31

Object persistence and databases

See'Deep storage:
a first view of persis-
tence”, page 250

Executing an object-oriented application means creating and manipulating a certai
number of objects. What happens to these objects when the current execution terminate
Transientobjects will disappear with the current session; but many applications also nee
persistenbjects, which will stay around from session to session. Persistent objects ma
need to be shared by several applications, raising the neddtédrases

In this overview of persistence issues and solutions we will examine the three
approaches that O-O developers have at their disposal for manipulating persistent objec
They can rely onpersistence mechanismsrom the programming language and
development environment to get object structures to and from permanent storage. Th
can combine object technology with databases of the most commonly available kind (nc
0-0):relational databases Or they can use one of the newdject-oriented database
systems which undertake to transpose to databases the basic ideas of object technolog

This chapter describes these techniques in turn, providing an overview of the
technology of O-O databases with emphasis on two of the best-known products. It en
with a more futuristic discussion of the fate of database ideas in an O-O context.

31.1 PERSISTENCE FROM THE LANGUAGE

For many persistence needs it suffices to have, associated with the developme
environment, a set of mechanisms for storing objects in files and retrieving them fron
files. For simple objects such as integers and characters, we can use input-output faciliti
similar to those of traditional programming.

Storing and retrieving object structures

As soon as composite objects enter the picture, it is not sufficient to store and retriev
individual objects since they may contain references to other objects, and an obje
deprived of its dependents would be inconsistent. This observation led us in an earlie
chapter to thePersistence Closurerinciple, stating that any storage and retrieval
mechanism must handle, together with an object, all its direct and indirect dependents. Tl
following figure served to illustrate the issue:

1038 OBJECT PERSISTENCE AND DATABASE$§31.1

The need for
Ol persistence

name "Almaviva"
closure
landlord —

loved_one —
(PERSON).
02 0]
name “Figaro" "Susanna”| nhame
landlord landlord
loved_one < Ll loved_one
(PERSON). (PERSON).

The Persistence Closure principle stated that any mechanism that stores O1 must
also store all the objects to which it refers, directly or indirectly; otherwise when you
retrieve the structure you would get a meaningless valdangling referenc”) in the
loved_on field for O1.

We saw the mechanisms of cleSTORABL which provide the corresponding
facilities: store to store an object structure aretrievec to access it back. This is a
precious mechanism, whose presence in an O-O environment is by itself a major
advantage over traditional environments. The earlier discussion gave a typical example of
use: implementing the SAVE facility of an editor. Here is another, from ISE’'s own
practice. Our compiler performs several passes on representations of the software text.
The first pass creates an internal representation, known as an Abstract Syntax Tree (AST).
Roughly speaking, the task of the subsequent passes is to add more and more semantic
information to the AST (to “decorate the tree”) until there is enough to generate the
compiler’s target code. Each pass finishes istore; the next pass starts by retrieving the
AST throughretrievec.

TheSTORABLImechanism works not only on files but also on network connections
such as sockets; it indeed lies at the basis cNei client-server library.

Storable format variants

Procedurestore has several variants. Onbasic_stor, stores objects to be retrieved by the
same system running on the same machine architecture, as part of the same execution or
of a later one. These assumptions make it possible to use the most compact format possible
for representing objects.

Another variant,independent_sto, removes all these assumptions; the object
representation is platform-independent and system-independent. It consequently takes a
little more space, since it must use a portable data representation for floating-point and
other numerical values, and must include some elementary information about the classes
of the system. But it is precious for client-server systems, which must exchange

§31.2 BEYOND PERSISTENCE CLOSURE 1039

Small structure
with reference
to big shared
structure

potentially large and complex collections of objects among machines of widely differe
architectures, running entirely different systems. For example a workstation server an
PC client can run two different applications and communicate througNei library,
with the server application performing the fundamental computations and the clie
application taking care of the user interface thanks to a graphical library sVision.

Note that the storing part is the only one to require several procedibasic_stor,:
independent_sto. Even though the implementation of retrieval is different for each
format, you will always use a single featiretrievec, whose implementation will detect
the format actually used by the file or network data being retrieved, and will automatical
apply the appropriate retrial algcrithm.

31.2 BEYOND PERSISTENCE CLOSURE

The Persistence Closure principle is, in theory, applicable to all forms of persistence
makes it possible, as we saw, to preserve the consistency of objects stored and retrie

In some practical cases, however, you may need to adapt the data structure be
letting it be applied by mechanisms such STORABLEor the O-O database tools
reviewed later in this chapter. Otherwise you may end up storing more than you want.

The problem arises in particular because of shared structures, as in this setup:

CITY structure

address

FAMILY structure

Arelatively small data structure needs to be archived. Because it contains one or m
references to a large shared structure, the Persistence Closure principle requires archi
that structure too. In some cases you may not want this. For example, as illustrated by
figure, you could be doing some genealogical research, or other processing on obje
representing persons; a person object might, throucaddressfield, reference a much
bigger set of objects representing geographical information. A similar situation occurs
ISE’s ArchiTextproduct, which enables users to manipulate structured documents, such
programs or specifications. Each document, like FAMILY structure in the figure,
contains a reference to a structure representing the underlying grammar, playing the |
of theCITYstructure; we may want to store a document but not the grammar, which alrea
exists elsewhere and may be shared by many documents.

1040 OBJECT PERSISTENCE AND DATABASE$§31.2

In such cases you may want to “cut out” the references to the shared structure before
storing the referring structure. Thisis, however, a delicate process. First, you must as always
make sure that at retrieval time the objects will still be consistent — satisfy their invariants.
But there is also a practical problem: to avoid complication and errors, you do not really
want to modify the original structure; only in the stored version should references be cut out.

Once again the techniques of object-oriented software construction providsee'Deferred
elegant solution, based on the ideasbehavior clas reviewed in the discussion ofclasses as partial
inheritance. One of the versions of the storing proceccustom_independent_st, has me&gﬂti?mﬁaw
the same effect eindependent_sto by default, but also lets any descendant of a libréor class”, page 504
classACTIONABLEredefine a number of procedures which do nothing by default, s
aspre_storewhich will be executed just before an object is storedpost_stor which

will be executed after. So you can for example tpre_storc perform

preserv;; addres<= Void

wherepreserv, also a feature oACTIONABLE, copies the object safely somewhere.
Thenpost_actiol will perform a call to

restore
which restores the object from the preserved copy.

For this common case itis in fact possible to obtain the same effect through a call of
the form

store_ignore("addres")

whereignore takes a field name as argument. Since the implementatistore _ignore

may simply skip the field, avoiding the two-way copypreserveandrestore, it will be

more efficient in this case, but tlpre stor-post stor mechanism is more general,
allowing any actions before and after storage. Again, you must make sure that these
actions will not adversely affect the objects.

