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1. Introduction

Learning  is the main property that characterizes an intelligent system. As similar situations will usually appear

again and again in a given environment, the goal of  learning is to  gain experience  that can be used to improve the

performance of the system when similar situations occur in the future. Gaining experience  often requires  the

system  to build up an internal knowledge base that can efficiently fetch the information when needed. 

The learning process can be divided into two phases:  the  knowledge acquisition phase  and the rule

generation phase.  In the knowledge acquisition phase, it is relatively easy to gather a  large amount of knowledge
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or facts. However,  critical facts are usually difficult to collect or easy to neglect. Therefore, the time, manpower

and other resources spent on knowledge  acquisition can  be very large  if this process is not managed  properly.

This article examines the knowledge acquisition problem for learning in  a monotone boolean system. In

such systems, it is assumed that all examples are represented by binary  vectors in space En and  each bit of a vector

represents  an attribute of the example. The  attributes are assumed to be  binary,  i.e. to be either  “True” or

“False”(i.e., “0” or “1”).  All examples are divided into two classes, and are thus regarded as positive and negative

examples. The relation among the examples can be expressed in the form of a monotone boolean function, in which

an example is regarded as a positive example  when the function value for the example is 1 and as a negative

example when the function value is 0. The goal of the knowledge acquisition phase  in a monotone boolean system

is to infer the function and thus be able to determine the class membership for all  examples in the problem space.

2.  Monotone Boolean Functions

To express the relation among the examples in the form of a  monotone boolean function  requires that the

class membership of all examples be known. To determine the class membership of all examples is the same as to

restore the underlying monotone boolean function, and thus this knowledge acquisition process is known as

monotone boolean function inference.

As discussed earlier, it could be very costly to determine the class membership of all examples in the

problem space if the process is not arranged properly. For instance, to get the function value  of all examples in

space E 10   could mean to test each one of the 1,024 examples in that space. Even if  each test requires only 30

minutes to get the result, this process  could  be too slow to be acceptable in many practical situations. Furthermore,

the considerable costs related with each test could be another reason that prevents the use of this kind of testing.

When  the details of different kinds of tests are omitted,  each example submitted for  testing  can be

regarded as posing a question and the results come from the test can be  regarded as getting an  answer.  Therefore,

it is desirable to ask a sequence of appropriate questions, i.e. to test only a small number of  examples from the

problem space , so that the class membership of  all examples in the space can be determined.  The selection of the
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examples, or  the question-asking strategy, is  critical in reducing the number of questions. 

When the relation among the examples  is expressed as a general boolean function, there  is no way to

determine the class membership of other examples based on the classified examples (training set).  Therefore every

example should be examined  if the relation among the examples (i.e., the inferred boolean function) is required to

be 100% correct. This means that the size of the  examples in the training set will always be 2n,  the same as the

number  of all the examples in space En.  However, the  number of questions can be reduced when  the relation can

be expressed as  a monotone boolean function  (to be discussed later).  As the class membership  of all examples

in a monotone boolean system satisfy the monotone property,  it is possible that a small number of classified

examples   can be used to determine the class membership of new examples.  This, in turn, can significantly

expedite the learning process and thus reduce the costs.  Under monotonicity examples can be ordered as follows

[Rudeanu, 1974]: 

Let En denote the set of all binary vectors of length n; let x and y be two such vectors. Then, the vector   x=<x1,

x2, ..., xn> precedes  vector y=<y1, y2, ..., yn>  (denoted as x % y) if and only if xi & yi for 1 & i & n.  If, at the same time,

x ' y then x strictly precedes  y (denoted as x ( y). 

According to this definition, the vectors in space E2  can be ordered as follows: 

<11> )  <01> )  <00>

and <11> )  <10> )  <00>.

However, the vectors  <01> and  <10> cannot be compared according to the above definition.

