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1 Introduction

1.1 What is a Genetic Algorithm

Genetic algorithms are stochastic search algorithms which act on a population
of possible solutions. They are loosely based on the mechanics of population
genetics and selection. The potential solutions are encoded as ‘genes’ — strings
of characters from some alphabet. New solutions can be produced by ‘mutating’
members of the current population, and by ‘mating’ two solutions together to
form a new solution. The better solutions are selected to breed and mutate
and the worse ones are discarded. They are probabilistic search methods; this
means that the states which they explore are not determined solely by the
properties of the problems. A random process helps to guide the search. Genetic
algorithms are used in artificial intelligence where other search algorithms are
used in artificial intelligence, to search a space of potential solutions to find a
solution which solves the problem.

1.2 Genetic Algorithms in Machine Learning

In machine learning we are trying to create solutions to some problem by using
data or examples. There are essentially two ways to do this. Either the solution
is constructed from the data, or some search method is used to search over a
class of candidate solutions to find an effective one. Decision tree induction by
ID3 and nearest-neighbour classification are examples of creation of a solution
by construction. Use of a gradient-descent algorithm to search over a space
of neural network weights to find those which affect a particular input-output
mapping is an example of the use of search. Genetic algorithms are stochastic
search algorithms which are often used in machine learning applications.

This distinction might not be strict; ID3 might include a search over different
prunings, for example. Nonetheless, algorithms like ID3 are fast and computa-
tionally simple. In addition, there is usually an explicit simplifying assumption
about the nature of the solutions. For example, in ID3 the bias is towards
independent attributes; in nearest neighbour methods it is towards similarity
of outputs being reflected in input similarity. Using search, however, a wide
range of complex potential solutions can be tested against the examples, and



thus, much more difficult problems can be tackled. The cost, of course, is in in-
creased computational cost. In addition, any inductive bias is embedded in the
algorithm and is thereby more difficult to control, although introducing explicit
controls or regularizers is becoming increasingly important. In many respects,
genetic algorithms are on the dumb and uncontrolled end of machine learning
methods. They rely least on information and assumptions, and most on blind
search to find solutions. However, they have been seen to be very effective in a
range of problems.

Genetic algorithms are important in machine learning for three reasons.
First, they act on discrete spaces, where gradient-based methods cannot be
used. They can be used to search rule sets, neural network architectures, cellu-
lar automata computers, and so forth. In this respect, they can be used where
stochastic hill-climbing and simulated annealing might also be considered. Sec-
ond, they are essentially reinforcement learning algorithms. The performance
of a learning system is determined by a single number, the fitness. This is un-
like something like back-propagation, which gives different signals to different
parts of a neural network based on its contribution to the error. Thus, they
are widely used in situations where the only information is a measurement of
performance. In that regard, its competitors are Q-learning, TD-learning and
so forth. Finally, genetic algorithms involve a population and sometimes what
one desires is not a single entity but a group. Learning in multi-agent systems
is a prime example.

In artificial intelligence, search is used in reasoning as well as learning, and
genetic algorithms are used in this context as well. To make the distinction
clear, consider a chess-playing program. Machine learning could be used to
acquire the competence of chess-playing. (Most chess-playing programs are not
created that way; they are programmed.) However, when the program plays the
game it also uses search to find a good move. Other examples include searching
over a set of rules to evaluate a predicate. Genetic algorithms have been used
for problems which have been in the domain of artificial intelligence, such as
finding an effective timetable or schedule within a set of constraints.

1.3 History of Evolutionary Computing

Genetic algorithms are one of a class of approaches often called evolutionary
computation methods used in adaptive aspects of computation — search, opti-
misation, machine learning, parameter adjustment, etc. These approaches are
distinguished by the fact that they act on a population of potential solutions.
Whereby most search algorithms take a single candidate solution and make
small changes to that, attempting to improve it, evolutionary algorithms adapt
an entire population of candidate solutions to the problem. These algorithms are
based on biological populations and include selection operators which increase
the number of better solutions in the population and decrease the number of
the poorer ones; and other operators which generate new solutions. The algo-
rithms differ in the standard representation of the problems and in the form and
relative importance of the operations which introduce new solutions.



Genetic algorithms were first proposed by John Holland in his book “Adapta-
tion in Natural and Artificial Systems” [14]. Holland guessed that an important
feature which distinguished natural adaptive systems like the biological systems
from artificial ones like perceptrons (this was the early 70’s remember) was that
in biological systems there is only an effective solution when all of the necessary
elements are in place, a property which he deemed “epistatis”. (In biology, genes
encode proteins which catalyse reactions, and typically all of the reactants must
be present. Epistatis is a biological term to describe the situation where many
genes contributed to a single trait.) Holland tried to create an artificial proce-
dure which simulated this, one component of which was what is now called a
genetic algorithm with crossover. He emphasised crossover, because he believed
that this was the ideal way to search over systems containing epistatis. During
a similar period, L. Fogel and his collaborators [9] used selection and muta-
tion to search over finite-state automata as solutions to a range of problems.
These studies are described in the book, “Artificial Intelligence through Simu-
lated Evolution”. Around the same time, Richenberg [26] developed a method
called Evolutionary Strategies in which solutions to a problem were represented
as real numbers; these were selected and mutated with Gaussian noise. He
applied this technique to engineering problems including the design of airfoils.
More recently, John Koza [17, 18] developed Genetic Programming, in which
genetic algorithms are used to search parse trees of LISP expressions, essentially
computer programs.