You may in fact use a similar mechanism to remove an inconsistency problem
arising at retrieval time; it suffices to redefine the procepost retrievewhich will be
executed just before the retrieved object rejoins the community of approved objects. For
example an application might redefipost retriev, in the appropriate class inheriting
from ACTIONABLE, to execute something like

address:= my_city_structurcaddress_valuf(...)

hence making the object presentable again before it has had the opportunity to violate its
class invariant or any informal consistency constraint.

There are clearly some rules associated with ACTIONABLE mechanism; in
particular,pre_storcmust not perform any change of the data structure upost_store
corrects it immediately thereafter. You must also make surepost retriev will
perform the necessary actions (often the same as thopost stor) to correct any
inconsistency introduced into the stored structurpre_stor«. Used under these rules, the
mechanism lets you remain faithful to the spirit of the Persistent Closure principle while
making its application more flexible.

§31.3 SCHEMA EVOLUTION 1041

31.3 SCHEMA EVOLUTION

A general issue arises in all approaches to O-O persistence. Classes can change. WI
you change a class of which instances exist somewhere in a persistent store? This is kn
as the schema evolution problem.

The wordschem comes from the relational database world, where it describes the
architecture of a database: its set of relations (as defined in the next section) with, for every
relation, what we would call its type — number of fields and type of each. In an O-O
context the schema will also be the set of types, given here by the classes.

Although some development environments and database systems have provi
interesting tools for O-O schema evolution, none has yet provided a fully satisfacto
solution. Let us define the components of a comprehensive approach.

An object'sgenerat- Some precise terminology will be usefSchema evolutior occurs if at least one
ing class(or genera- c|ass used by a system that attempts to retrieve some objecretrieving system)
mi)c'ﬁ itthies g%?rseg differs from its counterpart in the system that stored these objectstoring systen).
instanci: See“Basic Object retrieval mismatch, or juobject mismatchfor short, occurs when the retrieving
form”, page 211 system actually retrieves a particular object whose own generating class was differen
the storing system. Objemismatch is an individual consequence, for one particular

object, of the general phenomenon of schema evolution for one or more classes.

Remember that in spite of the terms “storing system” and “retrieving system” this whole
discussion is applicable not only to storage and retrieval using files or databases, but also
to object transmission over a network, as withNel library. In such a case the more
accurate terms would be “sending system” and “receiving system”.

ExerciseE31.1, page To keep the discussion simple, we will make the usual assumption that a softwe
106z asks youto system does not change while it is being executed. This means in particular that all
study the conse- hstances of a class stored by a particular system execution refer to the same version o
guences of removing
this assumption class; so at retrieval time either all of them will produce an olmismatch, or none of
them will. This assumption is not too restrictive; note in particular that it does not rule o
the case of a database that contains instances of many different versions of the same c

produced by different system executions.

Naive approaches

We can rule out two extreme approaches to schema evolution:

* You might be tempted to forsake previously stored objects (scirevolutior!).
The developers of the new application will like the idea, which makes their life s
much easier. But thuser: of the application will not be amused.

* You may offer a migration path from old format to new, requiring a one-time, el
masse conversion of old objects. Although this solution may be acceptable in sot
cases, it will not do for a large persistent store or one that must be availak
continuously.

What we really need is a way to convert old objion the fly as they are retrieved
or updated. This is the most general solution, and the only one considered in the res
this discussion.

1042 OBJECT PERSISTENCE AND DATABASE$§31.3

If you happen to need en-masse conversion, an on-the-fly mechanism will trivially let you
do it: simply write a small system that retrieves all the existing objects using the new
classes, applying on-the-fly conversion as needed, and stores everything.

On-the-fly object conversion

The mechanics of on-the-fly conversion can be tricky; we must be particularly careful to
get the details right, lest we end up with corrupted objects and corrupted databases.

First, an application that retrieves an object and has a different version of its
generating class may not have the rights to update the stored objects, which may be just
as well sinceother applications may still use the old version. This is not, however, a new
problem. What counts is that the objects manipulated by the application be consistent with
their own class descriptions; an on-the-fly conversion mechanism will ensure this
property. Whether to write back the converted object to the database is a separate question
— aclassical question of access privilege, which arises as soon as several applications, or
even several sessions of the same application, can access the same persistent data.
Database systems, object-oriented or not, have proposed various solutions

Regardless of write-back aspects, the newer and perhaps more challenging problem
is how each application will deal with an obsolete object. Schema evolution involves three
separate issues -detection, notification and correction:

» Detection is the task of catching objemismatches (cases in which a retrieved
object is obsolete) at retrieval time.

* Notification is the task of making the retrieving system aware of the object
mismatch, so that it will be able to react appropriately, rather than continuing with
an inconsistent object (a likely cause of major trouble ahead!).

e Correction is the task, for the retrieving system, of bringing the mismatched object
to a consistent state that will make it a correct instance of the new version of its class
— a citizen, or at least a permanent resident, of its system of adoption.

All three problems are delicate. Fortunately, itis possible to address them separately.

Detection

We can define two general categories of detection ponominal andstructural .

In both cases the problem is to detemismatch between two versions of an object’s
generating class: the version used by the system that stored the object, and the version used
by the system which retrieves it.

In the nominal approach, each class version is identified by a version name. This
assumes some kind of registration mechanism, which may have two variants:

« If you are using a configuration management system, you can register each new
version of the class and get a version name in return (or specify the version
name yourself).

§31.3 SCHEMA EVOLUTION 1043

« More automatic schemes are possible, similar to the automatic identification facili
of Microsoft’'s OLE 2, or the techniques used to assign “dynamic IP addresses”
computers on the Internet (for example a laptop that you plug in temporarily into
new network). These techniques are based on random number assignments, \
numbers so large as to make the likelihood of a clash infinitesimal.

Either solution requires some kind of central registry. If you want to avoid the
resulting hassle, you will have to rely on the structural approach. The idea here is
associate with each class versioclass descripto deduced from the actual structure of
the class, as defined by the class declaration, and to make sure that whenever a persi
mechanism stores objectsalsc stores the associated class descrig. (Of course if you
store many instances of a class you will only need to store one copy of the class descrip!
Then the detection mechanism is simple: just compare the class descriptor of each retrie
object with the new class descriptor. If they are different, you have an mismatch.

What goes into a class descriptor? There is some flexibility; the answer is a trade
between efficiency and reliability. For efficiency, you will not want to waste too muck
space for keeping class information in the stored structure, or too mtmehfor
comparing descriptors at retrieval time; but for reliability you will want to minimize the
risk of missing an objemmismatch — of treating a retrieved object as up-to-date if it is in
fact obsolete. Here are various possible strategies:

C1 - Atone extreme, the class descriptor could just be the class name. This is gener:
insufficient: if the generator of an object in the storing system has the same nat
as a class in the retrieving system, we will accept the object even though the t
classes may be totally incompatible. Trouble will inevitably follow.