Based on the order of the vectors , an   increasing  monotone boolean  function is defined as follows

[Rudeanu, 1974] : 

A boolean function  f  defined in  space En is said to be an increasing (isotone) monotone boolean

function if   and only if for any vectors  x, y *  En, such that  x + y, then f(x) , f(y).              

Similarly, a decreasing monotone boolean function is defined as follows [Rudeanu, 1974]:

A boolean function  f  defined in  space En is said to be a decreasing (antitone)  monotone boolean
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function if   and only if for any vectors  x, y 3  En, such that  x 4 y, then f(x) 5 f(y). 

In a monotone boolean system, a function is either an increasing   monotone boolean function or a

decreasing monotone boolean function. However, as the method used to acquire the class memberships for the

examples is the same for both cases, in this paper it is assumed that a hidden function is always an increasing

monotone boolean function. 

Monotonicity is a very strong constraint and, sometimes, cannot be easily satisfied.  Fortunately,  it can

easily be proved that every  general boolean function q(x1, ..., xn) can be described in terms of several increasing

gi (x1, ..., xn) and decreasing hi (x1, ..., xn) monotone boolean functions [Kovalerchuk, et al., 1995]. That is:

q(x) 6 m7
i 8 1

(gi(x) 9 hi(x)).

For the number : (n) of monotone boolean functions defined on the vectors in space En, it is known

([Alekeseev, 1988] and[Kleitman, 1969]) that:

where 0< ; (n)<c(logn)/n, c is a constant and   < n/2 =  is the largest integer less than or equal to n/2.  

A boolean function can be of any form. All the forms are regarded as equivalent as long as they give the

same correct true-false function  values for all input boolean vectors. However, it is convenient to represent a

boolean function in either the Conjunctive Normal Form (CNF) or the Disjunctive Normal Form (DNF) (see, for

instance, [Blair et al., 1985], [Cavalier et al., 1990], [Hooker, 1988a and 1988b], [Jeroslow, 1988 and 1989], and

[Williams, 1986]).  Peysakh, 1987 describes an algorithm for converting any boolean expression into CNF.  The

CNF form can be described as follows: 
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where ai  is either attribute Ai or its negation ,  j is the number of attribute combinations and N j is  the jth indexAi

set for the jth attribute combination. Similarly, DNF can be described as follows: 
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3. Shannon Function and the Hansel Theorem 

Suppose the relations among the binary examples in the problem space  can be expressed with a monotone

boolean function f.   This function f can be obtained by classifying all vectors  with the help of the appropriate

operator Af  (also called an oracle) which, when fed with a vector x=(x1, x2, x3, ..., xn), returns the class membership

(or function value  f(x) ) of vector x.  Let A={F} be the set of  all algorithms which can be used to determine the

class membership of all vectors in the space,  and U (F, f) be the number of accesses to the operator Af required to

obtain the monotone boolean function f V Mn (where Mn is the set of all monotone boolean functions defined on n

variables).  Based on the above notation,  the Shannon function W (n) can be introduced as follows  [Korobkov,

1965]:

An upper bound on the number of   questions  needed to determine the class membership of all vectors and

restore the underlying monotone boolean function  is given by the following equation (also known as Hansel’s

theorem) [Hansel, 1966]:

The significance of the Hansel theorem is that  the total number of questions  needed to infer any  monotone

boolean function defined by the relations among vectors  in space En will not exceed W (n)  if a proper question-

asking strategy is applied. 
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[Kovalerchuk, et al., 1996] proposed a  method on how to classify the examples in a monotone boolean

system by issuing a sequence of membership inquires to an operator or “oracle.” That method  is based on the

concept of  the Hansel chains and is optimal in the sense of  the Hansel theorem and the Shannon function. 

4. Hansel Chains

A chain in  space  En is a sequence of binary vectors.  All binary vectors in space  En can be organized into

several chains, which are called Hansel chains [Hansel, 1966]. For any two adjacent vectors x  and y  in a Hansel

chain (where y follows x), the vector x is required to be different than vector y by only  one bit so that  vector x

strictly precedes vector y. 

