21

Inheritance case study:
“undo” In an interactive system

For our second design example we examine a need that confronts the designers of alm
any interactive system: how to provide a way to undo commands.

The discussion will show how inheritance and dynamic binding yield a simple,
regular and general solution to an apparently intricate and many-faceted problem; and
will teach us afew general lessons about the issues and principles of object-oriented desi

21.1 PERSEVERARE DIABOLICUM

To err is human, it is said, but to foul things up for good takes a computer (aided, on
should add, by humans). The faster and more powerful our interactive systems becom
the easier it becomes to make them perform actions that we do not really want. This is wt
we all wish for a way to erase the recent past; not the “big red button” of computer jokes
but a Big Green Button that we can push to pretend that we did not do something that v
did but wish we did not.

Undoing for fun and profit

In an interactive system, the equivalent of the Big Green Button is an Undo operatior
which the system’s designer has provided for the benefit of any user who, at some sta
in a session, wants to cancel the effect of the last executed command.

The primary aim of an undo mechanism is to allow users to recover from potentially
damaging input mistakes. It is all too easy to type the wrong character or click on “OK”
instead of “Cancel”. But a good undo facility goes further. It frees users from having to
concentrate nervously on every key they type and button they click. Beyond this, i
encourages aWhat if.. ?” style of interaction in which users try out various sorts of
input, knowing that they can back up easily if the result is not what they expect.

Every good interactive system should provide such a mechanism. When present,
tends to be one of the most frequently used operations. (For that reason, the makers of1
computer on my desk have wisely provided an Undo key on the keyboard, although it i
neither green nor particularly big. It is only effective, of course, for those regrettably few
software applications whose authors took notice of it.)

696 INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.1

Multi-level undo and redo

Offering an undo mechanism is better than not offering one, but it is not enough. Most
systems that provide Undo limit themselves to one level: you can only cancel the effect of
the last command. If you never make two mistakes in a row, this is enough. But if you ever
go off in the wrong direction, and wish you could go back several steps, you are in trouble.
(Anyone having used Microsoft Word, the UIVi editor or FrameMaker, in the releases
available at the time this book was published, will know exactly what | mean.)

There is really no excuse for the restriction to one level of undoing. Once you have
set up the undoing machinery, going from one-level to multi-level undo is a simple matter,
as we will see in this chapter. And, please (this is a potential customer speaking) do not,
like so many application authors, limit the number of commands that can be undone to a
ridiculously small value; if you must limit it at all, let the user choose his own limit
(through a “preferences” setting that will apply to all future sessions) and set default to at
least 20. The overhead is small if you apply the techniques below, and is well justified.

With multi-level undo, you will also need a Redo operation for users who get carried
away and undo too much. With one-level undo no special Redo is required; the universally
applied convention is that an Undo immediately following an Undo cancels it, so that
Redo and Undo are the same operation. But this cannot work if you can go back more than
one step. So we will have to treat Redo as a separate operation.

Practical issues

Although undo-redo can be retrofitted with reasonable effort into a well-written O-O
system, it is best, if you plan to support this facility, to make it part of the design from the
start — if only because the solution encourages a certain form of software architecture (the
use olcommand class) which, although beneficial in other respects, does not necessarily
come to mind if you do not need undoing.

To make the undo-redo mechanism practical you will have to deal with a few
practical concerns.

First you must include the facility in the user interface. For a start, we may just
assume that the set of operations available to users is enriched with two new requests:
Undo (obtained for example by typing control-U, although following the Macintosh
convention control-Z seems to have become the standard on PC tools) and Redo (for
example control-R). Undo cancels the effect of the last command not yet undone; Redo
re-executes the last undone command not yet redone. You will have to define some
convention for dealing with attempts to undo more than what has been done (or more than
what is remembered), or to redo more than what has been undone: ignore the request, or
bring up a warning message.

This is only a first shot at user interface support for undo-redo. At the end of this
chapter we will see that a nicer, more visual interface is possible.

§21.1 PERSEVERARE DIABOLICUM 697

ExerciseE21.4,
page 715

Second, not all commands are undoable. In some cases this is an impossibility
fact, as in the command “fire the missiles” (notwithstanding the televised comment of
then-in-office US president, who thought one could command a U-turn) or, le:
ominously, “print the page”. In other cases, a command is theoretically undoable but |
overhead is not worth the trouble; text editors typically do not let you undo the effect of
Save command, which writes the current document state into a file. The implementat
of undoing will need to take into account such non-undoable commands, making tl
status clear in the user interface. Be sure to restrict non-undoable commands to case
which this property is easily justifiable in user terms.

As a counter-example, a document processing tool which | frequently use tells its user,
once in a while, that in the current state of the document the command just requested is
not undoable, with no other visible justification than the whim of the program. At least it
says so in advance — in most cases.

Interestingly, this warning isin a sense a lie: car undo the effect if you want, although

not through Undo but through “Revert to last saved version of the document”. This
observation yields a user interface rule: if there remains any case for which you feel
justified to make a command non-undoable, do not follow the document processing
system’s example by just displaying a warning of the form “This command will not be

undoable” and giving the choice betweContinue anyway and Cance. Give users

three possibilities: save document, then execute command; execute without saving;
cancel.

Finally, it may be tempting to offer, besides Undo and Redo, the more genel
“Undo, Skip and Redo” scheme, allowing users, after one or more Undo operations,
skip some of the commands before triggering Redo. The user interface shown at the
of this chapter could support this extension, but it raises a conceptual problem: after \
skip some commands, the next one may not make sense any more. As a trivial exan
assume a text editor session, with a text containing just one line, and a user who exec
the two commands

(1) Add a line at the end.
(2) Remove the second line.