C2 « Atthe other extreme, we might use as class descriptor the entire class text — perh
not as a string butin an appropriate internal form (abstract syntax tree). This is clea
the worst solution for efficiency, both in space occupation and in descriptc
comparison time. But it may not even be right for reliability, since some clas
changes are harmless. Assume for example the new class text has added a rou
but has not changed any attribute or invariant clause. Then nothing bad can hap
if we consider a retrieved object up-to-date; but if we detect an imismatch we
may cause some unwarranted trouble (such as an exception) in the retrieving syst

C3 + A more realistic approach is to make the class descriptor include the class name
the list of its attributes, each characterized by its name and its type. As compal
to the nominal approach, there is still the risk that two completely different class
might have both the same name and the same attributes, but (unlike C1)ase
such chance clashes are extremely unlikely to happen in practice.

C4 + A variation onC3 would include not just the attribute list but also the whole class
invariant. With the invariant you should be assured that the addition or removal
a routine, which will not yield a detected objmismatch, is harmless, since if it
changed the semantics of the class it would affect the invariant.

C3is the minimum reasonable policy, and in usual cases seenod tradeoff, at
leas to start.

1044 OBJECT PERSISTENCE AND DATABASE$§31.3

Notification

What should happen when tdetection mechanism, nominal or structural, has caught an
objectmismatch?

We want the retrieving system to know, so that it will be able to take the appropriate
correction actions. A library mechanism will address the problem. (GENERAL
(ancestor of all classes) must include a procedure

correct_mismatclis correc in this proce-
dure name is not an
do adjective but a vel,)
See full ion bel as in “Correct this
- oee fullversion belov... mismatch, fa!” . See
end “Grammatical cate-

gories”, page 881

with the rule that andetection of an objemismatch will cause a call correct_mismatch

on the temporarily retrieved version of the object. Any class can redefine the default
version ofcorrect_ mismaic; like a creation procedure, and like any redefinition of the
default exception handling procedudefault rescu, any redefinition of correct
mismatcl must ensure the invariant of the class.

What should the default version correct_mismatc do? It may be tempting, in the
name of unobtrusiveness, to give it an empty body. But this is not appropriate, since it
would mean that by default object retrieval mismatches will be ignored — leading to all
kinds of possible abnormal behavior. The better global default is to raise an exception:

correct_mismatclis
-- Handle object retrieval mismatch.
do
raise_mismatch_exception

end

where the procedure called in the body does what its name suggests. It might caus‘THE GLOBAL

unexpected exceptions, but this is better than lemismatches go through undetecte/NHERITANCE
. . . . STRUCTURE”,

A project that wants to override this default behavior, for example to execute 8page 58.)

instruction rather than raise an exception, can always redcorrect_mismaitc, at its

own risk, in classANY. (As you will remember, developer-defined classes inherit from

GENERAI not directly but throug ANY, which a project or installation can customize.)

For more flexibility, there is also a featimismatch_informatic of type ANY, defined
as a once function, and a procedset_mismatch_informatic(info: ANY) which resets
its value. This makes it possible to provcorrect_mismatciwith more information, for
example about the various preceding versions of a class.

If you do expect object mismatches for a certain class, you will not want the default
exception behavior for that class: instead you will redi correct_mismatc so as to
update the retrieved object. This is our last task: correction.

§31.3 SCHEMA EVOLUTION 1045

Correction

How do we correct a object that has been found, upon retrieval, to cmismatch? The
answer requires a careful analysis, and a more sophisticated approach than has us
been implemented by existing systems or proposed in the literature.

The precise situation is this: the retrieval mechanism (through feretrievec of
classSTORABLI, a database operation, or any other available primitive) has created
new object in the retrieving system, deduced from a stored object with the sar
generating class; but it has also detectamismatch. The new object is in a temporary
state and may be inconsistent; it may for example have lost a field which was presen
the stored object, or gained a field not present in the original. Think of it as a foreign
without a visa.

. The attribute for this field
Object 0.0 |4 was notin the stored
mismatch version the field has been
The attributes for these tw initialized to the default
fields have not changed fro value for the attribute’s type
the stored object’s generati
class to the new version The stored object had a field
here but the new version of
' :/the class has removed the
]] corresponding attribute
Pommmmms ! so the field has been lost.
Se€The role of cre- Such an object state is similar to the intermediate state of an object being created —
ation procedures”, outside of any persistence consideration — by a creation instri!! xamake(...), just
page 372 after the object’'s memory cell has been allocated and initialized to default values, but just

beforemake has been called. At that stage the object has all the required components but
is not yet ready for acceptance by the community since it may have inconsistent values
in some of its fields; it is, as we saw, the official purpose of a creation protmake to
override default initializations as may be needed to ensure the invariant.

Let us assume for simplicity that tdetection technique is structural and based on
attributes (that is to say, policC3 as defined earlier), although the discussion will
transpose to the other solutions, nominal or structuralmismatch is a consequence of
a change in the attribute properties of the class. We may reduce it to a combination of .
number ofattribute addition andattribute removal. (If a class change is the replacement
of the type of an attribute, we can consider it as a removal followed by an addition.) T
figure above shows one addition and one removal.

Attribute removal does not raise any apparent difficulty: if the new class does n
include a certain attribute present in the old class, the corresponding object fields are
needed any more and we may simply discard them. In fact proccorrect_mismatch
does not need to do anything for such fields, since the retrieval mechanism, when crea
a tentative instance of the new class, will have discarded them; the figure shows this
the bottom field — rather, non-field — of the illustrated object.

1046 OBJECT PERSISTENCE AND DATABASE$§31.3

We might of course be a bit more concerned about the discarded fields; what if they were
really needed, so that the object will not make sense without them? This is where having
a more elaboratdetectiol policy, such as structural polilC4 which takes the invariant

into account, would be preferable.

The more delicate case is when the new clas:addec an attribute, which yields eSe¢‘Uniform Access”,
new field in the retrieved objects, as illustrated by the top field of the object irP29€ 5. and'Defini-
. . . . S tion and example”,
preceding figure. What do we do with such a field? We must initialize it somehow. Ipage 361
systems | have seen offering some support for schema evolution and object conve...c..,
the solution is to use a conventional default as initialization value (the usual choices: zero
for numbers, empty for strings). But, as we know from earlier discussions of similar

problems — arising for example in the context of inheritance — this mvery wrong!

Our standard example was a cltACCOUNT with attributesdeposits_listand
withdrawals_lis; assume that a new version adds an attribalance and a system using
this new version attempts to retrieve an instance created from the previous version.

Retrieving an

deposits_list
0Old fields $900|— $850— $25(account object
withdrawals TSt F'g300 $700] (What s wrong
New field(initialized to With this
default value of its type 0.0 balance picture?)

The purpose of adding tthalance attribute is clear: instead of having to recompute
an account’s balance on demand we keep it in the object and update it whenever needed.
The new class invariant reflects this through a clause of the form

balance= deposits_ listtotal — withdrawals_ listtotal

But if we apply the default initialization to a retrieved objebalance field, we will
get a badly inconsistent result, whose balance field does not agree with the record of
deposits and withdrawals. On the above figibalance is zero as a result of the default
initialization; to agree with the deposits and withdrawals shown, it should be 1000 dollars.