These are the four so-called evolutionary programming paradigms. Genetic
algorithms and their extension to genetic programming are probably the most
widely used and most important in machine learning. However, there are still
proponents of evolutionary strategies, notably Schwefel, Back, Hoffmeister and
others who have achieved interesting results.

2 The Basics of Genetic Algorithms

2.1 Elements of a Simple Genetic Algorithm

Representation In order to use a genetic algorithm to search for solutions
to a problem, potential solutions to the problem must be encoded as strings
of characters drawn from some alphabet, A = ajas...ar,. Often the characters
are binary, but it is also possible to draw them from larger alphabets, and real
numbers are sometimes used.

In describing genetic algorithms, one often uses jargon taken from the pop-
ulation dynamics. The strings, A are called chromosomes. The components of
the string, ai,as,... are called genes. The values which each gene can take are
called the alleles. In the most common case of binary strings, the two possible
alleles are 0 and 1. So, for example, the chromosome A = 11110000 the first
four genes take the allele 1 and the last four take the allele 0.



Fitness Function Tt is the task of the genetic algorithm to find very good
strings. The goodness of a string is represented in the GA by some function
of the strings, which I will call the objective function, the quantity to be opti-
mised. Another function which is needed is called the fitness function. This is
a monotonic function of the objective function, and is what determines how the
strings will be multiplied or discarded during the algorithm. It is usual to define
the fitness function so that the algorithm increases the fitness of the strings, so
better solutions correspond to more fit strings.

The genotype is the string representation. The phenotype is what the geno-
type produces. Often in genetic algorithms, the two are not terribly different, al-
though there is a great difference between a biological organism (the phenotype)
and its DNA (the genotype). The objective function is a kind of phenotype. The
objective function and the fitness function are often used interchangeably in the
GA community, but it is useful to separate them. In the biological terminology,
the fitness is the increase due to selection. Thus, the fitness has to do with the
particular form of selection, whereas the objective function is a property of the
problem to be solved.

Population Dynamics A genetic algorithm works on a population of strings.
It starts with a random population and evolves the population to one containing
(hopefully) good strings. At the heart of the algorithm are operations which
take the population at the present generation, and produce the population at
the next timestep in such a way that the overall fitness of the population is
increased. These operations are repeated until some stopping criterion is met,
such as a given number of strings been processed, a string of given quality
has been produced, etc. There are numerous ways of actually implementing a
genetic algorithm.

The simple genetic algorithm we will consider works with a population size,
N, which is held constant. Three operations take the population at generation
t and produce the new population at generation ¢ + 1: selection, crossover, and
mutation. These are described below.

Selection: This operator selects strings from the current population such that
better strings are more likely to be chosen. Selection does not introduce
any new strings; if applied repeatedly it simply re-proportions the strings
in the population, increasing the number of fitter ones and decreasing the
number of less fit ones.

Recombination/Crossover: This operation produces two (or some other
number) of offspring from a pair of parents by combining parts of each
parent. Each offspring contains parts of the strings of each parent.

Mutation: This operation simply changes characters in the offspring string
at random. Each character is changed with a small probability.



2.2 A Simple Genetic Algorithm

There are a number of different variations. Here I show the simplest form.

Dynamics
A simple realization is the following,

current_population=N random strings.
repeat
repeat
Select 2 strings from current population using selection operator.
Produce 2 offspring using recombination.
Mutate those 2 offspring.
Add the 2 offspring to new_population.
until size_of (new_population) = N.
current_population = new_population.
until (stopping criterion met)

Such an approach is called “generational” because it is divided into distinct
generations during which the entire population changes. In addition, offspring
do not compete with parents. Alternatives are to change just a few of the strings
in each time step, or to generate a large “mating pool” using recombination,
and including parents, and select N from that to get the next generation.

Fitness Proportional Selection

The simplest implementation of selection is to select in proportion to the fitness.
That is, the probability of selecting a string « is
Fa
(6%
== 1

P=5 Fe (1)
where F'® is the fitness of the string a. Often, this is taken to be the objective
function E? itself. This works if E is positive and is to be maximised. Another
approach is called Boltzmann selection, where

F(E®) = exp(sE®). (2)

This has a selection strength parameter s.

Fitness proportional selection is also called “roulette wheel selection”. This
is in analogy with a biased roulette wheel, associated with each string is a wedge
of the wheel, whose size is proportional to the fitness of the string. Selection is
equivalent to a spin of the wheel.