Our user undoes both, then wants to (1) and redc(2). Unfortunately at this stage
(2)is meaningless: there is no second line. This is less a problem in the user interface (
could somehow indicate to the user that the command is impossible) than in t
implementation: the commanRemove the second |i was applicable to the object
structure obtained as a resuli(1), but applying it to the object structure that exists prior
to (1) may be impossible (that is to say, cause a crash or other unpleasant resu
Solutions are certainly possible, but they may not be worth the trouble.

Requirements on the solution

The undo-redo mechanism that we set out to provide should satisfy the followir
properties.

Ul « The mechanism should be applicable to a wide class of interactive application
regardless of the application domain.

698 INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.1

U2 « The mechanism should not require redesign for each new command.
U3 « It should make reasonable use of storage.
U4 « It should be applicable to both one-level and arbitrary-level Undo.

The first requirement follows from the observation that there is nothing application-
specific about undoing and redoing. To facilitate the discussion, we will use as example a
kind of tool familiar to everyone: a text editor (such as Notepad or Vi), which enables its
users to enter texts and to perform such commanINSERT_LINE, DELETE_LINE,
GLOBAL_REPLACEMENT (of a word by another) and so on. But this is only an
example and none of the concepts discussed below is specific to text editors.

The second requirement excludes treating Undo and Redo as just any other
command in the interactive system. Were Undo a command, it would need a structure of
the form

if “Last command was INSERT_LINIthen
“Undo the effect of INSERT_LINE”

elsei “Last command was DELETE_LINEthen
“Undo the effect of DELETE_LINE”

etc.

We know how bad such structures, the opposite of what the Single Choice prin(see‘single
directs us to use, are for extendibility. They have to be changed every time you aChoice”, page 6.1
command; furthermore, the code in each branithmwirror the code for the corresponding
command (the first branch, for example, has to know a lot aboutINSERT_LINE
does), pointing to a flawed design.

The third requirement directs us to be sparing in our use of storage. Supporting undo-
redo will clearly force us to stosomeinformation for every Undo; for example when we
execute aDELETE_LINE, we will not be able to undo it later unless we put aside
somewhere, before executing the command, a copy of the line being deleted and a record
of its position in the text. But we should store only what is logically necessary.

The immediate effect of this third requirement is to exclude an obvious solupnsSTORABL see
saving the whole system state — the entire object structure — before every com‘Deep storage: afirst
execution; then Undo would just restore the saved image. This would work but is teView of persistence”,
wasteful of space. Too bad, since the solution would be trivial to write: just use’®9¢ 25
STORABLFacilities for storing and retrieving an entire object structure in a single bl...

But we must look for something a little more sophisticated.

The final requirement, supporting an arbitrary depth of undoing, has already been
discussed. It will turn out to be easier to consider a one-level mechanism first, and then to
generalize it to multi-level.

These requirements complete the presentation of the problem. It may be a good idea,
as usual, to spend a little time looking for a solution on your own befoceg@ding with
the rest of this chapter.

§21.2 FINDING THE ABSTRACTIONS 699

21.2 FINDING THE ABSTRACTIONS

The key step in an object-oriented solution is the search for the right abstraction. Here
fundamental notion is staring us in the eyes.

Command as a class

The problem is characterized by a fundamental data abstracCOMMANL,
representing any editor operation other than Undo and Redo. Execution is only one of
features that may be applied to a command: the command might be stored, tested -
undone. So we need a class of the provisional form
deferred classCOMMANL feature
executeis deferred end
undois deferred end
end

COMMANTEL describes the abstract notion of command and so must remain deferre
Actual command types are represented by effective descendants of this class, such a

classLINE_DELETION inherit
COMMAND

feature
deleted_line_inde INTEGER
deleted_lin: STRING

set_deleted_line_inde(n: INTEGEF) is
-- Set ton the number of next line to be deleted.

do
deleted_line_inde:=n
end
executes
-- Delete line.
do
“Delete line numbe deleted_line_inde’x
“Record text of deleted line ideleted_lin”
end
undois
-- Restore last deleted line.
do
“Put backdeleted _lineat positiondeleted_line_index”
end

end

And similarly foreach command class.

700 INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.2

What do such classes represent? An instancLINE _DELETION, as illustrated
below, is a little object that carries with it all the information associated with an execution
of the command: the line being deletddeleted_lin, a string) and its index in the text
(deleted_line_ind¢, an integer). This is the information needed to undo the command
should this be required later on, or to redo it.

A command

deleted_line_index 45 _
object

deleted_line "Some text

The exact attributes — such deleted_lin anddeleted_line_indehere — will seg'Requirements
differ for each command class, but they should always be sufficient to support the lon the solution”,
variants of executeand undc. Such objects, conceptually describing the differend®@9e 697
between the states that precede and follow the application of a command, will enable us
to satisfy requiremerU3 of the earlier list — storing only what is strictly necessary.

The inheritance structure of command clasmay look like this:

executé Command
undo* W class hierarchy
STRING
) REPLACE

The graph shown is flat (all proper descendantCOMMANTL at the same level),
but nothing precludes adding more structure by grouping command types into
intermediate categories; this will be justified if such categories make sense as abstract data
types, that is to say, have specific features.

When defining a notion, it is always important to indicate what it does not cover.
Here the concept of command does not include Undo and Redo; for example it would not
make sense to undo an Undo (except in the sense of doing a Redo). For this reason the
discussion uses the teioperatior for Undo and Redo, reservicommanifor operations
which can be undone and redone, such as line insertion. There is no need for a class
covering the notion of operation, since non-command operations such as Undo have only
one relevant feature, their ability to be executed.