Hence the importance of having icorrect_mismatc mechanism. In such a case the
class will simply redefine the procedure as

correct_mismatclis
-- Handle object retrievamismatch by correctly setting tbalance
do
balance:= deposits_listtotal — withdrawals_listtotal
end

If the author of the new class has not planned for this case, the default version of
correct_mismatc will raise an exception, causing the application to terminate abnormally
unless aetry (providing another recovery possibility) handles it. This is the right outcome,
since continuing execution could destroy the integrity of the execution’s object structure —
and, worse yet, of the persistent object structure, for example a database. In the earlier
metaphor, we will reject the object unless we can assign it a pmmigretion status.

§31.4 FROM PERSISTENCE TO DATABASES 1047

31.4 FROM PERSISTENCE TO DATABASES

Using STORABLEceases to be sufficient for true database applicationsamiitsations
have been noted in the earlier discussion: there is only one entry object; there is no sup
for content-based queries; each calretrievec re-creates the entire structure, with no
sharing of objects between successive calls. In addition, there is no suSTORABLE

for letting different client applications access the same persistent data simultaneously.

Although various extensions of the mechanism can alleviate or remove some

these problems, a full-fledged solution requires taking advantage of database technolc

0O-0 or not, a set of mechanisms for storing and retrieving data items (“objects” in

general sense) deserves being called a database management system if it support
following features:

Persistence: objects can outlive the termination of individual program sessions usi
them, as well as computer failures.

Programmable structure: the system treats objects as structured data connecte
clearly defined relations. Users of the system can group a set of objects into
collection, called a database, and define the structure of a particular database.

Arbitrary size: there is no built-in limit (such as could result from a computer’'s mai
memory size or addressing capability) to the number of objects in a database.

Access control: users can “own” objects and define access rights to them.

Property-based querying: mechanisms enable users and programs to find datat
objects by specifying their abstract properties rather than their location.

Integrity constraints: users can define some semantic constraints on objects and h
the database system enforce these constraints.

Administration: tools are available to monitor, audit, archive and reorganize th
database, add users, remove users, print out reports.

Sharing: several users or programs can access the database simultaneously.

Locking: users or programs can obtain exclusive access (read only, read and wr
to one or more objects.

Transactions: it is possible to define a sequence of database operations, calle
transaction, with the guarantee that either the whole transaction will be execut
normally or, if it fails, it will not have visibly affected the state of the database.

The standard transaction example is a money transfer from a bank account to
another, requiring two operations — debiting the first account and crediting
the second — which must either succeed together or fail together. If they fail,
any partial modification, such as debiting the first account, mustbe canceled;
this is callecrolling back the transaction.

The features listed are not exhaustive; they reflect what most current commerc

systems offer, and what users have come to expect.

1048 OBJECT PERSISTENCE AND DATABASE$§31.5

31.5 OBJECT-RELATIONAL INTEROPERABILITY

By far the most common form of database systems today relational kind, based on
ideas developed by E. F. Codd in a 1970 article.

Definitions

A relational database is a setrelations, each containing a set tuples(or records). A
relation is also known astable and a tuple asrow because it is convenient to present a
relation in tabular formas in

title date pages author The EOOKE
relation
"The Red and the Black" 1830 341 "STENDHAL"
"The Charterhouse of Parma'1839 307 "STENDHAL"
"Madame Bovary" 1856 425 "FLAUBERT"
"Eugénie Grandet" 1833 346 "BALZAC"

Each tuple is made of a numberfields. All the tuples in a relation have the sarSome autho, nota-
number and types of fields; in the example the first and last fields are strings, the othPBt’t'?batt& use iy
are integers. Each field is identified by a natitle, dateand so on in the abo'\BOOKS a?tr{i)ulieear;]%me or

example. The field names, or equivalently the columns, are knoattributes. “attribute” for field .

Relational databases are usuinormalize(, meaning among other things that every
field is a simple value (such as an integer, a real, a string, a date); it cannot be a reference
to another tuple.

Operations

The relational model of databases comes witrelational algebrawhich defines a
number of operations on relations. Three typical operations are selection, projection and
join.

Selection yields a relation containing a subset of the rows of a given relation, based

on some condition on the fields. Applying the selection condiipage: less than 400" to
BOOKSyields a relation made BOOKY's first, second and last tuples.

The projection of a relation along one or more attributes is obtained by ignoring all the
other fields, and removing any duplicate rows in the result. If we project the above relation
along its last attribute we obtain a one-field relation with three tuples, NBHAL",
“FLAUBERT" and "BALZAC"; if we project it along its first three attributes the result is a
three-field relation, deduced from the above by removing the last column.

The join of two relations is a composite relation obtained by selecting type-
compatible attributes in each of them and combining rows that match for these attributes.
Assume that we also have a relatAUTHORS:

§31.5 OBJECT-RELATIONAL INTEROPERABILITY 1049

TheAUTHORS name real_name birth death
relation . " . . "
BALZAC Honoré de Balzac" | 1799 1850
"FLAUBERT" "Gustave Flaubert" | 1821 1880
"PROUST" "Marcel Proust” 1871 1922
"STENDHAL" "Henri Beyle" 1783 1842

Then the join o0BOOKS andAUTHOR ¢ on the matching attributcauthorandname
is the following relation:

Join of BOOKS title date | pages| author/name real_name |birth |death

andAUTHORS "The Red and the Black" |1830|341 |"STENDHAL" |"Henri Beyle" 1783|1842

relations on

authorand "The Charterhouse of Parmg1839 | 307 |"STENDHAL" | "Henri Beyle" 1783|1842

name fields "Madame Bovary" 1856 [425 |"FLAUBERT" |"Gustave Flaubert'1821 | 1880
"Eugénie Grandet" 1833|346 |"BALZAC" "Honoré de Balzac|'1799 | 1850
Queries

The relational model permits queries — one of the principal database requirements of
earlier list — through a standardized language called SQL, with two forms: one to be us
directly by humans, the other (“embedded SQL") to be used by programs. Using the fi
form, a typical SQL query is

selec title, date, page: from BOOKS

yielding the titles, dates and page numbers of all recorded books. As you will have not
such a query is, in the relational algebra, a projection. Another example is

selecttitle, date, page:, autholr where pages< 400
corresponding in the relational algebra to a selection. The query

select
title, date, page;, authol, real_namy birth, date
from AUTHOR{ BOOK<S where

author=name

is internally a join, yielding the same result as the join example given earlier.

1050 OBJECT PERSISTENCE AND DATABASE$§31.6

Using relational databases with object-oriented software

The concepts of relational databases, as just sketched, bear a marked resemblance to the
basic model of O-O computation. We can associate a relation with a class, and a tuple of
that relation with an object — an instance of that class. We need a class library to provide
us with the operations of relational algebra (corresponding to embedded SQL).