There are are two problems with roulette wheel selection. First, the random-
ness does not introduce new individuals; it only removes individuals from the
population. Although it is most likely that unfit members of the population are
removed, it is also possible that fit members are removed by chance. It is often



better to remove this randomness and put the strings into the next population
deterministically in proportion to their fitness.

The second problem is that as the search evolves, the spread of fitnesses
decreases. There is less diversity in the population. This means that selection
has less effect later in the search. To counteract this, the fitness is often rescaled
to keep the spread constant. For example, one can rescale the selection strength
by dividing by the standard deviation of the fitness within the population at
each generation [28].

Mutation The mutation operation changes the value of each gene with a mu-
tation probability p,,. I.e. each character is changed to some other character
with probability p,,, and left unchanged with probability 1 — p,,. The mutation
probability is taken to be small, e.g. 1/L, for strings of length L. This probabil-
ity is small so that mutation can explore small changes in the solutions without
disrupting good solutions too much.

Crossover Crossover works on pairs of strings. For each pair crossover occurs
with probability p, and with probability 1 — p. the offspring are identical to the
parents. Typical value is p, =~ 0.6.

A commonly used form is called single-point crossover. In this operation,
a crossing site is chosen at random somewhere along the length of the strings.
Two new strings are generated by swapping all of the components of the two
strings on one side of the crossing site. For example, if the two strings are

Ay =1111111J1111111

A, = 0000000/0000000

and the crossover position is between the 7th and 8th position (as marked), the
new strings would be
A =0000000|1111111

A} =1111111]0000000

This operation effectively means that each offspring possesses features from both
parents.
Likewise, multi-point crossover uses multiple crossover points. Le.

Ay =111J111111J11111

A, = 000]000000]00000

would yield
A} =000]|111111]00000

A} =111]000000|11111.

A most extreme form of crossover is uniform crossover, where each site is in-
dependently chosen from parent 1 or parent 2. This is a very effective search



operator if the genes don’t interact in producing the fitness, but is very disrup-
tive when they do.

Other forms of crossover have been invented for use in specific problems or
domains.

Expected behaviour

To see how the genetic algorithm can be useful, consider the effect of mutation
and crossover. Mutation is clearly local random search, it takes a solution and
generates a small, unguided change. Crossover is more complicated. It takes a
pair of parents and produces two offspring between the parents (think of what
it does to binary numbers). The two offspring can be near the two parents, or
they can be far from them, in this sense it is said to be a global rather than
local search algorithm.

One view of what crossover is meant to do is to combine partial solutions
to form more complete solutions. To use a ridiculous example, if you are trying
to produce a duck and one parent has developed wings, while the other has de-
veloped webbed feet, the crossover operation should combine these so that one
offspring has both webbed feet and wings and the other offspring has neither.
Goldberg [10] writes about the the principle of meaningful building blocks — the
problem should be encoded in such a way that substrings or partial solutions
with intermediate fitness can combine under crossover to produce fitter, more
complete solutions. Whether this will actually occur depends upon the likeli-
hood of both building blocks being in the population simultaneously, and the
likelihood of combining them in that way. Others have argued that crossover is
useful because it allows large moves.

One expects the mean fitness in the population to increase until some form
of equilibrium is reached. Equilibrium is were there is a balance between the
improving effect of selection and the (generally) deleterious effects of mutation
and crossover. Selection tends to make the population better on average, but
decreases the variation. The other operators tend to decrease the quality of the
population on average, but restore diversity. Figure 1 shows histograms of the
fitness distribution in a population during a GA evolution.

One thing that often happens is that a state is reached where there is very
little diversity in the population. When this happens, improvement is very
slow because crossover has little effect on very similar strings. This is called
“premature convergence” and is one of the most important causes of failure of
genetic algorithms. A population of very similar strings in the vicinity of a local
minimum is very stable. Crossover has very little effect on populations of very
similar strings and the time to leave a local minimum via selection and mutation
alone can be very long. Exploration is inhibited by competition with strings in
the vicinity of the minimum [29].

Figures 1 and 2 show examples of the increase in mean fitness in a population
for a short and longer run. The improvements come in levels, or epoch. Had
premature convergence occurred, the population would have remained stuck in
the first level for a long time.
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Figure 1: The distribution of fitnesses in a population for different generations
of a genetic algorithm. The x axis is the fitness value; the y axis is the fraction
of the population with that value. Computed from histograms which have been
averaged over many runs of the genetic algorithm. The decrease in variance as
the algorithm runs is apparent. It is also the case that more of the variance is
on the low fitness side; the distribution has positive skewness.
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Figure 2: Evolution of the mean fitness and the 10 and 90 percentile on a simple
problem. An apparent stable population has been reached.
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Figure 3: The same as the previous figure for a longer run. Punctuated equilib-
rium is apparent. Had premature convergence occurred, the population would
have been like in the previous figure.