This is a good example of the limitations of simplistic approaches to “find the objects”, “The nouns and the
such as the famous “Underline the nouns” idea studied in a later chapter. In the verbs”, page 720
specification of the problem, the noucommani andoperatior are equally important;

but one gives a fundamental class, the other does not give a class at all. Only the abstract

data type perspective — studying abstractions in terms of the applicable operations and

their properties — can help us find the classes of our object-oriented systems.

§21.2 FINDING THE ABSTRACTIONS 701

The basic interactive step

To get started we will see how to support one-level undo. The generalization to multi-le
undo-redo will come next.

In any interactive system, there must be somewhere, in a module in charge of
communication with users, a passage of the form
basic_interactive_steis
-- Decode and execute one user request.
do
“Find out what the user wants us to do next”
“Do it (if possible)”
end
In a traditionally structured system, such as editor, these operations will be execu
as part of a loop, the program’s “basic loop”:
from start until quit_has_been_requested_and_confirrloop
basic_interactive_step
end

whereas more sophisticated systems may use an event-driven scheme, in which the
is external to the system proper (being managed by the underlying graphic
environment). But in all cases there is a need for somethinbasic_interactive_ste.p

In light of the abstractions just identified, we can reformulate the body of th
procedure as
“Get latest user request”
“Decode request”
if “Request is a normal command (not Undthen
“Determine the corresponding command in our system”
“Execute that command”
elseif*Request is Undothen
if “There is a command to be undorthen
“Undo last command”
elseif“There is a command to be redorthen
“Redo last command”
end
else
“Report erroneous request”
end

702 INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.2

This implements the convention suggested earlier that Undo applied just after Undo
means Redo. A request to Undo or Redo is ignored if there is nothing to undo or redo. In
a simple text editor with a keyboard interfa“Decode reques would analyze the user
input, looking for such codes as control-I (for insert line), control-D (for delete line) and
so on. With graphical interfaces you have to determine what input the user has entered,
such as a choice in a menu, a button clicked in a menu, a key pressed.

Remembering the last command

With the notion of command object we can be more specific about the operations
performed bybasic_interactive_ste. We will use an attribute

requeste: COMMAND
-- Command requested by interactive user

representing the latest command that we have to execute, undo or redo. This enables us to
refine the preceding schemebasic_interactive_ste into:

“Get and decode latest user request”

if “Request is normal command (not Undthen

“Create appropriate command object and attachrequeste(”
-- requeste is created as an instance of some
-- descendant cCOMMANLE, such aLINE_DELETION
-- (This instruction is detailed below.)

Dynamic
Binding

D
[requestedexecutd; undoing_mod«= False

elsei “request is Undc and requested= Voidthen
if undoing_mod then
“This is a Redo; details left to the reader”
else
; undoing_mod:= True
end
else
“Erroneous request: output warning, or do nothing”
end

The boolean entitundoing_mod determines whether the last operation was an Undo. In ExerciseE21.2,
this case an immediately following Undo request would mean a Redo, although the page 716
straightforward details have been left to the reader; we will see the full details of Redo
implementation in the more interesting case of a multi-level mechanism.

The information stored before each command execution is an instance of ssgaRequirements
descendant c(COMMANLC such aLINE_DELETION. This means that, as announced, thon the solution”,
solution satisfies the property labeU3 in the list of requirements: what we store for eacP29€ 697
command is the difference between the new state and the previous one, not the full state.

§21.2 FINDING THE ABSTRACTIONS 703

“Polymorphic cre-
ation”, page 474

The key to this solution — and its refinements in the rest of this chapter — |
polymorphism and dynamic binding. Attriburequeste is polymorphic: declared of type
COMMANL, it will become attached to objects of one of its effective descendant type
such asLINE_INSERTIOI. The callsrequestedexecut andrequestedundc only make
sense because of dynamic binding: the feature they trigger must be the version redefi
for the corresponding command class, executing or undoiLINE INSERTIOI, a
LINE_DELETIONor a command of any other type as determined by the object to whic
requeste happens to be attached at the time of the call.

The system’s actions

No part of the structure seen so far is application-specific. The actual operations of
application, based on its specific object structures — for example the structur
representing the current text in a text editor — are elsewhere; how do we make
connection?

The answer relies on trexecut and undc procedures of the command classes,
which must call application-specific features. For example proceexecut of class
LINE_DELETIONmust have access to the editor-specific classes to call features that v
yield the text of the current line, give its position in the text, and remove it.

As a result there is a clear separation between the user interaction parts of a sys
largely application-independent, and the application-specific parts, closer to the model
each application’s conceptual model — be it text processing, CAD-CAM or anything els
The first component, especially when generalized to a history mechanism as explait
next, will be widely reusable between various application domains.

How to create a command object

After decoding a request, the system must create the corresponding command object.
instruction appeared abstractly “Create appropriate command object and attach it to
requeste’”; we may express it more precisely, using creation instructions, as

if “Request is LINE INSERTIONthen

' LINE_INSERTION requestecmake(input_tex, cursor_inde):
elseif“Request is LINE DELETION’then

I' LINE_DELETION! requestesdmake(current_line, line_inde)
elseif

This uses th! SOME_TYPH x... form of the creation instruction, which creates an
object of typeSOME_TYP' and attaches it tx; remember thaSOME_TYP must
conform to the type declared fix, as is the case here sinrequeste is of type
COMMANDand all the command classes are descendaCOMMANL.

If each command type usesunique integer or character code, a slightly simpler
form relies on ainspect

704 INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.3

inspect

request_code
when Line_insertionthen

' LINE_INSERTION requestedmake(input_tex, cursor_ positiol)
etc.