The Hansel chains in space En can be generated recursively  based on the Hansel chains in space En-1.

Algorithm  1, as shown in Figure 4.1, is a modified version of the method proposed by  [Hansel, 1966]   to  generate

Hansel chains in space En.

Algorithm 1: Hansel Chains Generation in space En 
Input:  Dimension n, Hansel chains of dimension n-1;
Output: Hansel chains of dimension n;

Note that the Hansel chains of space En-1 are assumed to be known and also
H1,1={<0>, <1>}. 

For each single chain C of  the Hansel Chains in space En-1 do the following:
Step 1: Form a new chain Cmin  in space En   by attaching the element ‘0’ to the right

of each vector in   chain C ;
Step 2: Form a new chain Cmax  in space En   by attaching the element ‘1’ to the right

of each vector in   chain C ;
Step 3: Move the last vector in chain Cmax to  Cmin ;
Step 4: Add  Cmin to the Hansel Chains of dimension n;
Step 5: If  after removing the last vector form  Cmax to Cmin,  Cmax is not  empty, then

add chain Cmax   to the Hansel chains of dimension n;
The above 5 steps will be repeated until all chains in space En-1 have been
processed.

Figure 4.1 An Algorithm for the Generation of Hansel Chains in Space En. 
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For  space E 1, there is only a single Hansel chain that consists of two vectors <0>, <1>. That is: 

 H 1,1 = {<0>, <1>}. 

To form the Hansel chains for space E2, there are 3 steps to be followed: 

Step 1: Attach the element “0" to the front of each vector in H1,1  and get  chain C2min. That is:

 C 2min = {<00>,<01>}

Step 2: Attach the element “1" to the front of each vector in H1,1   and get  chain  C2max. That is:

C 2max = {<10>,<11>}

Step 3: Move the last vector in chain  C2max (i.e. vector <11>),  to the end of C2min.

           Now, the two Hansel chains in E2 can be  listed as follows:

           H 2, 1  = {<00>, <01>, <11>},

           H 2, 2  = {<10>}.

To form the Hansel chains for space E3,  the previous 3  steps will be repeated. That is:  

Step 1: Attach the element “0” to the front of each vector in H2,1 and H2,2 and get chains  C3,1min      and C3, 2 min,

respectively, as follows: 

C 3,1min = {<000>, <001>, <011>},

 C 3,2min = {<010>}.

Step 2: Attach the element “1” to the front of each vector in H2,1 and H2,2 and get chains  C3,1max   and C3, 2max,

respectively, as follows: 

C 3,1max = {<100>, <101>, <111>},

C 3,2max = {<110>}.

Step 3: Move the last vector form C3,1max and C3, 2max to the end of their counterpart  C3,1min and  C3,2min, respectively,

to form the Hansel chains in E3 as follows: 

H 3, 1  = {<000>, <001>, <011>, <111>},

H 3, 2 = {<100>, <101>},



8

H 3, 3 = {<010>, <110>}.

Since there is only one vector in chain C3,2max, this chain can be deleted after the vector <110> is moved to C3,2min.

So there are only three chains in the final set with Hansel chains, namely: H3, 1, H3, 2 and H3, 3.  In general, the

Hansel chains for space  E n can be generated recursively by repeating the 3  steps described above from the Hansel

chains in space E n-1. Table 4.1 lists the Hansel chains generated for space E3 .

Table 4.1  Hansel chains for E3.

Chain Number Vector In-

Chain Index

Vector

1 1 000
2 001
3 011
4 111

2 1 100
2 101

3 1 010
2 110

5. The Sequential Hansel Chains Strategy 

An  interactive learning approach based on Hansel chains was proposed by [Kovalerchuk,  et al., 1996]

and can significantly  reduce the number of inquiries needed to determine a hidden monotone boolean function in

space En.   This interactive learning approach assumes  that there is no example classified initially.  By

systematically choosing a set of vectors from the Hansel chains and by asking about their class memberships, all

other vectors in the space can be classified.  The algorithm proposed is optimal in the sense of the Shannon function

and the Hansel theorem.  The typical process of this  interactive learning is: 

(1) Generate the Hansel chains in space En.