Example — Colouring a Map or Graph

Here is a simple example problem showing how a genetic algorithm is applied
to a simple optimisation problem. Suppose you have a map that you want to
colour with three colours. By this I mean that you want to assign one of three
colours to each country such that adjacent countries are coloured with a different
colour. A related problem is graph colouring - you assign colours to vertices of
a graph so that adjacent vertices have a different colour. Say the colours are
red, green, and blue.

In order to devise a genetic algorithm to solve a problem, there are basically
three things you must do:

1. Encode possible solutions to the problem as strings

2. Devise a fitness function which determines how good a solution is. Gener-
ally, this should be positive and increasing with the quality of the solution.

3. Decide on the forms of the genetic search operators to be used, selection,
mutation and crossover.

Encoding: Let each gene of the string represent one of the countries. Each
gene can take three values: red, green, or blue. For example, one possible
string might be

A = rbrgrbgg.

This would be a map in which the first country is coloured red, the second
is blue, the third is red, and so forth.

Objective function: The obvious cost function is the number of times that



two neighbouring countries have the same colour. This could be written,

E = Z Wijd(aiaj)
ij
where W;; = 1 if country ¢ neighbours country j and 0 otherwise; and
d(a;a;) = 11if a; = a; and 0 otherwise.

Fitness Function: However, this does not work as a genetic algorithm fitness
function, because we would want to minimise this, while genetic algorithm
maximises the fitness function. We also could not use —FE since the fitness
function should be positive. So, add to —FE the smallest value which
insures that the fitness is always positive. What works as the fitness
function is,

F = N(N - 1) - ZWijaiaj.
ij

Another possibility is to use
F= exp (_/BE) )

where f3 is a selection strength parameter. This works because exp (anything)
is always positive. This is called “Boltzmann selection”. It has the advan-
tage that it has a parameter, 8 which controls the strength of selection.

Genetic Operators: The usual selection, single-point crossover, and muta-
tion could be used.

2-color 8x8 map, N=20, m=0.01, ¢=0.6, maximum fitness = 112

Best Fitness

200 300 500 800 7000 T200
Generation

Figure 4: Evolution of the best member of the population for a GA attempting
to 2-colour a map. Premature convergence has occurred; the final population
contains strings which differ by only a few mutations, are within a few mutations
of a local optimum, and are many mutations away from the global optimum.
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2.3 Extensions to the Basic Genetic Algorithm

There are many different ways of implementing a genetic algorithm, and re-
searchers rarely use the simple form described above. Below some extensions
are outlined.

2.3.1 Alternative Selection Schemes

Most alternative selection schemes are designed to avoid premature convergence.
Here is a list:

Elitism: The best members of the population are put into the next generation
at each timestep. The best individuals cannot be lost due to random
sampling, and selection strength used to pick the other members of the
population can be weaker to maintain diversity.

Tournament Selection: Two members of the population are chosen at ran-
dom. The least fit is removed and replaced by a copy of the most fit.

Steady-state selection: Rather than changing all members of the population
at each stage, only a few members of the population are changed at each
timestep.

Fitness Sharing: In order to maintain diversity in the population, the fitness
of an individual is shared among all other individuals which have similar
genotypes. So a string which is very different from others in the population
has its fitness enhanced, while strings which are very similar to many
others have their fitness decreased.

A related method is called “implicit fitness sharing”. This can only be
applied in applications where the task is to perform well on a set of ex-
amples, such as in classification tasks. Fitness sharing is implemented by
having the fitness shared among all of the solutions which perform classify
a given example correctly, summed over all examples. Two strings which
perform well on a overlapping set of examples would have their fitness re-
duced, while a string which performs well on examples not correctly dealt
with by other strings would have a high fitness.

For a comparison of fitness sharing to implicit fitness sharing, see [7].

Niching and Island Models: This is similar to the previous; it is a method
of maintaining diversity in a population and preventing premature con-
vergence. Here a population is divided into several subpopulations, each
evolving independently for periods of time. If the subpopulations converge,
it is likely to be to different optima. Occasionally, some members of the
subpopulations are exchanged. This injects diversity into the subpopula-
tions. A useful feature of this approach is that it can be implemented on
parallel computers. Different subpopulations evolve on different proces-
sors, and there is only occasional need for inter-processor communication.
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2.3.2 Alternative Crossover Operators

Cutting the solutions up into chunks and recombining them may not be the
best way of creating offspring. The method of recombination should reflect the
structure of the problem. This has been discussed in a formal sense by [25]. A
well-studied example is that of the Travelling Salesman Problem. In this case,
a potential solution is a permutation, e.g. a potential solution might be 364521
which means visit city 3 first, 6 second, etc. Single point crossover between
two such lists will fail to produce even a valid tour, much less a good one. To
see more about special operators for the travelling salesman problem, see for
example, [8].

2.3.3 Using the entire population

In most uses of genetic algorithms, the “answer” is the best member of the
population; the other members of the population are used to help in the search
but are discarded at the end. However, there are some exceptions.