Both forms are multiple-branch choices, but they do not violate the Single ChG:s"iﬁgle Choice”,
principle: as was pointed out in the discussion of that principle, if a system providpage 6..
number of alternatives some part itmustknow the complete list of alternatives. The abov
extract, in either variant, is that point of single choice. What the principle precludes is
spreading out such knowledge over many modules. Here, no other part of the system needs
access to the list of commands; every command class deals with just one kind of command.

It is in fact possible to obtain a more elegant structure and get rid of the multi-bre*Precomputing

choice totally; we will see this at the end of presentation. Comm7a0n§1 objects”,
page 70.

21.3 MULTI-LEVEL UNDO-REDO

Supporting an arbitrary depth of undoing, with the attendant redoing, is a straightforward
extension of the preceding scheme.

The history list

What has constrained us to a single level of undoing was the use of just one object, the last
created instance cCOMMAND available throughrequeste, as the only record of
previously executed commands.

In fact we create as many objects as the user executes commands. But because th«See chapte9 on
software only has one command object refererequeste, always attached to the last garbage collection
command, every command object becomes unreachable as soon as the user executes

new command. It is part of the elegance and simplicity of a good O-O environment that

we do not need to worry about such older command objects: the garbage collector will

take care of reclaiming the memory they occupy. It would be a mistake to try to reclaim

the command objects ourselves, since they may all be of different shapes and sizes.

To provide more depth of undoing we need to replace the single conrequested
by a list of recently executed commands, the history list:

history: SOME_LISTTCOMMANL]

SOME_LIS is not a real class name; in true object-oriented, abstract data type style
we will examine what features and properties we need SOME_LIS and draw the
conclusion as to what list class (from the Base library) we can use. The principal
operations we need are straightforward and well known from previous discussions:

* pulto insert an element at the end (the only place where we will need insertions). By
convention put will position the list cursor on the element just inserted.

* empt to find out whether the list is empty.

§21.3 MULTI-LEVEL UNDO-REDO

705

A history list UNDO EXECUTE, REDO

Oldest 4>
remembered Most recent
command item command
[I o N e

A A O back forth Acount

! ! > !

before is_first cursor is_last

* beforg, is_firstandis_las to answer questions about the cursor position.

* back to move the cursor back one position forth to advance it one position.

* itemr to access the element at cursor position, if any; this feature has the precondit

(not empt) and (not before), which we can express asueryon_iten.

In the absence of undoing, the cursor will always be (except for an empty list)
the last element, makinis_las true. If the user starts undoing, the cursor will move
backward in the list (all the way before if he undoes every remembered command); if

he starts redoing, the cursor will move forward.

Skip is the subject The figure shows the cursor on an element other than the last; this means the usel
of exerciseE21.4, just executed one or more Undo, possibly interleaved with some Redo, although
number of Undo must always be at least as much as the number of Redo (it is greate
two in the state captured in the figure). If at that stage the user selects a normal comm
— neither Undo nor Redo —, the corresponding object must be inserted immediately
the right of the cursor element. The remaining elements on the right are lost, since R
would not make sense in that case; this is the same situation that caused us at the begi
of this chapter to relegate the notion of Skip operation to an exercise. As a conseque

page 716

we need one more featureSOME_LIS": procedureremove_all_righ, which deletes all

elements to the right of the cursor.

An Undo is possible if and only if the cursor is on an element, as staon_iten. A

Redo is possible if and only if there has been at least one non-overridden Undo, that i
say,(not empty) and (not is_las), which we may express through a qunot_las.

Implementing Undo

With the history list, it is easy to implement Undo:

if on_itemthen
history.item.undo
history.back

else
messag (" Nothing to und")

end

706 INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.3

See once again how dynamic binding is essential.history list is a polymorphic
data structure:

| | A history list
Instance of with its various
Instance of LINE_ command
CHARACTER MOVE objects
Instance of CHANGE Instance of Instance of Instance of
LINE - STRING_ LINE_ LINE_
DELETION REPLACE INSERTION DELETION

As the cursor moves left, each successive valthistory.item may be attached to
an object of any of the available command types; in each case, dynamic binding ensures
thathistory.item.undc automatically selects the appropriate versioundc.

Implementing Redo

Redo is similar:

if not_las then
history.forth
history.item.redo
else
messag¢(“Nothing to red")
end

This assumes a new proceduredc, in classCOMMANL. So far we had taken for
granted tharedc is the same thing éexecut, and indeed in most cases it will be; but for
some commands re-executing after an undo might be slightly different from executing
from scratch. The best way to handle such situations — providing enough flexibility,
without sacrificing convenience for the common cases — is to provide the default
behavior in clasCOMMANL:

redois
-- Re-execute command that has been undone
-- by default, the same thing as executing it.
do
execute
end

This makesCOMMANLE a behavior class: along with defertexecut andundg, it “Don't call us,
has an effective proceduredc which defines a behavior based, by default, on the otwe'll call you”,
two. Most descendants will keep this default, but some of them may reredoto Pa9e 505
account for special cases.

§21.4 IMPLEMENTATION ASPECTS 707

Executing a normal command

If a user operation is neither Undo nor Redo, it is a normal command identified by
reference that we may still crequeste. In this case we must execute the command, but
we must also insert it into the history list; we should also, as noted, forget any item to
right of the cursor. So the sequence of instructions is:

if notis_lastthen remove_all_rigk end

history.put (requeste)l
-- Recall thaput inserts at the end of the list and moves
-- the cursor to the new element.

requestecexecute

With this we have seen all the essential elements of the solution. The rest of t
chapter discusses a few implementation-related topics and draws the methodolog
lessons from the example.