(2) Sort the Hansel chains in  increasing order of the size ( i.e., the number of vectors)   of the Hansel

chains.

Start form the first Hansel chain and do the following:

(3) Start form the first unclassified  vector in the  chain and require the class membership of that
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vector.

(4) Use the class membership of this classified vector to determine the class membership of as many

undetermined  vectors as possible.

(5) If all the vectors in the chain are determined, then process the next Hansel chain.

Steps (3), (4), (5) will be repeated until all chains have been processed. 

As in step (3), the vectors are selected sequentially in each Hansel chain, the algorithm is therefore called a

Sequential  Hansel Chains Approach. The above steps are  described in detail in  Figure 5.1.

 

Algorithm 2. Sequential Hansel Chains Question-Asking Approach
 

Input:    Dimension n;
Output: Number of questions asked to determine the class membership  of all the    
              vectors for space En.

Step 0:  {Hansel chain generation.}
     Use algorithm 1 to generate  all Hansel Chains for space En.
     The number of Hansel chains is K.

Step 1:  {Initialization.} 
     Sort  the Hansel chains in increasing order of the size of the  chains.
     Set the Current Chain Pointer CurChain=1;
     Set the number of Questions NumQuestion=0;

Step 2:  {Some vectors are  unclassified.}
     Select the first unclassified vector v in chain Ci, where i=CurChain;

Step 3:  {Inquire the class membership of the vector.};
     Class(v) =ANSWER(v);
     NumQuestion=NumQuestion+1;

Step 4:  {Use monotonicity property to mark other vectors.};
     For(each chain Cj ,  j=1, 2, 3, ..., K) Do

Mark the class membership of vectors in Cj  that can be                    
             determined;

Step 5:  {Check for completion condition}
     IF( there are no unclassified vectors in the current chain) THEN

IF (CurChain=K) THEN
     Output the class membership of all the vectors and the        

                                        number of questions needed;
ELSE {There are other chains not processed}

CurChain=CurChain+1;             
Goto Step 2;

    ELSE { There are unclassified vectors in the current chain}
     Goto Step 2;

Figure 5.1 A Sequential Hansel Chains Question-Asking Approach.
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The following example is a step-by-step demonstration of how the sequential Hansel chains approach can

be used to determine all positive and negative examples in space E3 and eventually form the underlying hidden

monotone boolean function.

First,  the Hansel chains for  space E3 are generated by using algorithm 1, as are listed in Table 4.1. In step

1, the previous Hansel chains are sorted in descending order of their size.  Table 5.1 lists the sorted Hansel chains.

The current chain pointer CurChain=1, indicates that the algorithm will begin to process from the first chain in that

sequence.

Table 5.1 Sorted Hansel Chains.

Chain

Number 

Vector In-

Chain Index

Vector

1 1 100
2 101

2 1 010
2 110

3 1 000
2 001
3 011
4 111

After the Hansel chains are generated and sorted, steps  (2),  (3), (4) and (5) will be repeated  until all

vectors in space E3 are classified. 

Iteration 1: 

Step 2: As CurChain=1 and no vector has been classified, the vector <100> is selected for testing.

Step 3: Suppose the result of the test indicates  that the class  membership value of vector <100> is 0 (i.e., false).

Step 4: Based on the monotone property of the hidden boolean function, the class membership of vector <100>

indicates  that vector <000> also has a class membership value of 0. Therefore,  the vector <000> and

vector <100> can be classified as negative.
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Step 5: As there is an unclassified vector in chain 1, it is necessary to start another iteration and go back to step

2. 

