old format to new, requiring a one-time
masse conversion of old objects. Although this solution may be acceptable in 
cases, it will not do for a large persistent store or one that must be ava
continuously.

What we really need is a way to convert old objects on the fly as they are retrieved
or updated. This is the most general solution, and the only one considered in the 
this discussion.

-
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If you happen to need en-masse conversion, an on-the-fly mechanism will trivially let you
do it: simply write a small system that retrieves all the existing objects using the new
classes, applying on-the-fly conversion as needed, and stores everything.

On-the-fly object conversion

The mechanics of on-the-fly conversion can be tricky; we must be particularly care
get the details right, lest we end up with corrupted objects and corrupted databases

First, an application that retrieves an object and has a different version o
generating class may not have the rights to update the stored objects, which may 
as well since other applications may still use the old version. This is not, however, a 
problem. What counts is that the objects manipulated by the application be consisten
their own class descriptions; an on-the-fly conversion mechanism will ensure
property. Whether to write back the converted object to the database is a separate q
— a classical question of access privilege, which arises as soon as several applicat
even several sessions of the same application, can access the same persiste
Database systems, object-oriented or not, have proposed various solutions

Regardless of write-back aspects, the newer and perhaps more challenging p
is how each application will deal with an obsolete object. Schema evolution involves
separate issues — detection, notification and correction:

• Detection is the task of catching object mismatches (cases in which a retrieve
object is obsolete) at retrieval time.

• Notification  is the task of making the retrieving system aware of the ob
mismatch, so that it will be able to react appropriately, rather than continuing 
an inconsistent object (a likely cause of major trouble ahead!).

• Correction is the task, for the retrieving system, of bringing the mismatched ob
to a consistent state that will make it a correct instance of the new version of its
— a citizen, or at least a permanent resident, of its system of adoption.

All three problems are delicate. Fortunately, it is possible to address them sepa

Detection

We can define two general categories of detection policy: nominal and structural .

In both cases the problem is to detect a mismatch between two versions of an objec
generating class: the version used by the system that stored the object, and the vers
by the system which retrieves it.

In the nominal approach, each class version is identified by a version name
assumes some kind of registration mechanism, which may have two variants:

• If you are using a configuration management system, you can register each
version of the class and get a version name in return (or specify the ve
name yourself).
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• More automatic schemes are possible, similar to the automatic identification fa
of Microsoft’s OLE 2, or the techniques used to assign “dynamic IP addresse
computers on the Internet (for example a laptop that you plug in temporarily in
new network). These techniques are based on random number assignment
numbers so large as to make the likelihood of a clash infinitesimal.

Either solution requires some kind of central registry. If you want to avoid 
resulting hassle, you will have to rely on the structural approach. The idea here
associate with each class version a class descriptor deduced from the actual structure o
the class, as defined by the class declaration, and to make sure that whenever a pe
mechanism stores objects it also stores the associated class descriptors. (Of course if you
store many instances of a class you will only need to store one copy of the class desc
Then the detection mechanism is simple: just compare the class descriptor of each re
object with the new class descriptor. If they are different, you have an object mismatch.

What goes into a class descriptor? There is some flexibility; the answer is a tra
between efficiency and reliability. For efficiency, you will not want to waste too m
space for keeping class information in the stored structure, or too much time for
comparing descriptors at retrieval time; but for reliability you will want to minimize 
risk of missing an object mismatch — of treating a retrieved object as up-to-date if it is
fact obsolete. Here are various possible strategies:

C1 • At one extreme, the class descriptor could just be the class name. This is gen
insufficient: if the generator of an object in the storing system has the same 
as a class in the retrieving system, we will accept the object even though th
classes may be totally incompatible. Trouble will inevitably follow.

C2 • At the other extreme, we might use as class descriptor the entire class text — p
not as a string but in an appropriate internal form (abstract syntax tree). This is c
the worst solution for efficiency, both in space occupation and in descri
comparison time. But it may not even be right for reliability, since some c
changes are harmless. Assume for example the new class text has added a 
but has not changed any attribute or invariant clause. Then nothing bad can h
if we consider a retrieved object up-to-date; but if we detect an object mismatch we
may cause some unwarranted trouble (such as an exception) in the retrieving s

C3 • A more realistic approach is to make the class descriptor include the class nam
the list of its attributes, each characterized by its name and its type. As com
to the nominal approach, there is still the risk that two completely different cla
might have both the same name and the same attributes, but (unlike in casC1)
such chance clashes are extremely unlikely to happen in practice.

C4 • A variation on C3 would include not just the attribute list but also the whole cla
invariant. With the invariant you should be assured that the addition or remov
a routine, which will not yield a detected object mismatch, is harmless, since if i
changed the semantics of the class it would affect the invariant.

C3 is the minimum reasonable policy, and in usual cases seems a good tradeoff, at
least to start.
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dure name is not an 
adjective but a verb, 
as in “Correct this 
mismatch, fast!” . See 
“Grammatical cate-
gories”, page 881.

“THE GLOBAL 
INHERITANCE 
STRUCTURE”, 
page 580.
Notification

What should happen when the detection mechanism, nominal or structural, has caugh
object mismatch?