21.4 IMPLEMENTATION ASPECTS

Let us examine a few details that help obtain the best possible implementation.

Command arguments

Some commands will need arguments. For examLINE _INSERTIOI needs to know
the text of the line to be inserted.

A simple solution is to add ICOMMANTL an attribute and a procedure:

argumen: ANY
set_argumen(a: like argumen) is
do argument:=aend

Then any command class can redefargumen to the proper type. To handle
multiple arguments, it suffices to choose an array or list type. This was the technig
assumed above when we passed various arguments to the creation procedure
command classes.

This technique is appropriate for all simple applications. Note, however, that t
COMMANTE class in ISE’s libraries uses a different technique, slightly more complicate
but more flexible: there is rargumen attribute, but proceduiexecutdakes an argument
(in the usual sense of argument to a routine), representing the command argument:

execute(command_argume: ANY) is ...

The reason is that it is often convenient, in a graphical system, to let differe
instances of the same command type share the same argument; by removing the attr
we can reuse the same command object in many different contexts, avoiding the crea
of a new command object each time a user requests a command.

708 INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.4

The small complication is that the elements of the history list are no longer instances
of COMMANL; they must instead be instances of a cCOMMAND INSTANC with
attributes

command_tyy: COMMAND
argumen: ANY

For a significant system, the gain in space and time is worth this complication, sExerciseE21.4,
you will create one command object per command type, rather than one per comP29¢ 1
execution. This technique is recommended for production applications. You will only
need to change a few details in the preceding class extracts.

Precomputing command objects

Before executing a command we must obtain, and in some cases create, the corresponding
command object. The instruction was abstractly writte“Create appropriate command
object and attach it requeste” and the first implementation draft was

inspect Page70<.
request_code

when Line_insertiorthen
I' LINE_INSERTION requestefmake(...)

etc. (one branch for each command type)

As pointed out, this instruction donot violate the Single Choice principle: it is in
fact the point of single choice — the only place in the entire system that knows what set
of commands is supported. But we have by now developed a healthy loathif orfor
inspec instructions with many branches, so even if this one appears inevitable at first let
us see if perhaps we could get rid of it anyway.

We can — and the design pattern, which may be caprecomputing a
polymorphic instance se, is of wide applicability.

The idea is simply to create once and for all a polymorphic data structure containing
one instance of each variant; then when we need a new object we simply obtain it from the
corresponding entry in the structure.

Although several data structures would be possible for such as a list, it is most
convenient to use sARRAY[COMMANL], allowing us to identify each command type
with an integer between 1 acommand_cou, the number of command types. We declare

command: ARRAY[COMMANICL]

and initialize its elements in such a way thati-th element 1 <= i <= n) refers to an
instance of the descendant clasCOMMANL corresponding to coci; for example, we
create an instance (LINE_DELETION associate it with the first element of the array
(assuming line deletion has code 1), and so on.

§21.4 IMPLEMENTATION ASPECTS 709

The array of
command
templates

The figure show-
ing a history list
example was on
page706.

Instance of
command | CHARACTER
count _CHANGE Instance of
LINE_
> DELETION
Instance of
MOVE
. Instance of
Instance of STRING_
1 > TN REPLACE
INSERTION

commands

A similar technique can be applied to the polymorphic sassociated_sta used in the
O-0 solution to the last chapter’s problem (panel-driven applications).

The arraycommandsis another example of the power of polymorphic data
structures. Its initialization is trivial:

Il commandsmake(1, command_coui)t

I LINE_INSERTION requestecmake commandsput (requeste, 1)
I STRING_REPLAC! requestedmake¢ commandsput (requeste, 2)
... And so on for each command ty...:

Note that with this approach the creation procedures of the various command clas
should not have any arguments; if a command class has attributes, they should be
separately later on through specific procedures, li smake(input_tex, cursor_positio)
whereli is of typeLINE_INSERTIOLI

Then there is no more need for &f orinspecimulti-branch instruction. The above
initialization serves as the point of single choice; you can now write the ope‘Create
appropriate command object and attach requeste” as

requestec= clone(commands @ co/)e

wherecode is the code of the last command. (Since each command type now has a cc
corresponding to its index in the array, the basic user interface operation written earlie!
“Decode requestanalyzes the user’s request and determines the corresponding code.

The assignment trequeste uses &lone of the command template from the array,
so that you can have more than one instance of the same command type in the histon
(as in the earlier example, where the history includesLINE_DELETION objects).

If, however, you use the suggested technique of completely separating the comm:
arguments from the command objects (so that the history list contains instances
COMMAND_INSTANC rather tharCOMMANTE), then the clone is not necessary any
more, and you can go on using references to the original objects from the array, with jt

requestec= commands @ code

In very long sessions the savings can be significant.

710 INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.4

A representation for the history list

For the history list a typSOME_ LIS was posited, with featurepui, empt, before, is_
first, is_las, back, forth, itemandremove_all_rigr. (There is alswon_iten, expressed in
terms ofempt andbefore, andnot_las, expressed in terms empt andis_las.)

Many of the classes in the Base libraries can be used to implSOME_LIS’; for
example we could rely cTWO_WAY_LISor one of the descendants of the deferred class
CIRCULAR_LIS. To obtain a stand-alone solution let us devise an ad hoc class
BOUNDED_LIS". Unlike a linked implementation such TWO_WAY_LIS, thisone
will rely on an array, so it keeps only a bounded number of commands in the history. Let
rememberebe the maximum number of remembered commands. If you use this facility
for a system to build, remember (if only to avoid receiving an angry letter from me should
| ever become a user) to make this maximum user-settable, both during the session and in
a permanent user profile consulted at the beginning of each session; and choose a default
that is not too small, for example 20.