The specifics of iteration 1 are given  in Table 5.2, in which the symbol “<--” indicates  the vector selected in this

iteration. 

 Table 5.2 Vectors Classified in  Iteration 1. 

Chain

Number 

Index of

Vectors

In the

Chain 

Vector Vector

membership

Selected

Vector in

the

Iteration

Answer Other

Vectors

Determined

1 1 100 <-- 0
2 101

2 1 010
2 110 

3 1 000 0
2 001
3 011
4 111

Iteration 2: 

Step 2: As CurChain=1 and  vector  <101> has not been classified, it is selected for testing.

Step 3: Suppose the result of the test indicates that the membership value of vector <101> is 1. 

Step 4: Based on the monotone property of the vectors, the class membership of vector <100>  determines that

vector <111> will also have  a membership value of 1. Therefore vectors 

<101> and  <111> can be classified as positive.

Step 5: There is  no unclassified vector in chain 1. However, as  CurChain=1<3, which indicates that not all the

vectors have been classified,  it is necessary  to let  CurChain=1+1=2 so that   the next  iteration will begin

with the vectors in Hansel chain 2. The result after iteration 2 is listed in Table 5.3.
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Table 5.3 Vectors Classified in Iteration 2.

Chain

Number 

Index of

Vectors

In the

Chain 

Vector Vector

membership

Selected

Vector

in the

Iteration

Answer Other Vectors

Determined

1 1 100 0    
2 101 <-- 1

2 1 010
2 110 

3 1 000 0  
2 001
3 011
4 111 1

Iteration  3:

Step 2: As CurChain=2  and the first  vector  <010> in chain 2 has not been classified, it is selected  for testing.

Step 3: Suppose the result of the test determines  that the membership value of vector <010> is 1. 

Step 4: Based on the monotone property of the vectors, the class membership of vector <010> will determine

that vectors: 

<110> and  < 011> 

will also have a membership value of 1 ( another vector,  vector <111>, has already  been classified by vector

<101> in iteration 2). Therefore, the 3  vectors: 

<010>, <110> and  <011>

can be classified as positive.

Step 5: There is  no unclassified vector left  in chain 2. However, as  CurChain=2<3, which indicates that not

all  vectors have been classified,  it is necessary  to increase  CurChain to 3  so that   the next  iteration

will start form Hansel chain 3. 

The details of  iteration 3 are listed in Table 5.4.
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Table 5.4 Vectors Classified in Iteration 3.

Chain

Number 

Index of

Vectors

In the

Chain 

Vector Vector

membership

Selected

Vector in

the

Iteration

Answer Other Vectors

Determined

1 1 100 0
2 101 1

2 1 010 <-- 1
2 110 1

3 1 000 0
2 001
3 011 1
4 111 1

Iteration 4:

Step 2: As CurChain=3 and the first ( and the only) vector has not been classified is <001>.  Thus, it  is chosen

for testing.

Step 3: Suppose the result of the test determines  that the membership value of vector <001> is 1. 

Step 4: As vector <010> is the only vector left unclassified, it is classified in this iteration.

Step 5: There is no unclassified vector in chain 3 and  CurChain=3. Therefore, all  vectors in E3 have been

classified. 

The number of questions needed to determine the class membership  of all examples is 4, the same as the number

of iterations. The class membership of all examples are listed in Table 5.6.

Table 5.5 Vectors Classified in Iteration 4.

Chain

Number 

Index of

Vectors

In the

Chain 

Vector Vector

membership

Selected

Vector

in the

Iteration

Answer Other Vectors

Determined

1 1 100 0
2 101 1

2 1 010 1
2 110 1  

3 1 000 0
2 001 <-- 1
3 011 1
4 111 1
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Table 5.6 The Class Membership of All Vectors in the Hansel Chains.  