We want the retrieving system to know, so that it will be able to take the approp
correction actions. A library mechanism will address the problem. Class GENERAL
(ancestor of all classes) must include a procedure

correct_mismatch is

do

…See full version below …

end

with the rule that any detection of an object mismatch will cause a call to correct_mismatch
on the temporarily retrieved version of the object. Any class can redefine the d
version of correct_mismatch; like a creation procedure, and like any redefinition of t
default exception handling procedure default_rescue, any redefinition of correct_
mismatch must ensure the invariant of the class.

What should the default version of correct_mismatch do? It may be tempting, in the
name of unobtrusiveness, to give it an empty body. But this is not appropriate, si
would mean that by default object retrieval mismatches will be ignored — leading 
kinds of possible abnormal behavior. The better global default is to raise an except

correct_mismatch is

-- Handle object retrieval mismatch.

do 

raise_mismatch_exception

end

where the procedure called in the body does what its name suggests. It might caus
unexpected exceptions, but this is better than letting mismatches go through undetecte
A project that wants to override this default behavior, for example to execute a
instruction rather than raise an exception, can always redefine correct_mismatch, at its
own risk, in class ANY. (As you will remember, developer-defined classes inherit fr
GENERAL not directly but through ANY, which a project or installation can customize.

For more flexibility, there is also a feature mismatch_information of type ANY, defined
as a once function, and a procedure set_mismatch_information (info: ANY) which resets
its value. This makes it possible to provide correct_mismatch with more information, for
example about the various preceding versions of a class.

If you do expect object mismatches for a certain class, you will not want the de
exception behavior for that class: instead you will redefine correct_mismatch so as to
update the retrieved object. This is our last task: correction.
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Correction

How do we correct a object that has been found, upon retrieval, to cause a mismatch? The
answer requires a careful analysis, and a more sophisticated approach than has 
been implemented by existing systems or proposed in the literature.

The precise situation is this: the retrieval mechanism (through feature retrieved of
class STORABLE, a database operation, or any other available primitive) has crea
new object in the retrieving system, deduced from a stored object with the 
generating class; but it has also detected a mismatch. The new object is in a tempora
state and may be inconsistent; it may for example have lost a field which was pres
the stored object, or gained a field not present in the original. Think of it as a fore
without a visa.

Such an object state is similar to the intermediate state of an object being created —
outside of any persistence consideration — by a creation instruction !!  x●make (…), just
after the object’s memory cell has been allocated and initialized to default values, but just
before make has been called. At that stage the object has all the required components but
is not yet ready for acceptance by the community since it may have inconsistent values
in some of its fields; it is, as we saw, the official purpose of a creation procedure make to
override default initializations as may be needed to ensure the invariant.

Let us assume for simplicity that the detection technique is structural and based 
attributes (that is to say, policy C3 as defined earlier), although the discussion w
transpose to the other solutions, nominal or structural. The mismatch is a consequence o
a change in the attribute properties of the class. We may reduce it to a combination 
number of attribute additions and attribute removals. (If a class change is the replaceme
of the type of an attribute, we can consider it as a removal followed by an addition.
figure above shows one addition and one removal.

Attribute removal does not raise any apparent difficulty: if the new class does
include a certain attribute present in the old class, the corresponding object fields a
needed any more and we may simply discard them. In fact procedure correct_mismatch
does not need to do anything for such fields, since the retrieval mechanism, when cr
a tentative instance of the new class, will have discarded them; the figure shows th
the bottom field — rather, non-field — of the illustrated object.

The attribute for this field 
was not in the stored 
version; the field has been 
initialized to the default 
value for the attribute’s type.

The stored object had a field 
here, but the new version of 
the class has removed the 
corresponding attribute;
so the field has been lost.

The attributes for these two
fields have not changed from

the stored object’s generating
class to the new version.

0.0

-
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page 55, and “Defini-
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page 364.
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We might of course be a bit more concerned about the discarded fields; what if they were
really needed, so that the object will not make sense without them? This is where having
a more elaborate detection policy, such as structural policy C4 which takes the invariant
into account, would be preferable.

The more delicate case is when the new class has added an attribute, which yields a
new field in the retrieved objects, as illustrated by the top field of the object in
preceding figure. What do we do with such a field? We must initialize it somehow. I
systems I have seen offering some support for schema evolution and object conv
the solution is to use a conventional default as initialization value (the usual choices
for numbers, empty for strings). But, as we know from earlier discussions of sim
problems — arising for example in the context of inheritance — this may be very wrong!