A number of object-oriented environments provide such a library for C++, Smalltalk
or (with theStore library) the notation of this book. This approach, which we may call
object-relational interoperability, has been used successfully by many developments. It is
appropriate in either of the following circumstances:

e You are writing an object-oriented system which must use and possibly update
existing corporate data, stored in relational databases. In such a case there is no other
choice than using an object-relational interface.

* Your O-O software needs to store object structures simple enough to fit nicely in the
relational view of things. (Reasons why it minot fit are explained next.)

If your persistence requirements fall outside of these cases, you will experience what
the literature calls aimpedance mismat between the data model of your software
development (object-oriented) and the data model of your database system (relational).
You may then find it useful to take a look at the newest development in the database field:
object-oriented database systems.

31.6 OBJECT-ORIENTED DATABASE FUNDAMENTALS

The rise of object-oriented databases has been fueled by three incentives:

D1 « The desire to provide object-oriented software developers with a persistence
mechanism compatible with their development method — to remove the
impedance mismatches.

D2 « The need to overcome conceptual limitations of relational databases.

D3 ¢« The attempt to offer more advanced database facilities, not present in earlier
systems (relational or not), but made possible and necessary by the general
technological advance of the computer field.

The first incentive is the most obvious for someone whose background is O-O
software development when he comes to the persistence question. But it is not necessarily
the most important. The other two are pure database concerns, independent of the
development method.

To study the concept of O-O database let us start by examining the limitations of
relational systemsD2) and how they can fail to meet the expectations of an O-O
developerD1), then move on to innovative contributions of the O-O database movement.

§31.6 OBJECT-ORIENTED DATABASE FUNDAMENTALS 1051

An object with a
reference to
another object

Where relational databases stop

It would be absurd to deny the contribution of relational database systems. (In fa
whereas the first publications on O-O databases in the eighties tended to be critica
relational technology, the more recent trend is to describe the two approaches
complementary.) Relational systems have been one of the principal components in
growth of information technology since the seventies, and will be around for a long tim
They are well adapted to situations involving data, possibly large amounts thereof, whe

R1 « The structure of the data is regular: all objects of a given type have the same num
and types of components.

R2 ¢ The structure is simple: the component types all belong to a small set of predefin
possibilities.

R3¢ These types are drawn from a small group of predefined possibilities (integer
strings, date...), each with fixed space requirements.

A typical example is a census or taxpayer database with many objects represent
persons, each made of a fixed set of components for the name (string), date of birth (dz
address (string), salary (integer) and a few more properties.

Property R3 rules out many multimedia, CAD-CAM and image processing
applications, where some data elements, such as image bitmaps, are of highly variz
sizes, and sometimes very large. It also precludes, as a result of the “normal for
requirements enforced by existing commercial tools, the possibility for an object to ref
to another object. This is of course a dramatic limitation when compared to what we he
come to taking for granted in the discussions of this book: whenevhadve

title | "The Red and the Black" "Stendhal" | name
date 1830 "Henri Beyle"| real name
pages 341 1783 birth
author _—>' 1842 death
(BOOK?) (WRITEF)

the object-oriented model made it easy to access indirect properties of an object, sucl
redblackauthor.birth_yeal (yielding 1783if redblacl is attached to the object on the left
of the figure). A relational description will not be able to represent the reference fiel
authol, whose value is the denotation of another object.

There is a workaround in the relational model, but it is heavy and impractical. T
represent the above situation, you will have two relatiBOOKS and AUTHORY, as
introduced a few pages back. Then, to connect the two relations, you may pejoin,n a
which was also shown in the first part of this discussion, using matchingauthol for
the first relation anname¢ from the second.

1052 OBJECT PERSISTENCE AND DATABASES §31.6

To answer questions such as “What is the birth year of the autfibedRed and therthe join example was
Black?” the relational implementation will have to compute joins, projections etc.; on pagel049
we can use the join seen earlier and then project alondpthattribute.

This technique works and is widely used, but it is only applicable for simple
schemes. The number of join operations would quickly become prohibitive in a system
that must regularly handle queries with many indirections, as “How many rooms are there
in the previous house of the manager of the department from which the lady who
graduated at the top of my wife’'s youngest maternal uncle’s undergraduate class was
reassighed when the parent company went through its second round of venture funding?”
— no particular problem in an O-O system’s run-time network of objects.

Object identity

The simplicity of the relational model follows in part from the identification of objects
with their values. A relation (table) is a subsefof B x ...for some sets, B, ..., where

x represents cartesian product; in other words each one of the elements of the relation —
each object — is a tupteal, bl, ...> wherealis an element of and so on. But such an
object has no existence other than its value; in particular, inserting an object into a relation
has no effect if the relation already has an identical tuple. For example inserting
<"The Red and the Blatk183Q 341, "STENDHAL> into the aboveBOOKSrelation

does not change the relation. This is very different from the dynamic model of O-O
computation, where we can have two identical objects:

o1 02 Separate but
"The Red and the Black"title title | "The Red and the Black" equal
1830 date date 1830

(Both bottom refer-
341 pages pages 341 ences are attached
to the same objegt

. author author —
(BOOK3 (BOOK3

As you will remembergqual(objl, obj2) will have value true ibbj1l andobj2 are
references attached to these objectspbit = obj2will yield false.

Being identical is not the same as being the same (ask any identical twins). This
ability to distinguish between the two notions is part of the modeling power of object
technology. It relies on the notion @hbject identity: any object has an existence
independent of its contents.

Visitors to the Imperial Palace in Kyoto are told both that the buildings are very ancient
and that each is rebuilt every hundred years or so. With the notion of object identity there
is no contradiction: the object is the same even if its contents have changed.

You are the same individual as ten years ago even if none of the molecules that made up
your body then remains in it now.

§31.6 OBJECT-ORIENTED DATABASE FUNDAMENTALS 1053

After[Zdonik 1990.

We can express object identity in the relational model, of course: just add to eve
object a special key field, guaranteed to be unique among objects of a given type. But
have to take care of it explicitly. With the O-O model, object identity is there by default

In non-persistent O-O software construction, support for object identity is almo:
accidental: in the simplest implementation, each object resides at a certain address, a
reference to the object uses that address, which serves as immutable object identity. (
is not true any more in implementations, such as ISE’s, which may move objects aroL
for effective garbage collection; object identity is then a more abstract concept.) Wi
persistence, object identify becomes a distinctive factor of the object-oriented model.

Maintaining object identity in a shared databases raises new problems: every clit
that needs to create objects must obtain a unique identity for them; this means that
module in charge of assigning identities must be a shared resource, creating a potel
bottleneck in a highly concurresetup.