BOUNDED_LIS can use an array, managed circularly to enable reusing earSe€’A buffer is a
positions as the number of commands goes bevemembere. With this technique, ;zgzrgg)queue ‘
common for representing bounded queues (it will show up again for bounded buffers In
the discussion of concurrency), we can picture the array twisted into a kind of doughnut:

1 oldest Bounded
index circular list
implemented by

an array

capacity

- Occupied position

remembere I:l Free position

- Reserved position

next

The sizecapacity of the array isremembered + ; this convention means settingAn alternative to
aside one of the positions (the last, at incapacity) and is necessary if we want to be abl[)%ss?tri‘(’)'r:‘?sa{;rﬁgep
to distinguish between an empty list and a full list (see below). The occupied positiontack ofcount the
marked by two integer attributeoldes is the position of the oldest rememberenumber of elements
command, annex is the first free position (the one at which the next command will ‘I‘B?go?gtl:)aﬁzdsee
inserted). The integer attribuinde> indicates the current cursor position. genericity”, page

1181for yet another
Here is the implementation of the various features put(c), inserting command varant
at the end of the list, we execute

§21.5 A USER INTERFACE FOR UNDOING AND REDOING 711

A history
window, before
any undoing

representationput (x, nex); -- whererepresentatio is the name of the array
next:= (next\\ remembere) + 1
index:= next

where\\ is the integer remainder operation. The valueempt is true if and only if
next= oldes; that ofis_firsi, if and only ifindex= oldes; and that obefore if and only if
(index\\ remembere) + 1 = oldes. The body oforthis

index:= (index\\ remembere) + 1
and the body obackis
index:= ((index + remembered -) \\ remembere) + 1

The +rememberecerm is mathematically redundant, but is included because of the
lack of universal conventions as to the computer meaning of remainder operations for
negative operands.

The quenyiterr giving the element at cursor position returepresentation @ indx
the array element at indindex Finally, the procedurremove_all righ, removing all
elements to the right of the cursor position, is simply implemented as

next:= (index\'rememerec) + 1

21.5 AUSER INTERFACE FOR UNDOING AND REDOING

Here is part of a possible user interface support for the undo-redo mechanism. It is ta
from ISE’s Case analysis and design workbench, but several of our other products use
same scheme.

Although keyboard shortcuts are available for Undo and Redo, the comple
mechanism involves bringing u| history window (by clicking on a button in the interface,
or selecting an item in the Tools menu). The history window is the exact user-visib
equivalent of thehistory list as it exists inside the software. Once it is up, it will be
regularly updated as you execute commands and other operations. In the absence of
undoing, it will look like this:

T | History

1|

zIE

Move figure

Move label

Move label

Move label

New cluster

Move cluster's tag
Destroy cluster
GChange relation label

hange relation label

=

712 INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.6

This shows the list of recent commands. As you execute new commands, they will
appear at the end of the list. The currently active command (the one at cursor position) is
highlighted in inverse video, likehange relation labelon the last figure.

To undo the active command, you can click on the up arrow b 4 or use the

keyboard shortcut (such as ALT-U). The cursor moves up (back) in the list; after a few
such Undo, the window would look like this:

T r History b A history
11 Wl_ndovv, in the
; middle of an
Move ure
:hel undo-redo
Move label process
Move label
Newcluster |
Move cluster's tag
Destroy cluster
Change relation label
Change relation label
I

As you know, this internally means that the software has been performing a few calls
toback At this stage you have a choice between several possibilities:

* You can perform more Undo operations by clicking on the up arrow button; the
highlighting moves to the previous line.

* You can perform one or more Redo by clicking on the down a |} |v or using the

equivalent keyboard shortcut; the highlighting goes to the next line, internally
performing calls tdorth.

* You can execute a normal command. As we have seen, this will remove from the
history any commands that have been undone but not redone, internally performing
a remove_all_right in the interface, all the commands below the currently
highlighted one disappear.

21.6 DISCUSSION

The design pattern presented in this chapter has an important practical role, as it will
enable you to write significantly better interactive systems at little extra effort. It also

brings an interesting theoretical contribution, by illuminating some aspects of object-

oriented methodology worth exploring further.

§21.6 DISCUSSION 713

The role of implementation

A striking property of the example user interface presented in the last section is that it v
directly deducedrom the implementation: we took the internal, developer-relevant notiol
of history list and translated it into an external, user-relevant history window, with th
attendant user interaction mechanism.

One may always imagine that someone could have devised the external view first, or at
any rate independently from the implementation. But this is not the way it happened,
either in this presentation or in history of our products’ development.

Instituting such a relation between a system’s functionality and its implementatic
goes against all that traditional software engineering methodology has taught. We h:
been told to deduce the implementation from the specification, not the revers
Techniques of ‘“iterative development” and “spiral lifecycle” change little to this
fundamental rule that implementation is slave to prior concept, and that the softwe
developers must do what the “users” (meaning, the customers, usually non-technical)
them. Here we are violating every taboo by asserting thattpementatiorcan tell us
what the system should be doinghe first place. In earlier times questioning such time-
honored definitions of what depends on what could have led one to the stake.