Our standard example was a class ACCOUNT with attributes deposits_list and
withdrawals_list; assume that a new version adds an attribute balance and a system using
this new version attempts to retrieve an instance created from the previous version

The purpose of adding the balance attribute is clear: instead of having to recompu
an account’s balance on demand we keep it in the object and update it whenever n
The new class invariant reflects this through a clause of the form

balance = deposits_list● total – withdrawals_list● total

But if we apply the default initialization to a retrieved object’s balance field, we will
get a badly inconsistent result, whose balance field does not agree with the rec
deposits and withdrawals. On the above figure, balance is zero as a result of the defau
initialization; to agree with the deposits and withdrawals shown, it should be 1000 do

Hence the importance of having the correct_mismatch mechanism. In such a case th
class will simply redefine the procedure as

correct_mismatch is
-- Handle object retrieval mismatch by correctly setting up balance

do
balance:= deposits_list● total – withdrawals_list● total

end

If the author of the new class has not planned for this case, the default vers
correct_mismatch will raise an exception, causing the application to terminate abnorm
unless a retry (providing another recovery possibility) handles it. This is the right outco
since continuing execution could destroy the integrity of the execution’s object structu
and, worse yet, of the persistent object structure, for example a database. In the
metaphor, we will reject the object unless we can assign it a proper immigration status.

R
a

(
w
p0.0

Old fields

New field (initialized to
default value of its type)

withdrawals_list

deposits_list

balance

$900 $850 $250

$300 $700
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31.4  FROM PERSISTENCE TO DATABASES

Using STORABLE ceases to be sufficient for true database applications. Its limitations
have been noted in the earlier discussion: there is only one entry object; there is no s
for content-based queries; each call to retrieved re-creates the entire structure, with n
sharing of objects between successive calls. In addition, there is no support in STORABLE
for letting different client applications access the same persistent data simultaneou

Although various extensions of the mechanism can alleviate or remove som
these problems, a full-fledged solution requires taking advantage of database techn

O-O or not, a set of mechanisms for storing and retrieving data items (“objects
general sense) deserves being called a database management system if it supp
following features:

• Persistence: objects can outlive the termination of individual program sessions 
them, as well as computer failures.

• Programmable structure: the system treats objects as structured data connec
clearly defined relations. Users of the system can group a set of objects i
collection, called a database, and define the structure of a particular database

• Arbitrary size: there is no built-in limit (such as could result from a computer’s m
memory size or addressing capability) to the number of objects in a database.

• Access control: users can “own” objects and define access rights to them.

• Property-based querying: mechanisms enable users and programs to find da
objects by specifying their abstract properties rather than their location.

• Integrity constraints: users can define some semantic constraints on objects an
the database system enforce these constraints.

• Administration: tools are available to monitor, audit, archive and reorganize
database, add users, remove users, print out reports.

• Sharing: several users or programs can access the database simultaneously.

• Locking: users or programs can obtain exclusive access (read only, read and 
to one or more objects.

• Transactions: it is possible to define a sequence of database operations, ca
transaction, with the guarantee that either the whole transaction will be exe
normally or, if it fails, it will not have visibly affected the state of the database.

The standard transaction example is a money transfer from a bank account to
another, requiring two operations — debiting the first account and crediting
the second — which must either succeed together or fail together. If they fail,
any partial modification, such as debiting the first account, must be canceled;
this is called rolling back the transaction.

The features listed are not exhaustive; they reflect what most current comm
systems offer, and what users have come to expect.
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31.5  OBJECT-RELATIONAL INTEROPERABILITY

By far the most common form of database systems today is the relational kind, based on
ideas developed by E. F. Codd in a 1970 article.

Definitions

A relational database is a set of relations, each containing a set of tuples (or records). A
relation is also known as a table and a tuple as a row because it is convenient to present
relation in tabular form, as in

Each tuple is made of a number of fields. All the tuples in a relation have the sam
number and types of fields; in the example the first and last fields are strings, the oth
are integers. Each field is identified by a name: title, date and so on in the above BOOKS
example. The field names, or equivalently the columns, are known as attributes.

Relational databases are usually normalized, meaning among other things that eve
field is a simple value (such as an integer, a real, a string, a date); it cannot be a re
to another tuple.

Operations

The relational model of databases comes with a relational algebra which defines a
number of operations on relations. Three typical operations are selection, projectio
join.

Selection yields a relation containing a subset of the rows of a given relation, b
on some condition on the fields. Applying the selection condition “pages less than 400” to
BOOKS yields a relation made of BOOKS’s first, second and last tuples. 

The projection of a relation along one or more attributes is obtained by ignoring a
other fields, and removing any duplicate rows in the result. If we project the above re
along its last attribute we obtain a one-field relation with three tuples, "STENDHAL",
“FLAUBERT" and "BALZAC"; if we project it along its first three attributes the result is
three-field relation, deduced from the above by removing the last column.

The join of two relations is a composite relation obtained by selecting ty
compatible attributes in each of them and combining rows that match for these attri
Assume that we also have a relation AUTHORS:

title date pages author

"The Red and the Black" 1830 341 "STENDHAL"

"The Charterhouse of Parma"1839 307 "STENDHAL"

"Madame Bovary" 1856 425 "FLAUBERT"

"Eugénie Grandet" 1833 346 "BALZAC"

T
r

S
b
“
a
“
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Then the join of BOOKS and AUTHORS on the matching attributes author and name
is the following relation:

Queries

The relational model permits queries — one of the principal database requirements 
earlier list — through a standardized language called SQL, with two forms: one to be
directly by humans, the other (“embedded SQL”) to be used by programs. Using th
form, a typical SQL query is

select title, date, pages from BOOKS

yielding the titles, dates and page numbers of all recorded books. As you will have n
such a query is, in the relational algebra, a projection. Another example is

select title, date, pages, author where pages < 400

corresponding in the relational algebra to a selection. The query

select

title, date, pages, author, real_name, birth, date

from  AUTHORS, BOOKS where

author = name

is internally a join, yielding the same result as the join example given earlier.

name real_name birth death

"BALZAC" "Honoré de Balzac" 1799 1850

"FLAUBERT" "Gustave Flaubert" 1821 1880

"PROUST" "Marcel Proust" 1871 1922

"STENDHAL" "Henri Beyle" 1783 1842

title date pages author/name real_name birth death

"The Red and the Black" 1830 341 "STENDHAL" "Henri Beyle" 1783 1842

"The Charterhouse of Parma"1839 307 "STENDHAL" "Henri Beyle" 1783 1842

"Madame Bovary" 1856 425 "FLAUBERT" "Gustave Flaubert"1821 1880

"Eugénie Grandet" 1833 346 "BALZAC" "Honoré de Balzac"1799 1850

 

 
 



OBJECT PERSISTENCE AND DATABASES§31.61050

e to the
ple of

rovide

ltalk
all

s. It is

date
o other

n the

 what
re
ional).
 field:

tence
the

arlier
eneral

O-O
ssarily
of the

ns of
-O
ent.
Using relational databases with object-oriented software

The concepts of relational databases, as just sketched, bear a marked resemblanc
basic model of O-O computation. We can associate a relation with a class, and a tu
that relation with an object — an instance of that class. We need a class library to p
us with the operations of relational algebra (corresponding to embedded SQL).

A number of object-oriented environments provide such a library for C++, Smal
or (with the Store library) the notation of this book. This approach, which we may c
object-relational interoperability, has been used successfully by many development
appropriate in either of the following circumstances:

• You are writing an object-oriented system which must use and possibly up
existing corporate data, stored in relational databases. In such a case there is n
choice than using an object-relational interface.

• Your O-O software needs to store object structures simple enough to fit nicely i
relational view of things. (Reasons why it might not fit are explained next.)

If your persistence requirements fall outside of these cases, you will experience
the literature calls an impedance mismatch between the data model of your softwa
development (object-oriented) and the data model of your database system (relat
You may then find it useful to take a look at the newest development in the database
object-oriented database systems.

31.6  OBJECT-ORIENTED DATABASE FUNDAMENTALS

The rise of object-oriented databases has been fueled by three incentives:

D1 • The desire to provide object-oriented software developers with a persis
mechanism compatible with their development method — to remove 
impedance mismatches.

D2 • The need to overcome conceptual limitations of relational databases.

D3 • The attempt to offer more advanced database facilities, not present in e
systems (relational or not), but made possible and necessary by the g
technological advance of the computer field.

The first incentive is the most obvious for someone whose background is 
software development when he comes to the persistence question. But it is not nece
the most important. The other two are pure database concerns, independent 
development method.

To study the concept of O-O database let us start by examining the limitatio
relational systems (D2) and how they can fail to meet the expectations of an O
developer (D1), then move on to innovative contributions of the O-O database movem
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Where relational databases stop

It would be absurd to deny the contribution of relational database systems. (In
whereas the first publications on O-O databases in the eighties tended to be crit
relational technology, the more recent trend is to describe the two approach
complementary.) Relational systems have been one of the principal components 
growth of information technology since the seventies, and will be around for a long 
They are well adapted to situations involving data, possibly large amounts thereof, 

R1 • The structure of the data is regular: all objects of a given type have the same n
and types of components.

R2 • The structure is simple: the component types all belong to a small set of prede
possibilities.

R3 • These types are drawn from a small group of predefined possibilities (inte
strings, dates…), each with fixed space requirements.

A typical example is a census or taxpayer database with many objects repres
persons, each made of a fixed set of components for the name (string), date of birth 
address (string), salary (integer) and a few more properties.

Property R3 rules out many multimedia, CAD-CAM and image processi
applications, where some data elements, such as image bitmaps, are of highly v
sizes, and sometimes very large. It also precludes, as a result of the “normal 
requirements enforced by existing commercial tools, the possibility for an object to 
to another object. This is of course a dramatic limitation when compared to what we
come to taking for granted in the discussions of this book: whenever we had

the object-oriented model made it easy to access indirect properties of an object, s
redblack●author●birth_year (yielding 1783 if redblack is attached to the object on the le
of the figure). A relational description will not be able to represent the reference 
author, whose value is the denotation of another object. 

There is a workaround in the relational model, but it is heavy and impractica
represent the above situation, you will have two relations, BOOKS and AUTHORS, as
introduced a few pages back. Then, to connect the two relations, you may perform ajoin ,
which was also shown in the first part of this discussion, using matching fields author for
the first relation and name from the second.

 "The Red and the Black"

1830

title

date

(BOOK3)

341pages

(WRITER)

"Stendhal"

"Henri Beyle"

name

real_name

1783 birth

1842 deathauthor
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To answer questions such as “What is the birth year of the author of The Red and the
Black?” the relational implementation will have to compute joins, projections etc.; 
we can use the join seen earlier and then project along the date attribute.