Chain

Number 

Vector In-Chain

Index

Vector Function

Value
1 1 100 0

2 101 1
2 1 010 1

2 110 1
3 1 000 0

2 001 1
3 011 1
4 111 1

The hidden function is derived from tables 5.2  to 5.5  as follows. We look at each one of  the  vectors which have

been classified as positive by the oracle. Note that there are three such vectors, namely vectors <101>, <010>,

and <001>. Then, the attributes with value "1" in these vectors indicate the attributes present in the terms when

the DNF format is used. Each such vector corresponds to one DNF term. Thus, from the  above vectors we get

the following inferred monotone boolean function: 

f(x) =(x1 X  x3 ) Y  (x2) Y  (x3).

6. The Proposed Binary Search/Hansel Chains Strategy

The major advantage of the sequential Hansel chains approach is its conceptual simplicity. However,

when the sequential Hansel chains approach is applied,  the unclassified vectors in the Hansel chains are tested

one by one. In this situation, the vectors are selected blindly and it is possible that some less effective vectors

(as explained next) will be submitted for testing first. 

One may notice that before a vector is selected for membership inquiry, a “reward” value  of  the vector

selection can be some how evaluated.  That is, one  can know at least how many other vectors can be classified as

positive or negative if this vector is classified as positive or negative, respectively.  By comparing  these “reward”

values of  all unclassified vectors, one can select a vector which, when asked, can give   the maximum  “reward”

value. However, the computation will be very heavy if  the “reward” value for each vector has to be calculated.

An alternative approach  is to  calculate and  compare the “reward” values of only the  middle vector of the

unclassified vectors in  each Hansel chain  H n, i (for i=1,...k, where k is the number of Hansel chains in space En)

and select the middle vector that appears to be the  most promising. 
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We call this  new method the  Binary Search/Hansel Chains Strategy. This method derives the main  idea

from the widely used  binary search algorithm ( see, for instance, [Neapolitan and Naimipour, 1995]). In summary,

this binary search/ Hansel chains strategy consists of  the following steps:

Step 1: Select the middle vector of the unclassified vectors  in each Hansel chain.

Step 2: Evaluate  the "reward" value of  each middle vector, i.e. the number of vectors that can be classified as

positive ( denoted as P) if  the middle vector is positive and the number of vectors that can be classified

as  negative( denoted as N) if  the middle vector is negative.

Step 3: Compare the (P, N) pair of all middle vectors, and then select the most promising middle vector.  Next

ask the membership value of that vector.

Step 4: Based on the previous answer, classify other vectors that can be determined  as result of the previous

answer and the monotonicity property.

Step 5: Redefine the middle vectors of each Hansel chains as necessary.

Step 6: Go back to step 2, unless all the vectors have been classified in which case exit.

The detailed description of this algorithm is shown in Figure 6.1.
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Algorithm 3: Binary Search/ Hansel Chains Question-Asking  Approach 

Input:     Dimension n;

Output:  Number of questions asked to determine the class of all the vectors  in space En.

Step 0:   {Initialization phase.}
     Use Algorithm 1 to form all Hansel chains in space En,, the number of chains is K.

Let the j-th chain, denoted as Cj (for j = 1, 2, 3, ..., K), be comprised by the sequence  of vectors:
 V j 1, ..., V j 2 , ..., V j m,  for j = 1, 2, 3,..., K;

Initialize  the upper and lower borders, U j and L j, respectively, in each  chain as  follows: 
              U j =V j 1;   and   L j  =V j m ,      where m  is the total number of vectors in Hansel chain C j.
Step 1:  {Some vectors are still unclassified.}

     For (each chain C j ,  j = 1, 2,  3, ..., K) Do
IF(Hansel chain C j has some unclassified vectors) THEN

                      Get Mj  (j = Z (U j-L j )/2[ ),  the “middle ” vector of the sequence  of  unclassified vectors  
                                                              in chain C j;

        Calculate:
                               POS(M j ) = Number of unclassified vectors which would be classified as                
                                               positive if M j were a positive  example;    

NEG(M j ) = Number of unclassified vectors which would be  classified to                
     negative if M j were a negative  example;    