In the early work on genetic algorithms in machine learning, Holland de-
veloped the Learning Classifier System [15]. In this, each string of the genetic
algorithm was one “classifier”, an if-then rule. The population was the system
of classifiers. This approach is called the “Michigan” approach. The alternative
approach, where each member of the population is a complete solution to the
problem, as in DeJong et. al.’s GABIL system, is deemed the “Pittsburgh”
approach.

Another approach in which the entire population is used rather as a solution
is that proposed by Yao and Liu [34]. Here a genetic algorithm is used to train
a neural network. It has been known in the neural network community for
some time that if there exist a number of classifiers to solve the same problem,
a classifier consisting of a committee of all of the classifiers can give better
expected generalisation than any one of the classifiers taken alone (see, for
example, subsection 9.6 of [6]). Yao and Liu propose using the final population
of neural networks as the committee, and propose four different methods for
combining the output of the neural networks. They use implicit fitness sharing,
so that different learners are encouraged to learn different examples.

3 Examples of Genetic Algorithms in Machine
Learning

3.1 Learning Rule sets

A simple example of the use of a genetic algorithm to induce a set of rules
was described by DeJong et. al. and is called GABIL. The genetic algorithm
learns a boolean concept by searching for a disjunctive set of propositional rules.
To represent a rule, a string contains a bit for each value that each variable
can take, and a bit for the concept value. For example, if v; can take the
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values V11, Via, Vi3, and v takes the values V51, Vo2, and these are the only two
variables, then the string

110 01 1

is used to denote the rule
IF (vy = Vi2) V (v1 = Vi3) A (v2 = Vo1) THEN ¢ =T, (3)

where c is the concept. So if the substring associated with a particular variable
is all 1’s, that variable can take any value.

A set of rules is a long string of rules concatenated together. In order to
allow for a variable number of rules, a modified form of crossover is used. Two
crossover points are selected at random in the first parent. The crossover points
in the second parent can be in any rule, but must be in the analogous place in
the rule as in the rule of the first parent. For example, if parent one consists of
three rules as represented by the following string and the crossover points are
as shown,

v_l v_2 c v_liv_2c v_l v_2 c
0011 11 1 111 01 0 110 10 1

then possible crossover points in the second parent must be between the first
and second attribute bit in a substring associated with v; in any rule, and the
first and second attribute bit in a substring associated with vs in any rule. For
example,

v_l v_2c v_i1v_2c
1011 111 1 001 01 O

would yield as offspring,

v_l v_2 c v_lv_2 c
001 11 O 110 10 1

and

v_l v_2 c v_lv_2 c v_l v_2 c
101 11 1 111 01 1 001 010

This allows varying lengths of rule sets to be explored, while preserving the
structure of the rules.

It is worth noting that bits with more 1’s are more general rules, and bits
with more 0’s are more specific. Thus, a mutation operator which is biased
towards adding more 1’s than 0’s will generate more general rule sets. DeJong
et. al. exploited this fact by experimenting with operators which changed a 0
to a 1 in a variable substring. An additional operator changed all of the bits
to 1’s in a substring associated with a variable in a rule (thereby exploring the
possibility that that variable is irrelevant). The objective function was taken to
be the square of the number of examples correctly classified by the rule set. In
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experiments comparing GABIL to over rule induction algorithms such as AQ14
and ID5R and C4.5, comparable results were achieved. Significant improve-
ments were found by introducing the biased mutation operators mentioned in
the previous paragraph.

Another example of use of genetic algorithms to evolve rule sets is Holland’s
Learning Classifier System [15].

3.2 Evolving Computer Programs
3.2.1 Genetic Programming

Genetic programming [17, 18] is a form of evolutionary computation in which
computer programs are evolved using a genetic algorithm. John Koza is credited
with its invention. The representation of the program is in terms of trees rather
than strings. Fach tree represents the parse tree of a LISP expression. The
leaves (or end nodes) of the tree represents terminals — objects which take no
input. The other nodes represent functions which take a number of arguments,
where each argument is either a terminal or another function. In order to apply
this to any problem, the appropriate functions and terminals must be chosen.
So, for example, in order to represent the absolute value function, the function
set could be IF, which takes three arguments and evaluates the second (third)
argument if the first argument evaluates to TRUE (FALSE), and GT, which
takes two arguments and returns TRUE if the first argument is greater than
the second. The terminal set would be real variables z and real constants. The
LISP expression,

(IF (GT (x) (0))
(x)
(-x))

would be represented by the tree shown in figure 5.

(1r)
G = ®
ONO

Figure 5: A parse tree representation of the absolute value function.

As the representation is in terms of trees, a tree-based crossover and mu-
tation operator is required. The crossover is done by replacing one randomly
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chosen subtree from one parent by a subtree from the other parent. This is
shown in figure 6. Mutation occurs by taking a randomly chosen subtree and
replacing it by a randomly generated subtree. Unlike standard genetic algo-
rithms, this process generates varying sized structures. Some mechanisms might
be required to regulate the size of the trees generated, and to insure that objects
of the appropriate type go into the functions.