The threshold model

From the preceding observations follows what has been called the threshold model
object-oriented databases: the minimum set of properties that a database system r
satisfy if it deserves at all to be called O-O. (More advanced features, also desirable, \
be discussed next.) There are four requirements for meeting the threshold moc
database, encapsulation, object identi andreferences. The system must:

T1 Provide database functionality, as defined earlier in this chapter.

T2 « Support encapsulation, that is to say allow hiding the internal properties of objec
and make them accessible through an official interface.

T3 ¢ Associate with each object an identification that is unique in the database.

T4 « Allow an object to contain references to other objects.

Notable in this list is the absence of some object-oriented mechanisms that we kn
are indispensable to the method, in particular inheritance. But this is not as strange
might appear at first. All depends on what you expect from a database system. A sysi
at the threshold level might be a goO-O database engin, providing a set of
mechanisms for storing, retrieving and traversing object structures, but leaving any higl
knowledge about the semantics of these objects, such as the inheritance relations, tc
design and programming language and the development environment.

The experience of early O-O database systems confirms that the database engine
approach is reasonable. Some of the first systems went to the other extreme and had a
complete “data model” with an associated O-O language supporting inheritance,
genericity, polymorphism and so on. The vendors found that these languages were
competing with O-O design and programming languages, and tendlose such
competitions (since a database language, will likely be less general and practical than one
designed from the start as a universal programming language); they scurried in most cases
to replace these proprietary offerings with interfaces to the main O-O languages.

1054 OBJECT PERSISTENCE AND DATABASE$§31.6

Additional facilities

Beyond the threshold model a number of facilities are desirable. Most commercial
systems offer at least some of them.

The first category includes direct support for more advanced properties of the O-O
method: inheritance (single or multiple), typing, dynamic binding. This does not require
more elaboration for the readers of this book. Other facilities, reviewed next, include:
object versioning, schema evolution, long transactions, locking, object-oriented queries.

Object versioning

Object versioning is the ability to retain earlier states of an object after procedure calls
have changed the state. This is particularly important as a result of concurrent accesses.
Assume that an object O1 contains a reference to an object O2. A client changes some
fields of O1, other than the reference. Another client changes O2. Then if the first client
attempts to follow the reference, it may find a version of O2 that is inconsistent with O1.

Some O-O database systems address this problem by treating every object
modification as the creation of a new object, thereby maintaining access to older versions.

Class versioning and schema evolution

Objects are not the only elements to require versioning: over time, their generating classes
may change too. This is the problem of schema evolution, discussed at the beginning of
this chapter. Only a few O-O database systems provide full support for schema evolution.

Long transactions

The concept of transaction has always been important in database systems, but classical
transaction mechanisms have been directed tovshor transactions: those which begin

and end with a single operation performed by a single user during a single session of a
computer system. The archetypal example, cited at the beginning of this chapter, is
transferring a certain amount of money from one bank account to another; it is a
transaction, since it requires an all-or-nothing outcome: either both operations (debiting
one account and crediting the other) succeed, or both fail. The time it will take is on the
order of seconds (less if we ignore user interaction).

Applications in the general idea desigr of complex systems, such as CAD-CAM
(computer-aided design and manufacturing of engineering products) and computer-aided
software engineering, raise the needong transactions, whose duration may be on the
order of days or even months. During the design of a car, for example, one of the
engineering teams may have to check out the carburetor part to perform some changes,
and check it back in a week or two later. Such an operation has all the properties of a
transaction, but the techniques developed for short transactions are not directly applicable.

The field of software development itself has obvious demand for long transactions,
arising each time several people or teams work on a common set of modules. Interestingly,
database technology has not been widely applied (in spite of many suggestions in the
literature) to software development. The software field has instead developed for its own
purposes a set «configuration manageme tools which address the specific issues of
software component management, but also duplicate some standard database functions,

§31.7 O-O DATABASE SYSTEMS: EXAMPLES 1055

most of the time without the benefit of database technology. This situation, surprising
first look, has a most likely explanation: the absence of support for long transactions
traditional database management systems.

Although long transactions may not conceptually require object technology, rece
efforts to support them have come from O-O database systems, some of which offer a \
to check any object in and out of a database.

Locking

Any database management system must provide some form of locking, to ensure ¢
concurrent access and updating. Early O-O database systems sugpage-level
locking, where the operating system determines the scope of a lock; this is inconveni
for large objects (which may extend over several pages) and small objects (which may
several to a page, so that locking one will also lock the others). Newer systems prov
object-leve locking, letting a client application lock any object individually.

Recent efforts have tried hardminimize¢ the amount of locking that occurs in actual
executions, since locking may cause contention and slow down the operation of t
databaseOptimistic locking is the general name for a class of policies which try to avoid
placing a lock on an object a priori, but instead execute the possibly contentious operati
on a copy, then wait as long as possible to update the master copy, locking it &
reconciling conflicting updates at that time if necessary. We will see below an advanc
form of optimistic locking in the Matisse case.

Queries

Database systems, it was recalled earlier, support queries. Here object-oriented syst
can offer more flexibility than relational ones in the presence of schema evolutio
Changing the schema of a relational database often means that you must change the ¢
texts too and recompile them if appropriate. In an O-O database, the queries are rela
to objects; you query the instances of a certain class with respect to some of their featu
Hereinstancehas, at least on option, its general sense covering both direct instances ¢
class and instances of its proper descendants; so if you add a descendant to a clas
original queries on that class will be able to retrieve instances of the new descendant.

31.7 O-O DATABASE SYSTEMS: EXAMPLES

Since the mid-eighties a number of object-oriented database products have appeared. S
of the best-known product names are Gemstone, Itasca, Matisse, Objectivity, ObjectSt
Ontos, G, Poet, Versant. More recently a few companies such as UniSQL have introduc
object-relational systems in an effort to reconcile the best of both approaches; the me
relational database vendors are also proposing or announcing combined solutions, suc
Informix’s lllustra (based in part on UC Berkeley’s POSTGRES project) and Oracle’
announced Oracle 8 system.

To facilitate interoperability, a number of O-O database vendors have joined forc
in the Object Database Management Gr¢, which has proposed the ODMG standard to
unify the general interface of O-O databases and their query language.

Let us take a look at two particularly interesting systems, Matisse and Versant.

1056 OBJECT PERSISTENCE AND DATABASE$§31.7

Matisse

MATISSE, from ADB Inc., is an object-oriented database system with support foiThe official spelling
C++, Smalltalk and the notation of this book. is all upper case.

Matisse is a bold design with many non-conventional ideas. It is particularly geared
towards large databases with a rich semantic structure and can manipulate very large
objects such as images, films and sounds. Although it supports basic O-O concepts such
as multiple inheritance, Matisse refrains from imposing too many constraints on the data
model and instead serves as a powerful O-O database engine in the sense defined earlier
in this chapter. Some of the strong points are:

« An original representation technique that makes it possible to split an object —
especially a large object — over several disks, so as to optimeesatime.

* Optimized object placement on disks.