The legitimate emphasis on involving customers — meant to avoid the all tc
common horror stories of systems that do not do what their users need — has unfortuna
led to downplaying the software developers’ contribution, whose importance extends
the most external and application-related aspects. It is naive to believe, for example,
customers will suggest the right intace fadities. Sometimes they will, but often they
reason on the basis of the systems they know, and they will not see all the issues invol
That is understandable: they have their own jobs to do, and their own areas of expert
getting everything right in a software system is not their responsibility. Some of the wor
interactive interfaces in the world were designed wath muchuser influence. Where
users are truly irreplaceable is for negative comments: they will see practical flaws in
idea which at first seems attractive to the developers. Such criticism must always
heeded. Users can make brilliant positive suggestions too, but do not depend on it. /
once in a while, a developer’s suggestion will seduce the users — possibly after a num
of iterations taking their criticism into account — even though it draws its origin from .
seemingly humble implementation technique, such as the history list.

More on seamlessness Thijs equalization of traditional relationships is one of the distinctive contributions ¢

and reversibility in
chapter28.

object technology. By making the development process seamless and reversible, we al
a great implementation idea to influence the specification. Instead of a one-way flow frc
analysis to design and “coding”, we have a continuous process with feedback loc
throughout. This assumes, of course, that implementation is no longer viewed as

messy, low-level component of system construction; its results, developed with t
techniques described throughout this book, can and should be as clear, elegant and ab:
as anything one can produce in the most implementation-abhorrent forms of traditiol
analysis and design.

714 INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM §21.6

Small classes

The design described in this chapter may, for a typical interactive system, involve a
significant number of relatively small classes: one for each type of command. There is no
reason, however, to be concerned about the effect on system size and complexity since the
inheritance structure on these classes will remain simple, although it does not have to be as
flat as the one sketched in this chapter. (You may want to group commands into categories.)

In a systematic O-O approach, similar questions arise whenever you have to
introduce classes representing actions. Although some object-oriented languages make it
possible to pass routines as arguments to other routines, such a facility contradicts the
basic idea of the method — that a function (action, routine) never exists by itself but is
alwaysrelative to a certain data abstracti. So instead of passing an operation we should
pass an object equipped, through a routine of its generating class, with that operation, as
with an instance cCOMMANL equipped with thexecut operation.

Sometimes the need to write a wrapper class seems artificial, especially to people
used to passing routines around as arguments. But every time | have seen such a class
legitimately being introduced, originally for the sole purpose (it was thought) of
encapsulating an operation, it turned out to reveal a useful data abstraction, as evidenced
by the later addition of other features beyond the one that served as the original incentive.
ClassCOMMANL does not fall into this category, since right from the start it was
conceived as a data abstraction, and had two feaexecut andundc). But it is typical
of the process, since if you start using commands seriously you will soon realize the need
for even more features such as:

e argumen: ANY to represent the command argument (as in one of the versions that
we have encountered).

* help: STRING to provide on-line help associated with each command.
< Logging and statistical features, to keep track of how often each command type is used.

Another example, drawn from the domain of numerical software, is more
representative of situations where the introduction of a class may seem artificial at first,
because the object-oriented designer will pass an object where a traditional approach
would have passed a routine as argument. In performing scientific computation you will
often need integration mechanisms, to which you give a mathematical fuif toon
compute its integral on a certain interval. The traditional technique is to repf as at
routine, but in object-oriented design we recognize that “Integrable function” is an
important abstraction, with many possible features. For someone coming from the
functional world of C, Fortran and top-down design, the need to provide a class may at
first appear to be a kind of programming trick: not finding in the language manual a way
to pass a routine as argument, he asks his colleagues how to achieve this effect, and is told
that he must write a class with the corresponding feature, then pass objects (instances of
that class) rather than the feature itself.

§21.7 BIBLIOGRAPHICAL NOTES 715

In [Cox 1986.

He may at first accept this technique — perhaps grudgingly — as one of those qui
that programming languages impose on their users, as when you want a boolean variak
C and have to declare it of type integer, with O for false and 1 for true. But then as
continues his design he will realize that the technique was not a hack, simply the pro
application of object-oriented principleINTEGRABLE FUNCTIOIis indeed one of the
major abstractions of his problem domain, and soon new, relevant features (beyond
original oneitem (a: REAL): REAL, giving the value of the function at poia) will start
piling up.

What was thought to be a trick turns out to yield a major compoif the cesign.

21.7 BIBLIOGRAPHICAL NOTES

The undo-redo mechanism described in this chapter was present in the structt
document constructcCépag: developed by Jean-Marc Nerson and the author in198:
[M 1984], and has been integrated into many of ISE’s interactive tools (includin
ArchiText[ISE 1996, the successor to Cépage).

In a position paper for a panel at the first OOPSLA conference in 1986, Tesler
cites a mechanism based on the same ideas, part of AfMacApp interactive
framework.

[Dubois 1997 explains in detail how to apply object-oriented concepts to the desig
of numerical software, with abstractions such as “Integrable function” (as mentioned
the last section), and describes in detail a complete object-oriented numerical library.

EXERCISES

E21.1 Putting together a small interactive system (programming project)

This small programming project is an excellent way to test your understanding of t
topics of this chapter — and more generally of how to build a small system making fi
use of object-oriented techniques.

Write a line-oriented editor supporting the following operations:
¢ p: Print text entered so far.

e |: move cursor to next line if any. (Use the ccl, for low, if that is more
convenient.)

e 1:move cursor to previous line if any. (Uh, for high, if that is more convenient.)

« i:insert a new line after cursor position.

L]

d: delete line at cursor position.

e u: Undo last operation if not Undo; if it was Undo, redo undone command.

716 INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM 8E21.2

You may add more commands, or choose a more attractive user interface, but in all cases
you should produce a complete, workable system. (You may also apply right from the start
the improvement described in the next exercise.)

E21.2 Multi-level Redo

Complete the previous exercise’s one-level scheme by redefining the meau ag of
e u: Undo last operation other than Undo and Redo.
and adding

e r: Redo last undone command (when applicable).