This technique works and is widely used, but it is only applicable for sim
schemes. The number of join operations would quickly become prohibitive in a sy
that must regularly handle queries with many indirections, as “How many rooms are
in the previous house of the manager of the department from which the lady
graduated at the top of my wife’s youngest maternal uncle’s undergraduate clas
reassigned when the parent company went through its second round of venture fun
— no particular problem in an O-O system’s run-time network of objects.

Object identity

The simplicity of the relational model follows in part from the identification of obje
with their values. A relation (table) is a subset of A × B × …for some sets A, B, …, where
× represents cartesian product; in other words each one of the elements of the rela
each object — is a tuple <a1, b1, …> where a1 is an element of A and so on. But such an
object has no existence other than its value; in particular, inserting an object into a re
has no effect if the relation already has an identical tuple. For example inse
<"The Red and the Black", 1830, 341, "STENDHAL"> into the above BOOKS relation
does not change the relation. This is very different from the dynamic model of 
computation, where we can have two identical objects:

As you will remember, equal (obj1, obj2) will have value true if obj1 and obj2 are
references attached to these objects, but obj1 = obj2 will yield false.

Being identical is not the same as being the same (ask any identical twins)
ability to distinguish between the two notions is part of the modeling power of ob
technology. It relies on the notion of object identity: any object has an existenc
independent of its contents.

Visitors to the Imperial Palace in Kyoto are told both that the buildings are very ancient
and that each is rebuilt every hundred years or so. With the notion of object identity there
is no contradiction: the object is the same even if its contents have changed.

You are the same individual as ten years ago even if none of the molecules that made u
your body then remains in it now.

"The Red and the Black"

1830

title

date

(BOOK3)

341 pages

author

"The Red and the Black"

1830

(BOOK3)

341

title

date

pages

author

O1 O2
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We can express object identity in the relational model, of course: just add to e
object a special key field, guaranteed to be unique among objects of a given type. B
have to take care of it explicitly. With the O-O model, object identity is there by defa

In non-persistent O-O software construction, support for object identity is alm
accidental: in the simplest implementation, each object resides at a certain address
reference to the object uses that address, which serves as immutable object identity
is not true any more in implementations, such as ISE’s, which may move objects a
for effective garbage collection; object identity is then a more abstract concept.) 
persistence, object identify becomes a distinctive factor of the object-oriented mode

Maintaining object identity in a shared databases raises new problems: every
that needs to create objects must obtain a unique identity for them; this means th
module in charge of assigning identities must be a shared resource, creating a po
bottleneck in a highly concurrent setup.

The threshold model

From the preceding observations follows what has been called the threshold mo
object-oriented databases: the minimum set of properties that a database system
satisfy if it deserves at all to be called O-O. (More advanced features, also desirabl
be discussed next.) There are four requirements for meeting the threshold m
database, encapsulation, object identity and references. The system must:

T1 • Provide database functionality, as defined earlier in this chapter.

T2 • Support encapsulation, that is to say allow hiding the internal properties of ob
and make them accessible through an official interface.

T3 • Associate with each object an identification that is unique in the database.

T4 • Allow an object to contain references to other objects.

Notable in this list is the absence of some object-oriented mechanisms that we
are indispensable to the method, in particular inheritance. But this is not as stran
might appear at first. All depends on what you expect from a database system. A s
at the threshold level might be a good O-O database engine, providing a set of
mechanisms for storing, retrieving and traversing object structures, but leaving any h
knowledge about the semantics of these objects, such as the inheritance relations
design and programming language and the development environment.

The experience of early O-O database systems confirms that the database engin
approach is reasonable. Some of the first systems went to the other extreme and had 
complete “data model” with an associated O-O language supporting inheritance,
genericity, polymorphism and so on. The vendors found that these languages were
competing with O-O design and programming languages, and tended to lose such
competitions (since a database language, will likely be less general and practical than on
designed from the start as a universal programming language); they scurried in most case
to replace these proprietary offerings with interfaces to the main O-O languages.
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Additional facilities

Beyond the threshold model a number of facilities are desirable. Most comme
systems offer at least some of them.

The first category includes direct support for more advanced properties of the
method: inheritance (single or multiple), typing, dynamic binding. This does not req
more elaboration for the readers of this book. Other facilities, reviewed next, inc
object versioning, schema evolution, long transactions, locking, object-oriented que

Object versioning

Object versioning is the ability to retain earlier states of an object after procedure
have changed the state. This is particularly important as a result of concurrent acc
Assume that an object O1 contains a reference to an object O2. A client changes
fields of O1, other than the reference. Another client changes O2. Then if the first 
attempts to follow the reference, it may find a version of O2 that is inconsistent with

Some O-O database systems address this problem by treating every 
modification as the creation of a new object, thereby maintaining access to older ver

Class versioning and schema evolution

Objects are not the only elements to require versioning: over time, their generating c
may change too. This is the problem of schema evolution, discussed at the beginn
this chapter. Only a few O-O database systems provide full support for schema evo

Long transactions

The concept of transaction has always been important in database systems, but c
transaction mechanisms have been directed towards short transactions: those which begi
and end with a single operation performed by a single user during a single sessio
computer system. The archetypal example, cited at the beginning of this chap
transferring a certain amount of money from one bank account to another; it
transaction, since it requires an all-or-nothing outcome: either both operations (de
one account and crediting the other) succeed, or both fail. The time it will take is o
order of seconds (less if we ignore user interaction).