Koza [17] uses fitness proportional selection with 90% of the trees generated
from the crossover operator and the remaining unmodified from the previous
generation. Koza considered mutation to be of minor importance and often did
not use it.

Example - A simulated ant A simple example described in [17]. A simu-
lated ant can detect food directly in front of it and can move forward, or turn
left or right on a square grid. There is a trail of food along the grid, with some
gaps in the trail. The ant has to collect as much food as possible. Where the
trail of food is continuous, the ant must learn to follow the trail. Since there are
gaps in the trail, the ant must learn some exploration behaviour, so as to navi-
gate past the gaps and find the trail again. The complexity of the exploration
required depends upon the size of the gaps.

To solve this using genetic programming, Koza used three terminals cor-
responding to the actions of the ant, MOVE, LEFT, and RIGHT, meaning: move
forward, turn left, and turn right respectively. IF-FOOD-AHEAD is a function
with two arguments. The first is evaluated if food is detected ahead and the
second is evaluated if food is not. For example, the program

(IF-FOOD-AHEAD (MQOVE) (LEFT))

moves forward if food is detected and turns left if it is not. Two other functions
were used. PROG2 takes two arguments, evaluates the first and then evaluates
the second. So the program

(PROG2 (MOVE) (LEFT))

simply moves then turns left. A similar function, PROG3, takes three arguments
and evaluates them in turn.

The fitness of a program is the number of pieces of food found by the ant
in a given number of time steps (to prevent random exploration solutions).
Each program is evaluated fully, then re-executed repeatedly until the maximum
amount of time is used up. A population of 500 was used.

Koza found a solution which worked perfectly on one particular trail used
for training after 21 generations. It is

(IF-FOOD-AHEAD (MOVE)
(PROGN3 (LEFT)
(PROGN2 (IF-FOOD-AHEAD (MOVE)
(RIGHT))
(PROGN2 (RIGHT)
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Figure 6: An example of crossover on trees. The two parents are on the top
of the figure; the dark line shows the crossover points. The two offspring are
below.
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(PROGN2 (LEFT)
(RIGHT))))
(PROGN2 (IF-FOOD-AHEAD (MOVE)
(LEFT))
(MOVE))))

If food is detected ahead the ant moves to it. Otherwise it turns left and looks
for food. If no food is there, it turns back to the right and the right again, and
so looks to the right of its original position. If no food is there, it just moves in
the direction it was originally heading. There is also a pointless but harmless
step in which it moves to the left and then to the right resulting in no change
in heading. There is nothing about this rule induction system which prevents
redundant rules like this.

Genetic programming has been used in a wide range of applications, includ-
ing the design of circuits [19], and the prediction of complex time series.

3.3 Genetic Algorithms and Neural Networks

Artificial neural networks are very successful methods in machine learning. In
their simplest form, they produce a mapping between an input space and an
output space. This mapping is not represented in terms of rules, but in terms
of non-linear functions of real-valued parameters called “weights”. The map-
ping is determined by the structure of the non-linear functions, and given that
structure by the values of the weight parameters. Two learning tasks are: find
the structure of the neural network, and find the weight values of the neural
network to make it perform a particular task.

Often neural networks are used for supervised learning. In this situation,
the correct outputs are known for some example inputs. Then the learning
problem is to find the best neural network given these examples. By “best neural
network” we could mean the neural network which does the best job of producing
the correct outputs on the example inputs, or some other criterion could be
used. For example, one often wants to balance performance on the example set
with other criteria, such as model simplicity, in order to improve generalisation
performance. A standard approach is to choose the network structure by hand,
and then use some real-valued optimisation method using gradient information
(e.g. a conjugate gradient method) to search for the weights which optimise the
chosen criterion.

Numerous authors have used genetic algorithms to search over the structure
space and/or over the weight space to train neural networks to perform different
tasks. For reviews, see Schaffer et. al. [27] or Yao [35].

3.3.1 Genetic Algorithms to Train Fixed Structures

A number of authors have explored replacing the standard, gradient-based, al-
gorithm with a genetic algorithm to search for the weights which optimise neural
network performance on an example set for a fixed structure neural network.
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This appears to be a questionable enterprise for several reasons. First, it is a
long-held belief in the optimisation community that if you have gradient infor-
mation you should use it [24]. Second, it is worth noting that genetic algorithms
turn all learning problems into reinforcement learning tasks. The performance
of the network is defined by a single number, the fitness (unless a multi-objective
approach is used, which has not been tried to the best of my knowledge). If there
are multiple outputs, a gradient-based approach can focus the search on those
parameters which contribute to the outputs which are wrong, and if learning is
done after each pattern, the changes can be made which are associated with the
patterns which the network gets wrong. Experience with reinforcement learning
as compared to supervised learning using standard algorithms supports the view
that reinforcement learning requires longer search, so it seems questionable to
turn the problem into a reinforcement learning problem.