E21.3 Undo-redo in Pascal

Explain how to obtain a solution imitating the undo-redo technique of this chapter in non-
0O-0O languages such as Pascal, Ada (using record types with variants) or C (using structure
and union types). Compare with the object-oriented solution.

E21.4 Undo, Skip and Redo

Bearing in mind the issues raised early in the discussion, study how to extencSee‘Practical
mechanism developed in this chapter so that it will support Undo, Skip and Reddssues’, page 6¢6

. . . anc “The history
well as making it possible to redo an undone command that has been followed list”, page 70z
normal command. '

Discuss the effect on both the user interface and the implementation.

E21.5 Saving on command objects

Adapt all the class extracts of this chapter to treat command arguments separatelySee‘Command
commands (adding a routine argumenexecut) and create only one command objec%quments", page
per command type. &

If you have done the preceding exercise, apply this technique to its solution.

E21.6 Composite commands

For some systems it may be useful to introduce a notion of composite command,

describing commands whose execution involves executing a number of other commands.
Write the corresponding clasCOMPOSITE COMMAN, an heir of COMMANLEL,

making sure that composite commands can be undone, and that a component of a

composite command may itself be composite.
Se¢‘Composite fig-

Hint: use the multiple inheritance scheme presented for composite figures. ures”, page 527

8§E21.7 EXERCISES 717

E21.7 Non-undoable commands

A system may include commands that are not undoable, either by nature (“Fire f
missiles”) or for pragmatic reasons (when there is too much information to remembe
Refine the solution of this chapter so that it véilcount for non-undoable commands.
(Hint: introduce heirUNDOABLE andNON_UNDOABLI to classCOMMANL.) Study
carefully the effect on the algorithms presented, and on the user interface, in particular
an interface using the history windows as presented at the end of the chapter.

E21.8 A command library (design and implementation project)

Write a general-purpose command library, meant to be used by an arbitrary interact
system and supporting an unlimited undo-redo mechanism. The library should integr
the facilities discussed in the last three exercises: separating commands from argume
composite commands; non-undoable commands. (Integrating an “Undo, Skip and Re!
facility is optional.) lllustrate the applicability of your library by building three
demonstration systems of widely different natures, such as a text editor, a graphics sys
and a training tool.

E21.9 A history mechanism

A useful feature to include in a command-oriented interactive tool is a history mechani:
which remembers the last commands executed, and allows the user to re-execu
previous command, possibly modified, using simple mnemonics. Under Unix, fc
example, you may direct the C-shell (a command language) to remember the last 1
executed commands; then you may ty'-2 to mean “re-execute the next-to-last
command”, or'yes”no to mean “re-execute the last command, replacing the characte
yes in the command text bno”. Other environments offer similar facilities.

History mechanisms, when they exist, are built in an ad hoc fashion. On Unix, ma
interactive tools running under the C-shell, such as the Vi editor or various debugge
would greatly benefit from such a mechanism but do not offer one. This is all the mc
regrettable that the same concept of command history and the same associated faci
are useful for any interactive tool independently of the functions it performs — commat
language, editor, debugger.

Design a class implementing a general-purpose history mechanism, in such a way that
interactive tool needing such a mechanism will obtain it by simply inheriting from the
class. (Note that multiple inheritance is essential here.)

Discuss the extension of this mechanism to a gelUSER_INTERFAC class.

718 INHERITANCE CASE STUDY: “UNDO” IN AN INTERACTIVE SYSTEM 8E21.10

E21.10 Testing environment

Proper testing of a software component, for example a class, requires a number of facilities
to prepare the test, input test data, run the test, record the results, compare them to
expected results etc. Define a geneTES™ class that defines an appropriate testing
environment and may be inherited by any class in need of being tested. (Note again the
importance of multiple inheritance.)

E21.11 Integrable functions

(For readers familiar with the basics of numerical analysis.) Write a set of classe See‘Small
integrating real functions of a real variable over arbitrary intervals. They should incluclasses’, page 714
classINTEGRABLE_FUNCTIO, as well as a deferred cleINTEGRATOI to describe Egmgﬁliidgw
integration methods, wih proper descendts sucl as RATIONAL_FIXED_ [Dubois 1997)

INTEGRATONR

	21 21 Inheritance case study:� “undo” in an intera...
	21.1 PERSEVERARE DIABOLICUM
	Undoing for fun and profit
	Multi-level undo and redo
	Practical issues
	Requirements on the solution

	21.2 FINDING THE ABSTRACTIONS
	Command as a class
	A command object
	Command class hierarchy

	The basic interactive step
	Remembering the last command
	The system’s actions
	How to create a command object

	21.3 MULTI-LEVEL UNDO-REDO
	The history list
	A history list

	Implementing Undo
	A history list with its various command objects

	Implementing Redo
	Executing a normal command

	21.4 IMPLEMENTATION ASPECTS
	Command arguments
	Precomputing command objects
	The array of command templates

	A representation for the history list
	Bounded circular list implemented by an array

	21.5 A USER INTERFACE FOR UNDOING AND REDOING
	A history window, before any undoing
	A history window, in the middle of an undo-redo pr...

	21.6 DISCUSSION
	The role of implementation
	Small classes

	21.7 BIBLIOGRAPHICAL NOTES
	EXERCISES
	E21.1 Putting together a small interactive system ...
	E21.2 Multi-level Redo
	E21.3 Undo-redo in Pascal
	E21.4 Undo, Skip and Redo
	E21.5 Saving on command objects
	E21.6 Composite commands
	E21.7 Non-undoable commands
	E21.8 A command library (design and implementation...
	E21.9 A history mechanism
	E21.10 Testing environment
	E21.11 Integrable functions