Applications in the general idea of design of complex systems, such as CAD-CAM
(computer-aided design and manufacturing of engineering products) and computer
software engineering, raise the need of long transactions, whose duration may be on t
order of days or even months. During the design of a car, for example, one o
engineering teams may have to check out the carburetor part to perform some ch
and check it back in a week or two later. Such an operation has all the propertie
transaction, but the techniques developed for short transactions are not directly appl

The field of software development itself has obvious demand for long transact
arising each time several people or teams work on a common set of modules. Interes
database technology has not been widely applied (in spite of many suggestions 
literature) to software development. The software field has instead developed for its
purposes a set of configuration management tools which address the specific issues 
software component management, but also duplicate some standard database fu
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most of the time without the benefit of database technology. This situation, surprisi
first look, has a most likely explanation: the absence of support for long transactio
traditional database management systems. 

Although long transactions may not conceptually require object technology, re
efforts to support them have come from O-O database systems, some of which offer
to check any object in and out of a database.

Locking

Any database management system must provide some form of locking, to ensur
concurrent access and updating. Early O-O database systems supported page-level
locking, where the operating system determines the scope of a lock; this is inconv
for large objects (which may extend over several pages) and small objects (which m
several to a page, so that locking one will also lock the others). Newer systems pr
object-level locking, letting a client application lock any object individually.

Recent efforts have tried hard to minimize the amount of locking that occurs in actu
executions, since locking may cause contention and slow down the operation o
database. Optimistic locking is the general name for a class of policies which try to av
placing a lock on an object a priori, but instead execute the possibly contentious oper
on a copy, then wait as long as possible to update the master copy, locking 
reconciling conflicting updates at that time if necessary. We will see below an adva
form of optimistic locking in the Matisse case.

Queries

Database systems, it was recalled earlier, support queries. Here object-oriented s
can offer more flexibility than relational ones in the presence of schema evolu
Changing the schema of a relational database often means that you must change th
texts too and recompile them if appropriate. In an O-O database, the queries are r
to objects; you query the instances of a certain class with respect to some of their fe
Here instance has, at least on option, its general sense covering both direct instance
class and instances of its proper descendants; so if you add a descendant to a c
original queries on that class will be able to retrieve instances of the new descenda

31.7  O-O DATABASE SYSTEMS: EXAMPLES

Since the mid-eighties a number of object-oriented database products have appeared
of the best-known product names are Gemstone, Itasca, Matisse, Objectivity, Objec
Ontos, O2, Poet, Versant. More recently a few companies such as UniSQL have introd
object-relational systems in an effort to reconcile the best of both approaches; the 
relational database vendors are also proposing or announcing combined solutions, 
Informix’s Illustra (based in part on UC Berkeley’s POSTGRES project) and Orac
announced Oracle 8 system.

To facilitate interoperability, a number of O-O database vendors have joined fo
in the Object Database Management Group, which has proposed the ODMG standard 
unify the general interface of O-O databases and their query language.

Let us take a look at two particularly interesting systems, Matisse and Versant
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Matisse

MATISSE, from ADB Inc., is an object-oriented database system with support fo
C++, Smalltalk and the notation of this book. 

Matisse is a bold design with many non-conventional ideas. It is particularly ge
towards large databases with a rich semantic structure and can manipulate very
objects such as images, films and sounds. Although it supports basic O-O concep
as multiple inheritance, Matisse refrains from imposing too many constraints on the
model and instead serves as a powerful O-O database engine in the sense defined
in this chapter. Some of the strong points are:

• An original representation technique that makes it possible to split an objec
especially a large object — over several disks, so as to optimize access time.

• Optimized object placement on disks.

• An automatic duplication mechanism providing a software solution to hardw
fault tolerance: objects (rather than the disks themselves) can be mirrored a
several disks, with automatic recovery in case of a disk failure.

• A built-in object versioning mechanism (see below).

• Support for transactions.

• Support for a client-server architecture in which a central server manages data
possibly large number of clients, which keep a “cache” of recently accessed ob

Matisse uses an original approach to the problem of minimizing locks. The m
exclusion rule enforced by many systems is that several clients may read an object a
but as soon as one client starts writing no other client may read or write. The re
discussed in the concurrency chapter, is to preserve object integrity, as expressed b
invariants. Permitting two clients to write simultaneously could make the ob
inconsistent; and if a client is in the middle of writing, the object may be in an uns
state (one that does not satisfy the invariant), so that another client reading it may 
inconsistent result.

Writer-writer locks are clearly inevitable. Some systems, however, make it pos
to breach the reader-writer exclusion by permitting read operations to occur even 
presence of a write lock. Such operations are appropriately called dirty reads.