Step 2:  {Inquire  the value of the most “promising ” unclassified example.}
    Select  the most “promising” vector M j according to a criterion;
    M y  = M j  ;
    Inquire the value of M y ;
    Set  NumQuestion = NumQuestion + 1;

Step 3:   {Use  monotonicity  property to mark other unclassified vectors and update the  lower and     
upper boundary of unclassified vectors in each chain.}
    For (each chain C j,  j = 1, 2, 3, ..., K) 

Mark  the class membership of vectors in C j  that can be determined;
IF (M y is positive) THEN

Update U j to exclude classified vectors;
ELSE {M y  is negative} 

Update L j to exclude classified vectors;
Step 4:   {Check for completion condition.}

     IF (no Hansel chain remains with unclassified vectors) THEN
     Output the class membership of all  vectors and the number of question needed;

      ELSE Go to Step 1;

Figure 6.1 The Binary Search/ Hansel Chains Question-Asking Approach.
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7.       An Illustrative Example

To  illustrate this binary search/ Hansel chains question-asking strategy,  an example is given for space

E3, in which  there is a total of 8 vectors.  The Hansel chains are constructed as shown in Table 4.1. The

underlying monotone boolean function is the same as the one is used in section 5. At each iteration, a vector is

selected as a  question posed by the binary search/Hansel chains strategy.

At the beginning of  iteration 1,  the middle vector of  each Hansel chain (as described in step 1,  above)

is selected and marked   with the ‘<-- ’ symbol in the table.  Then, according to step (2), the "reward" value for

each one of these middle vectors is calculated. For instance,  if  the second  vector in chain  1  has a function

value of 1, then there will be three other vectors (i.e.,  the vectors  <000>, <001> and <010>) which can also be

classified as positive since the  inferred boolean function is assumed to be  monotone. Therefore,  the total

number of vectors that can be calculated to have a function value of 1 is P= 4,  which  is put  under the  entry

" ‘reward’ value P if the middle vector is positive" of vector <001>.  Similarly,  if it is calculated that the

function value is 0,  the "reward" value for the vector <001> will be N= 2 and hence this  value is put in the  entry

" ‘reward’ value N  if the middle vector is negative."

Once the "reward" values of all  middle vectors have been evaluated, the  most promising middle vector

will be selected and  its function value will be asked. Several  selection criteria can be used to compare the (P,

N) pairs of each middle vector and select the most promising vector. The one that is  used  here is to compare

the smaller one of the (P, N) values ( i.e.,  to determine min(P, N) ) of each vector and select the vector whose

min(P, N) is  the largest among all  middle vectors. If the number of such vectors is  more than one, then the tie

will be broken  randomly. Based on this criterion,  vector 2 is chosen  in chain 1 and marked  with the "<-- "

symbol  in its corresponding entry  under the column "Selected middle vector with the largest Min(P,N)." 

After getting the function value for vector <001>, which is assumed to be 1 in this case,   this value is

put  in the entry "answer."  Then  this answer will be used  to classify  the vectors whose class membership can

be determined by this answer and the monotonicity property. The middle vector of each Hansel chain will be

updated as needed.  The details of  this iteration are shown in Table 7.1. Since there are still undetermined
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vectors,   at least one more iteration is required.

Table 7.1 Details for Iteration 1. 

Chain

No. 

Index of

Vectors In

the Chain 

Vector Vector

membership

Middle

Vector in the

Chain

Reward

P if the

Vector is

Positive 

Reward N

if  the

Vector is

Negative

Selected

Middle Vector

with the

Largest

Min(P,N)

Answer Other Vectors

Determined

1 1 000
2 001 <-- 4 2 <-- 1
3 011 1
4 111 1

2 1 100 <-- 4 2
2 101 1

3 1 010 <-- 4 2
2 110

At iteration 2, the vector <100> is chosen in a similar manner and, based on the answer, the class

membership of the vectors <100> and <000> is determined. This iteration is shown in detail in Table 7.2.