* An automatic duplication mechanism providing a software solution to hardware
fault tolerance: objects (rather than the disks themselves) can be mirrored across
several disks, with automatic recovery in case of a disk failure.

« A built-in object versioning mechanism (see below).
« Support for transactions.

« Support for a client-server architecture in which a central server manages data for a
possibly large number of clients, which keep a “cache” of recently accessed objects.

Matisse uses an original approach to the problem of minimizing locks. The mutual
exclusion rule enforced by many systems is that several clients may read an object at once,
but as soon as one client starts writing no other client may read or write. The reason,
discussed in the concurrency chapter, is to preserve object integrity, as expressed by class
invariants. Permitting two clients to write simultaneously could make the object
inconsistent; and if a client is in the middle of writing, the object may be in an unstable
state (one that does not satisfy the invariant), so that another client reading it may get an
inconsistent result.

Writer-writer locks are clearly inevitable. Some systems, however, make it possible
to breach the reader-writer exclusion by permitting read operations to occur even in the
presence of a write lock. Such operations are appropriately dirty read:.

Matisse, whose designers were clearly obsessed with the goal of minimizing locks,
has a radical solution to this issue, based on object manageno write operation.s
Instead of modifying an existing object, a write operation (one, that is, which appears as
such to the client software) will create a new object. As a result, it is possible to read
objects without any locking: you will access a certain version of the database, unaffected
by write operations that may occur after you start the read. You are also able to access a
number of objects with the guarantee that they will all belong to the same version of the
database, whereas with a more traditional approach you would have to use global locks or
transactions, and incur the resulting performance penalties, to achieve the same result.

§31.7 O-O DATABASE SYSTEMS: EXAMPLES 1057

A consequence of this policy is the ability to go back to earlier versions of an obje
or of the database. By default, older versions are kept, but the system provides a “vers
collector” to get rid of unwanted versions.

Matisse provides interesting mechanisms for managing relations. If a class such
EMPLOYETE has an attributsuperviso: MANAGEF, Matisse will on request maintain the
inverse links automatically, so that you can access not only the supervisor of an emplo
but also all the employees managed by a supervisor. In addition, the qubtig $acan
retrieve objects through associated keywords.

Versant

Versant, from Versant Object Technology, is an object-oriented database system w
support for C++, Smalltalk and the notation of this book. Its data model and interfa
language support many of the principal concepts of O-O development, such as clas
multiple inheritance, feature redefinition, feature renaming, polymorphism and genericit

Versant is one of the database systems conforming to the ODMG standard. It
meant for client-server architectures and, like Matisse, allows caching of the most recer
accessed information, at the page level on the server side and at the object level for clie

The design of Versant has devoted particular attention to locking and transactiol
Locks can be placed on individual objects. An application can request a read lock,
update lock or a write lock. Update locks serve to avoid deadlock: if you have a read Ic
and want to write, you should first request an update lock, which will be granted only
no other client has done so; this still lets other clients read, until you request a write lo
which you are guaranteed to get. Going directly from read lock to write lock could cau
deadlock: two clients each waiting indefinitely for the other to release its lock.

The transaction mechanism provides for both short and long transactions;
application may check out an object for any period. Object versioning is supported, as w
as optimistic locking.

The query mechanism makes it possible to query all instances of a class, includ
instances of its proper descendants. As noted earlier, this makes it possible to add a «
without having to redefine the queries applying to its previously existing ancestors.

Another interesting Versant capability is the event notification mechanism, whic
you can use to make sure that certain events, such as object update and deletion, will ¢
applications to receive a notification, enabling them to execute any associated actions
they may have defined for that purpose.

Versant provides a rich set of data types, including a set of predefined collecti
classes. It permits schema evolution, with the convention that new fields are initialized
default values. A set of indexing and query mechanisavailable.

1058 OBJECT PERSISTENCE AND DATABASE$§31.8

31.8 DISCUSSION: BEYOND O-O DATABASES

Let us conclude this review of persistence issues with a few musings on possible future
evolutions. The observations that follow are tentative rather than final; they are meant to
prompt further reflection rather than to provide concrete answers.

Is “O-O database” an oxymoron?

The notion of database proceeds from a view of the world in which the Data sit in the
middle, and various programs are permitted to accesmodify such Data:

The database

/

prad
DATA

L Prouran il

In object technology, however, we have learned to understand data as being entirely
defined by the applicaboperations:

The O-0O view
fi f2 13 gl g2 g3 hl h2 h3
DATA A DATA B DATA C

The two views seem incompatible! The notion of data existing independently of the
programs that manipulate them (“data independence”, a tenet reaffirmed in the first few
pages of every database textbook) is anathema to the object-oriented developer. Should
we then consider that “object-oriented database” is an oxymoron?

. . . . “FROM PERSIS-
Perhaps not, but it may be worthwhile to explore how, in a dogmatic O-O CONL.L\CE TO DATA-

we could obtain the effect of databases without really having databases. If we dgasgs”, 31.4, page
(simplifying to the barest essentials the definition of databases given earlier in this ch¢1047.

§31.8 DISCUSSION: BEYOND O-O DATABASES 1059

DATABASE = PERSISTENCE + SHARING

the dogmatic view would consider the second component, data sharing, as incompat
with O-O ideas, and focus on persistence only. Then we would address the sharing ne
through a different technique: concurrency! The picture becomes

persistence

A A

from sharing *
[f1 f2 i3 |
A
Server
PERSISTENT
DATA
On concurrency and Following O-O principles, the persistent data are implemented as a set of objects

theseparatemecha- instances of some abstract data types — and controlled by a certain server system. C

nism see chapt@0. gy stems that need to manipulate the data will do so through the server; because the
requires sharing and concurrent access, the clients will treat the seseparate in the
sense defined by the discussion of concurrency. For example:

flights: separate FLIGHT _DATABAS; ...
flight_details(f: separate FLIGHT_DATABAS ;:
rf: REQUESTED_FLIGHT): FLIGHT is
do
Result:= f.flight_details(rf)
end

reserve(f: separateFLIGHT_DATABAS; r: RESERVATIO) is
do
f.reserve(r); status:= f.status
end

Then the server side requires no sharing mechanism, only a general persiste
mechanism. We may also need tools and techniques to handle such matters as ol
versioning, which are indeeersistenc rather thardatabaseissues.

The persistence mechanism could then become extremely simple, shedding mucl
the baggage of databases. We might even consideliall objects are persistent by
defaul; transient objects become the exception, handled by a mechanism that generali
garbage collection. Such an approach, inconceivable when database systems v

1060 OBJECT PERSISTENCE AND DATABASE$§31.9

invented, becomes less absurd with the constant decrease of storage costs and the @juotation from
availability of 64-bit virtual address spaces where, it has been none could create a [Sombrero-Wet|]
new 4-gigabyte obje, the size of a full address space on a conventional 32-bit proi,es

once a second for 136 years and not exhaust the available nam. This is sufficient to

store all the data associated with almost any application during its entire lif."time

All this is speculative, and provides no proof that we should renounce the traditional
notion of database. There is no need to rush and sell your shares of O-O database
companies yet. Consider this discussion as an intellectual exercise: an invitation to probe
further into the widely accepted notion of O-O database, examining whether the current
approach truly succeeds in removing the drecimpedance mismatct between the
software development method and the supporting data storage mechanisms.