The argument in favour of evolutionary algorithms over gradient-based ones
is that evolutionary algorithms are global search algorithms, they can in prin-
ciple search the entire space eventually. Local search algorithms can get stuck
in local minima. Thus, in search problems dominated by many local minima,
global search methods such as simulated annealing or evolutionary algorithms
are used.

An early example of this approach was described by Montana and Davies [22].
They found that a genetic algorithm using simple mutation and uniform crossover
on the weight vectors for an underwater sonar classification task outperformed
the gradient descent algorithm. However, it did not outperform a simple modi-
fied algorithm (quickprop) [27], and it is likely to seriously under-perform com-
pared to more sophisticated versions of gradient descent.

3.3.2 Genetic Algorithms to search for Neural Network Structure

A well known problem in using neural networks is that one does not know what
structure to use. A structure which is too complex may easily perform well on
the example set without giving good generalisation; a structure which is too
simple may be unable to perform the desired task at all. Although methods of
automatically growing or pruning network architectures have been known for
some time [6], they are not widely used (cascade correlation may be an excep-
tion). A more standard approach is to train networks of different architectures,
and use cross-validation to determine the expected generalisation of networks
of different structures. Then one of the networks from the class with the best
expected structure is tested and used. This evolves training an ensemble of net-
works of different structure (if cross-validation is used to estimate the expected
generalisation, many networks of each structure are trained as well). Either
only one of these is used, or a committee is formed from a set of them[6, 30].
An alternative approach is to use an evolutionary algorithm to search over
different network architectures. In this approach, the weight adaptation is done
using a gradient method; the evolutionary search is adapting the structure of
the network, either the number of neurons or the connection topology between
them. A straight-forward approach is described in [35], and called EPNet. A
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population of neural networks learns weights using a hybrid adaptive gradient-
descent /simulated annealing algorithm. The population undergoes mutations of
various types; no crossover. The mutations grow and prune the network. Each
generation consists of a fixed application of the hybrid algorithm for a fixed
number of computation steps, and then one of four mutations — delete a node,
delete a connection, add node, add connection. The mutations are all tried, the
first one to lead to improvement is chosen. Deletions are tried first to bias the
system towards simple networks. Three example sets are used. The first is used
by the hybrid algorithm to train the weights; the second is a validation set used
to compete the fitness of the neural networks in the population for selection.
The final one is used to select the member of the final population to use as the
network.

The above approach does not include crossover. Once crossover is included,
a string representation of the network architecture is required. There are two
approaches to this. The first is called direct encoding, where the structure of
the neural network is represented directly in the strings. The alternative is to
encode in the strings some dynamical process which produces the strings, such
as a grammatical encoding, in which the genetic algorithm evolves a grammar
which is then used to produce a network topology [16]. Another example is a
genetic string which produces a set of developmental instructions [21]. These
have been mostly applied to toy and test problems.

There is a problem to this approach, which is sometimes called the problem
of competing conventions. There are a number of structures by which a neural
network can solve a problem, many related by symmetries. For example per-
mutation of the labels of the neurons in a layer of a neural network leaves the
network functionally unchanged. A population can consist of networks which
differ in the symmetry of the solution they are learning towards. Crossover
between such neural networks is very disruptive.

3.4 Genetic Algorithms and Reinforcement Learning

Reinforcement learning deals with those situations when the information the
learner gets about its performance is evaluative, rather then instructive. In
other words, it only knows how well it is doing, not what it should or should not
be doing, and perhaps the performance information is available only sometimes.
Learning to talk might be an example of this. No teacher is available to instruct
on how to move the muscles of the mouth to make a particular word, but
if the child can successfully produce the word “up”, it gets a reward (picked
up by its mother). If it fails, it gets no information about which part of the
sequence of movements it made was wrong. Reinforcement learning is important
in adaptive control problems, such as learning to control a mobile robot, learning
to play games, and modelling learning in biological systems. The simulated ant
discussed in section 3.2.1 was an example of a reinforcement learning problem,
since the only feedback provided to the ant is the amount of food picked up
after a long sequence of actions.

As mentioned previously, genetic algorithms turn learning problems into
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reinforcement learning problems, and is perhaps one of the simplest ways to
implement a reinforcement learning method. Thus, reinforcement learning is
one of the most important applications of genetic algorithms in machine learn-
ing. Examples of this include studies of reinforcement learning in simulated
agents [1], and training of robots using evolutionary algorithms.

4 Interaction of Evolution and Learning

4.1 Combining Genetic Algorithms with Local Search Al-
gorithms

Many authors have used a local search algorithm combined with an evolution-
ary algorithm to improve search. The idea is that the evolutionary steps move
members of the population near locally optimal solutions, and the local search
algorithm takes it the rest of the way. See, for example Ackley and Littman [1]
and Belew [4]. Alternatively, one could use the local algorithm as the main
search element of the population, adding occasional crossovers as a global ele-
ment to move individuals away from locally optimal states.