Table 7.2  Details for Iteration 2. 

Chain

No. 

Vector in

the Chain 

Vector Vector  

membership

Middle

Vector in the

Chain

 Reward

P if the

Vector is

Positive 

Reward 

N if  the

Vector is

Negative

Selected

Middle Vector

with the Largest

Min(P,N)

Answer Other

Vectors

Determined

1 1 000 <-- 4 1 0
2 001 1
3 011 1
4 111 1

2 1 100 <-- 2 2 <-- 0
2 101 1

3 1 010 <-- 2 2
2 110

At iteration  3 (Table 7.3), as  there is no unclassified vector left  in Hansel chain 1 and Hansel chain 2,
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the middle  vectors of these  two chains do not need to be considered anymore.  Therefore an  "X" is marked for

each of  the two chains in the column "middle vector in the chain." At iteration 3 the vector <010> is chosen and

the remaining two vectors, <010> and <110> are determined. At this point, the class membership of all  vectors

has been determined and thus the question-asking process stops.

In similar manner as with the function inferred at the end of section 5, the new function is from tables

6.1, 6.2, and 6.3: 

f(x)=(x2) \  (x3).

It is easy to confirm that these two functions are equivalent, although the second one is much simpler.

Table 7.3  Details for Iteration 3.

Chain

No. 

Vector in

the Chain 

Vector Vector

membership

Middle

Vector in the

Chain

 Reward

P  if the

Vector is

Positive 

Reward N

if  the

Vector is

Negative

Selected

Middle Vector

with the Largest

Min(P,N)

Answer Other

Vectors

Determined

1 1 000 0
2 001 1 X
3 011 1
4 111 1

2 1 100 0 X
2 101 1

3 1 010 <-- 2 1 <-- 1
2 110 1

By using the binary search/ Hansel chains question-asking strategy, the number of questions is able to

be reduced to 3 from the previous 4 needed by  the sequential Hansel chains approach. Although the difference

between 3 and 4 queries is not significant, in some test problems reported in [Lu and Triantaphyllou, 1997]

indicate that the new  strategy requires on the average 50% queries less than the existing sequential Hansel chains

approach. The illustrative examples in this paper simply demonstrate  the implementation of  the proposed binary

search/Hansel chains strategy.
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The basic idea behind the binary search strategy is to select the most "promising" vector among all

unclassified vectors in each iteration  and submit it for testing.  The selection of the  most  "promising " vector

is based on the intuitive notion that, once the selected vector is tested and classified, there will be  more vectors

that can be determined based on the testing results.  In the above example, when the binary search/ Hansel chains

approach is used, the vectors submitted for testing are:

{ <001>, <100>, <010>}.

In the example of section 4, when the sequential Hansel chains approach is used,  the vectors submitted were:

{ <100>, <101>, <001>, <010>},

in which vector <101> is not as effective as the other vectors.

8. Conclusions

This paper  discussed  the knowledge acquisition problem  in monotone boolean systems.  One of the main

issues  related to  knowledge acquisition in such monotone boolean systems is how to reduce the number of

inquiries needed to classify all vectors in the problem space.

As  it has been discussed above, by  using  Hansel chains in the sequential question-asking strategy

[Kovalerchuk, et al., 1997], the number of possible questions  will not exceed an upper bound as stated in the

Hansel theorem.  However, the performance of  sequential question-asking strategy depends on the sequence of

the Hansel chains and it may change dramatically when it is applied to different problems.  Therefore, a new guided

vector selection approach;  the binary search/Hansel chains approach is proposed to address this problem.  When

this new method is applied, the average  number of inquiries can be further reduced and the performance of the

method is relatively consistent  compared to that of the sequential question-asking strategy. We are currently

working in this area and more recent updates can be found in our web home page with URL:

http://www.imse.lsu.edu/vangelis. 
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