Unstructured information

A final note on databases. With the explosion of the World-Wide Web and the appearance
of content-based search tools (of which some well-known examples, at the time of writing,
are AltaVista, Web Crawler and Yahoo) it has become clear that we can access data
successfully even in the absence of a database.

Database systems require that before you store any data for future retrieval you first
convert it into a strictly defined format, the database schema. Recent studies, however,
show that 80% of the electronic data in companies is unstructured (that is to say, resides
outside of databases, typically in text files) even though database systems have been
around for many years. This is where content-based tools intervene: from user-defined
criteria involving characteristic words and phrases, they can retrieve data from
unstructured or minimally structured documents. Almost anyone who has tried these tools
has been bedazzled by the speed at which they can retrieve information: a second or two
suffices to find a needle in a bytestack of thousands of gigabytes. This leads to the
inevitable question: do we really need structured databases?

The answer is still yes. Unstructured and structured data will coexist. But databases
are no longer the only game in town; more and more, sophisticated query tools will be able
to retrieve information even if it is not in the exact format that a database would require.
To write such tools, of course, object technology is our best bet.

31.9 KEY CONCEPTS STUDIED IN THIS CHAPTER

< An object-oriented environment should allow objects to be persistent — to remain in
existence after the session creating them has terminated.

A persistence mechanism should oischema evolutic to convert retrieved objects
on the fly if their generating class has changed (“okmismatch”). This involves
three tasksdetection, notification, correction. By defaultmismatch should cause
an exception.

« Beyond persistence, many applications need database support, offering concurrent
access to clients.

§31.10 BIBLIOGRAPHICAL NOTES 1061

« Other properties of databases include quenlocking and transactions.

« ltis possible to use O-O developmentin conjunction with relational databases, throu
a simple correspondence: classes to relations, objects to tuples.

« To gain full use of object technology and avoid impedance mismatches between
development and the data model, you may use object-oriented databases.

e Two interesting O-O database systems were studied: Matisse, providing origir
solutions for objec versioning and redundancy, and Versant, providing advance
locking andtransaction mechanisms.

< In a more tentative part of the discussion, some questions were raised as to the
compatibility of database principles with the O-O view, and the need for accessil
unstructured as well as structured data.

31.10 BIBLIOGRAPHICAL NOTES

The original paper on the relational mode[Codd 1970; there are many books on the
topic. Probably the best-known database textbook, with particular emphasis on t
relational model, ifDate 1995, the sixth edition of a book originally published in the
mid-seventies. Another useful general-purpose te[Elmasri 1989

[Waldén 1995|contains a detailed practical discussion of how to make object
relational interoperability worl{[Khoshafian 198¢brought the question of objeidentity
to the forefront of O-O database discussions.

A good starting point for understanding the goals of object-oriented databa:
systems and reading some of the original paper[Zdonik 1990, a collection of
contributions by some of the pioneers in the field, whose introductory chapter is the soul
of the “threshold model” concept used in the present chapter. The widely circulated “O-
Database System Manifest[Atkinson 1989, the result of the collaboration of a number
of experts, has been influential in defining the goals of the O-O database mo\Therat.
are now a number of textbooks on the topic; some of the best known, in order
publication, are: [Kim 1990], [Bertino 1993, [Khoshafian 1997 [Kemper 1994)|
[Loomis 1995. For further, regularly updated references, Michael Ley’s on-line
bibliography of database systelLey-Web] is precious Klaus Dittrich’s group at the
University of Ziurich maintains a “mini-FAQ” about O databases httg://
www.ifi.unizt.ch/group¢dbtg/ObjectDEFODBmIiniFAC.html. [Cattell 1993 describes the
ODMG standardFor an appraisal, somewhat jaded, of the achievements and failures
0O-0 databases by one of the pioneers of the fieldStein 1995|

This chapter has benefited from important comments by Richard Bielak, particular
on schema evolution, Persistence Closure, queries in O-O databases, Versant
Sombrero. Its presentation of Versant is base(Versant 1994, that of Matisse on
[ADB 1995] (see alschttp://www.adk.con/techowv/feature.html). | am indebted to Shel
Finkelstein for helping me with the features of Matisse, is describe in

[Bancilhon 1992. The Sombrero proje[Sombrero-Wek has explored the implications
of large address spaces on traditional approaches to persistence and databases.

1062 OBJECT PERSISTENCE AND DATABASESSE31.1

A preview of some of this chapter’s material on schema evolution appeared as
[M 1996c]. The questioning of how well O-O and database concepts really match comes
from two unpublished keynote lectures, presented in 1995 at TOOLS USA and the
European Software Engineering Confere[M 1995d].

EXERCISES

E31.1 Dynamic schema evolution

Study how to extend the schema evolution techniques developed in this chapter to account
for the case in which classes of a software system may change during the system’s execution.

E31.2 Object-aiented queries

Discuss the form that queries may takan object-olented dataktse minagemensystem.

	31 Object persistence and databases
	31.1 PERSISTENCE FROM THE LANGUAGE
	Storing and retrieving object structures
	The need for persistence closure

	Storable format variants

	31.2 BEYOND PERSISTENCE CLOSURE
	Small structure with reference to big shared struc...

	31.3 SCHEMA EVOLUTION
	Naïve approaches
	On-the-fly object conversion
	Detection
	Notification
	Correction
	Object mismatch
	Retrieving an account object
	(What is wrong with this picture?)

	31.4 FROM PERSISTENCE TO DATABASES
	31.5 OBJECT-RELATIONAL INTEROPERABILITY
	Definitions
	The BOOKS relation

	Operations
	The AUTHORS relation
	Join of BOOKS and AUTHORS relations on author and ...

	Queries
	Using relational databases with object-oriented so...

	31.6 OBJECT-ORIENTED DATABASE FUNDAMENTALS
	Where relational databases stop
	An object with a reference to another object

	Object identity
	Separate but equal
	(Both bottom references are attached to the same o...

	The threshold model
	Additional facilities
	Object versioning
	Class versioning and schema evolution
	Long transactions
	Locking
	Queries

	31.7 O-O DATABASE SYSTEMS: EXAMPLES
	Matisse
	Versant

	31.8 DISCUSSION: BEYOND O-O DATABASES
	Is “O-O database” an oxymoron?
	The database view
	The O-O view
	Separating persistence from sharing

	Unstructured information

	31.9 KEY CONCEPTS STUDIED IN THIS CHAPTER
	31.10 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E31.1 Dynamic schema evolution
	E31.2 Object-oriented queries