Once local search is added to the genetic algorithm a question arises, should
the result of the local search change the strings or not. In other words, should
evolution be Lamarckian or Darwinian? Lamarck believed in inheritance of
acquired traits, e.g. the giraffe has a long neck because its ancestors stretched
their necks to reach the tall leaves, and their offspring inherited the longer necks.
Weismann [32] argued that this is impossible for biological organisms; there was
no way for information to pass from the somatic cells which make up the body
of the organism to the germ cells which carry the inheritable genetic material
(Darwin argued that this was unnecessary to understand evolution, but did not
rule it out).

Although it is impossible for biological organisms, computer programs can be
Lamarckian. There is some evidence that they should be. Hart and Belew [11]
used a genetic algorithm, a variety of local optimisation approaches, Lamarckian
combinations of genetic algorithms with local optimisation and non-Lamarckian
combinations of genetic algorithms with local search on a test optimisation prob-
lem containing a large number of local optima. They found that the Lamarckian
methods were significantly better than all other methods in most of the trials.

Their interpretation of the results was that initially the GA population is
distributed across the search space. A normal GA, however, would become
centred around one good optimum as the population converged. Combining
the GA with a high number of local search steps per generation prevents that,
as all members of the population are centred around optima. The Lamarckian
aspect enhances this. However, if the population starts to converge, the opposite
is true, the Darwinian algorithm is better. Hart and Belew found that for
infrequent local searches, the Darwinian algorithm performs better. Why this
might be is shown in figure 7. When the population has converged around a
local optimum, genetic algorithm search is particularly slow, as discussed in [29].
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However, using local searches without modifying the genotype gives all of the
points within a basin of attraction of an optimum effectively the same fitness.
This allows a more diverse population which can move between optima much
more readily. This idea has been explored for simulated annealing in the basin
hopping algorithm and is discussed in [31].

Fitness

Genotype

Figure 7: A fitness function (solid line) and the effective fitness (dashed line)
when a genetic algorithm is combined with local search in a Darwinian manner.
Every point within the basin of attraction of a minimum has the same effective
fitness.

Other studies of this effect are presented by Whitley et. al. [33].

4.2 The Baldwin Effect

One effect of the interaction of learning with evolution was first proposed by
J. M. Baldwin in 1896 [3]. He argued that acquired characteristics could be
indirectly inherited. This occurs in two steps. First, plasticity can increase
fitness of partial mutation which is otherwise useless. For example, an organism
which lives in a hot climate may be born with structures which protect it from
the sun, or it could have skin pigments which can react by tanning. Likewise,
an organism can be born with the ability to hunt, or it can be born with the
ability to learn to hunt. The tanning reaction and learning are both examples
of plasticity which impart increased fitness.

However, plasticity has a cost. While an organism is learning to hunt, it
may go hungry or even die. So the second step of the Baldwin effect is genetic
assimilation. The adaptation becomes genetically encoded and innate. Thus,
through this two step process, acquired characteristics are inherited, but without
violating the impossibility of information transfer back to the genetic material.

A model of this was proposed by Hinton and Howlan [13] The genotype is
a string of 20 characters drawn from the alphabet, {0,1,?}. The phenotype is
a neural network with weight values of 0 or 1 assigned from the genotype. The
weights associated with the ?’s are plastic, random search assigns 1 or 0 to those
over 1000 trials. The ideal phenotype has all weight values equal to 1, any other
phenotype is not useful.

The fitness of the individual is

1
F=20- Wgo min (number of trials to find ideal, 1000) . 4)
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So if you are born with the ideal phenotype, the fitness is 20. The fitness
decreases linearly with the time for learning to find the ideal phenotype, and is
1 if learning fails to find the solution in 1000 trials. Learning has a cost.

Without learning, the genetic search is a needle in a haystack problem, and
a solution is never found. With learning, a solution is found and the fitness
of the population increases over time. One also sees that the number of ?’s in
the population decays slowly over time; genetic assimilation does occur, albeit
slowly. Thus, learning guides evolution. With plasticity, evolution can work
even where only a perfect solution imparts fitness advantage. This is important,
because it was often hard to see how evolution could work otherwise to evolve
structures which are useless unless complete. This model has been studied
further by Harvey [12] and Mayley [20].

5 Conclusions

Genetic algorithms are general purpose search algorithms which act on a popu-
lation of candidate solutions. They can be applied to search on discrete spaces,
so can be used to search rule sets, representations of computer programs or
computer structures, neural network architectures, and so forth. When applied
to learning, genetic algorithms turn learning tasks into reinforcement learning
problems; it is in this domain where they are often used. Genetic algorithms
combine quite successfully with local search algorithms or local machine learning
methods.

Good introductory texts on genetic algorithms include books by Goldberg [10]
and Mitchell [23]. The standard introductory books on genetic programming
are those by Koza [17, 18].
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