Matisse, whose designers were clearly obsessed with the goal of minimizing l
has a radical solution to this issue, based on object management: no write operations.
Instead of modifying an existing object, a write operation (one, that is, which appea
such to the client software) will create a new object. As a result, it is possible to
objects without any locking: you will access a certain version of the database, unaf
by write operations that may occur after you start the read. You are also able to ac
number of objects with the guarantee that they will all belong to the same version 
database, whereas with a more traditional approach you would have to use global lo
transactions, and incur the resulting performance penalties, to achieve the same re
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A consequence of this policy is the ability to go back to earlier versions of an o
or of the database. By default, older versions are kept, but the system provides a “v
collector” to get rid of unwanted versions.

Matisse provides interesting mechanisms for managing relations. If a class su
EMPLOYEE has an attribute supervisor: MANAGER, Matisse will on request maintain th
inverse links automatically, so that you can access not only the supervisor of an em
but also all the employees managed by a supervisor. In addition, the query facilities can
retrieve objects through associated keywords.

Versant

Versant, from Versant Object Technology, is an object-oriented database system
support for C++, Smalltalk and the notation of this book. Its data model and inte
language support many of the principal concepts of O-O development, such as c
multiple inheritance, feature redefinition, feature renaming, polymorphism and gener

Versant is one of the database systems conforming to the ODMG standard
meant for client-server architectures and, like Matisse, allows caching of the most re
accessed information, at the page level on the server side and at the object level for 

The design of Versant has devoted particular attention to locking and transac
Locks can be placed on individual objects. An application can request a read loc
update lock or a write lock. Update locks serve to avoid deadlock: if you have a read
and want to write, you should first request an update lock, which will be granted on
no other client has done so; this still lets other clients read, until you request a write
which you are guaranteed to get. Going directly from read lock to write lock could c
deadlock: two clients each waiting indefinitely for the other to release its lock.

The transaction mechanism provides for both short and long transaction
application may check out an object for any period. Object versioning is supported, a
as optimistic locking.

The query mechanism makes it possible to query all instances of a class, incl
instances of its proper descendants. As noted earlier, this makes it possible to add
without having to redefine the queries applying to its previously existing ancestors.

Another interesting Versant capability is the event notification mechanism, w
you can use to make sure that certain events, such as object update and deletion, w
applications to receive a notification, enabling them to execute any associated actio
they may have defined for that purpose.

Versant provides a rich set of data types, including a set of predefined colle
classes. It permits schema evolution, with the convention that new fields are initializ
default values. A set of indexing and query mechanism is available.
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31.8  DISCUSSION: BEYOND O-O DATABASES

Let us conclude this review of persistence issues with a few musings on possible 
evolutions. The observations that follow are tentative rather than final; they are me
prompt further reflection rather than to provide concrete answers.

Is “O-O database” an oxymoron?

The notion of database proceeds from a view of the world in which the Data sit i
middle, and various programs are permitted to access and modify such Data:

In object technology, however, we have learned to understand data as being e
defined by the applicable operations:

The two views seem incompatible! The notion of data existing independently o
programs that manipulate them (“data independence”, a tenet reaffirmed in the firs
pages of every database textbook) is anathema to the object-oriented developer. 
we then consider that “object-oriented database” is an oxymoron?

Perhaps not, but it may be worthwhile to explore how, in a dogmatic O-O con
we could obtain the effect of databases without really having databases. If we d
(simplifying to the barest essentials the definition of databases given earlier in this ch

DATA

Program

Program

Program Program

Program

f1 f2 f3 g1 g2 g3 h1 h2 h3

DATA A DATA B DATA C
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DATABASE = PERSISTENCE + SHARING

the dogmatic view would consider the second component, data sharing, as incomp
with O-O ideas, and focus on persistence only. Then we would address the sharing
through a different technique: concurrency! The picture becomes

Following O-O principles, the persistent data are implemented as a set of objec
instances of some abstract data types — and controlled by a certain server system
systems that need to manipulate the data will do so through the server; because th
requires sharing and concurrent access, the clients will treat the server as separate in the
sense defined by the discussion of concurrency. For example:

flights: separate FLIGHT_DATABASE; …

flight_details ( f: separate FLIGHT_DATABASE;
rf: REQUESTED_FLIGHTS): FLIGHT is

do

Result:= f ●flight_details (rf )

end

reserve ( f: separate FLIGHT_DATABASE; r: RESERVATION) is

do
f ● reserve (r); status:= f ●status

end

Then the server side requires no sharing mechanism, only a general persi
mechanism. We may also need tools and techniques to handle such matters as
versioning, which are indeed persistence rather than database issues.

The persistence mechanism could then become extremely simple, shedding m
the baggage of databases. We might even consider that all objects are persistent by
default; transient objects become the exception, handled by a mechanism that gene
garbage collection. Such an approach, inconceivable when database systems

f1 f2 f3

PERSISTENT
DATA

Client Client Client

Server
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Quotation from 
[Sombrero-Web].
invented, becomes less absurd with the constant decrease of storage costs and the
availability of 64-bit virtual address spaces where, it has been noted, “one could create a
new 4-gigabyte object, the size of a full address space on a conventional 32-bit proces,
once a second for 136 years and not exhaust the available namespace. This is sufficient to
store all the data associated with almost any application during its entire lifetime.”

All this is speculative, and provides no proof that we should renounce the tradit
notion of database. There is no need to rush and sell your shares of O-O da
companies yet. Consider this discussion as an intellectual exercise: an invitation to
further into the widely accepted notion of O-O database, examining whether the c
approach truly succeeds in removing the dreaded impedance mismatches between the
software development method and the supporting data storage mechanisms. 

Unstructured information

A final note on databases. With the explosion of the World-Wide Web and the appea
of content-based search tools (of which some well-known examples, at the time of w
are AltaVista, Web Crawler and Yahoo) it has become clear that we can acces
successfully even in the absence of a database.

Database systems require that before you store any data for future retrieval yo
convert it into a strictly defined format, the database schema. Recent studies, ho
show that 80% of the electronic data in companies is unstructured (that is to say, r
outside of databases, typically in text files) even though database systems have
around for many years. This is where content-based tools intervene: from user-d
criteria involving characteristic words and phrases, they can retrieve data 
unstructured or minimally structured documents. Almost anyone who has tried these
has been bedazzled by the speed at which they can retrieve information: a second
suffices to find a needle in a bytestack of thousands of gigabytes. This leads 
inevitable question: do we really need structured databases?

The answer is still yes. Unstructured and structured data will coexist. But data
are no longer the only game in town; more and more, sophisticated query tools will b
to retrieve information even if it is not in the exact format that a database would req
To write such tools, of course, object technology is our best bet.

31.9  KEY CONCEPTS STUDIED IN THIS CHAPTER

• An object-oriented environment should allow objects to be persistent — to rema
existence after the session creating them has terminated.

• A persistence mechanism should offer schema evolution to convert retrieved objects
on the fly if their generating class has changed (“object mismatch”). This involves
three tasks: detection, notification, correction. By default, a mismatch should cause
an exception.

• Beyond persistence, many applications need database support, offering conc
access to clients.
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• Other properties of databases include querying, locking and transactions.

• It is possible to use O-O development in conjunction with relational databases, th
a simple correspondence: classes to relations, objects to tuples.

• To gain full use of object technology and avoid impedance mismatches betwee
development and the data model, you may use object-oriented databases.

• Two interesting O-O database systems were studied: Matisse, providing or
solutions for object versioning and redundancy, and Versant, providing advan
locking and transaction mechanisms.

• In a more tentative part of the discussion, some questions were raised as to th
compatibility of database principles with the O-O view, and the need for acce
unstructured as well as structured data.

31.10  BIBLIOGRAPHICAL NOTES

The original paper on the relational model is [Codd 1970]; there are many books on th
topic. Probably the best-known database textbook, with particular emphasis o
relational model, is [Date 1995], the sixth edition of a book originally published in th
mid-seventies. Another useful general-purpose text is [Elmasri 1989].

[Waldén 1995] contains a detailed practical discussion of how to make obj
relational interoperability work. [Khoshafian 1986] brought the question of object identity
to the forefront of O-O database discussions.

A good starting point for understanding the goals of object-oriented data
systems and reading some of the original papers is [Zdonik 1990], a collection of
contributions by some of the pioneers in the field, whose introductory chapter is the s
of the “threshold model” concept used in the present chapter. The widely circulated 
Database System Manifesto” [Atkinson 1989], the result of the collaboration of a numbe
of experts, has been influential in defining the goals of the O-O database movement.There
are now a number of textbooks on the topic; some of the best known, in ord
publication, are: [Kim 1990], [Bertino 1993], [Khoshafian 1993], [Kemper 1994],
[Loomis 1995]. For further, regularly updated references, Michael Ley’s on-l
bibliography of database systems [Ley-Web] is precious. Klaus Dittrich’s group at the
University of Zürich maintains a “mini-FAQ” about O-O databases at http://
www.ifi .unizh.ch/groups/dbtg/ObjectDB/ODBminiFAQ.html. [Cattell 1993] describes the
ODMG standard. For an appraisal, somewhat jaded, of the achievements and failur
O-O databases by one of the pioneers of the field, see [Stein 1995].

This chapter has benefited from important comments by Richard Bielak, particu
on schema evolution, Persistence Closure, queries in O-O databases, Versa
Sombrero. Its presentation of Versant is based on [Versant 1994], that of Matisse on
[ADB 1995] (see also http://www.adb.com/techovw/features.html). I am indebted to Shel
Finkelstein for helping me with the features of Matisse. O2 is described in

[Bancilhon 1992]. The Sombrero project [Sombrero-Web] has explored the implications
of large address spaces on traditional approaches to persistence and databases. 
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A preview of some of this chapter’s material on schema evolution appeare
[M 1996c]. The questioning of how well O-O and database concepts really match c
from two unpublished keynote lectures, presented in 1995 at TOOLS USA an
European Software Engineering Conference [M 1995d].

EXERCISES

E31.1  Dynamic schema evolution

Study how to extend the schema evolution techniques developed in this chapter to a
for the case in which classes of a software system may change during the system’s exe

E31.2  Object-oriented queries

Discuss the form that queries may take in an object-oriented database management system.
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