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1 Introduction

Many problems in combinatorial optimization are
NP-hard (see [60]). This has forced researchers to
explore techniques for dealing with NP-completeness.
Some have considered algorithms that solve “typi-
cal” or “average” instances instead of worst-case in-
stances [86, 100]. In practice, however, identifying
“typical” instances is not easy. Other researchers
have tried to design approximation algorithms. An
algorithm achieves an approximation ratio α for a
maximization problem if, for every instance, it pro-
duces a solution of value at least OPT/α, where
OPT is the value of the optimal solution. (For a
minimization problem, achieving a ratio α involves
finding a solution of cost at most α OPT .) Note
that the approximation ratio is ≥ 1 by definition.

After twenty-five years of research, approxima-
tion algorithms is a major research area with deep
techniques (see [75] for a detailed survey). Never-
theless, researchers have failed to design good ap-
proximation algorithms for a wide variety of NP-
hard optimization problems. Recent developments
in complexity theory —specifically, in the area of
probabilistically checkable proofs or PCPs— sug-
gest a reason for this failure: for many NP-hard
problems, including MAX-CLIQUE, CHROMATIC
NUMBER, MAX-3SAT, and SET-COVER, achiev-
ing certain reasonable approximation ratios is no
easier than computing optimal solutions. In other
words, approximation is NP-hard. These negative
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results are described in Section 3.
Interestingly enough, such negative results, in-

stead of discouraging researchers, have fed an in-
creased interest in approximation algorithms. Maybe
this was to be expected. PCP-based inapproxima-
bility results are known for only some NP-hard prob-
lems, not for all. In cases where one has failed to
obtain an inapproximability result, one has a reason
to hope for an approximation algorithm! Indeed, I
feel that the approximation properties of NP-hard
problems are best investigated with a two-pronged
approach, combining a search for good approxima-
tion algorithms with a search for inapproximability
results. A failed attempt to prove an inaproxima-
bility result can provide insight into how to design
an algorithm, and vice versa.

Another important current endeavor is to clas-
sify NP-hard problems according to their approx-
imability. The goal is to identify a small number
of structural features which explain the variation in
approximability among NP-hard optimization prob-
lems. Section 4 describes some work along those
lines.

Section 5 surveys some approximation algorithms
that were recently discovered. Their discovery ap-
pears to have been influenced (either directly or
indirectly) by the issues opened up by the above-
mentioned inapproximability results.

2 Definitions and History

This section contains basic definitions and gives an
impressionistic view of developments in approxima-
tion algorithms up to the mid 1980s. The rest of
the article will cover more recent developments.

An NP-minimization problem is specified by a
polynomial-time computable bivariate cost function

c and a constant k. For any input x, the goal is to
find a solution y, |y| ≤ k |x|k such that c(x, y) is
minimized. For example, in the TSP, x is a set of
points and their mutual distances, a solution y is a
tour and c(x, y) is its length. (An NP-maximization
problem is specified analogously.)



An approximation algorithm is said to achieve
an approximation ratio α ≥ 1 for the above prob-
lem if for each input x it computes a solution y of
cost at most α · OPT , where OPT is the cost of
the optimum. If such an algorithm exists, we say
that the problem is approximable upto a factor α.
If we can show —assuming P 6= NP or some similar
conjecture— that such an algorithm does not ex-
ist, then we say that the problem is inapproximable

upto factor α. We allow α to depend upon |x|;
for example it could be log |x|. A fully polynomial

time approximation scheme or FPTAS is an algo-
rithm that, given input x and error bound ε > 0,
computes a solution of cost at most (1 + ε)OPT
in time that is polynomial in |x| and 1/ε. A poly-

nomial time approximation scheme or PTAS is an
algorithm that, for any fixed ε > 0, can achieve an
approximation ratio 1 + ε in time that is polyno-
mial in the input size. The running time could be

exponential (or worse) in 1/ε (for example, |x|1/ε
).

Some approximation algorithms were discovered
before NP-completeness, most notably Graham’s al-
gorithm for scheduling to minimize makespan [69],
which achieves an approximation ratio 2. After the
discovery of NP-completeness, Garey, Graham, and
Ullman [57] and then Johnson [79] formalized the
notion of an approximation algorithm. Johnson
also described simple approximation algorithms for
MAX-CUT, MAX-SAT, and SET-COVER (Lovász [104]
gave a similar algorithm for SET-COVER). Sahni
and Gozalez [118] showed that achieving any con-
stant approximation ratio for the TSP is NP-hard.
Notable approximation algorithms were discovered,
including Sahni’s PTAS [117] for KNAPSACK, Ibarra
and Kim’s improvement of this algorithm to an FP-
TAS [78], and Christofides’s algorithm for metric
TSP with approximation ratio 1.5 [37]. Garey and
Johnson identified the notion of strong NP-complete-

ness [59] and showed that most NP-hard problems
of interest do not have FPTAS’s if P 6= NP. Some
preliminary work was also done on classifying prob-
lems according to approximability [14, 15, 16].

The early 1980s saw further success in design
of algorithms, including Fernandez de la Vega and
Lueker’s PTAS [53] and Karmarkar and Karp’s FP-
TAS [84] for BIN-PACKING1, PTAS’s for some geo-
metric packing and covering problems (see the chap-
ter by Hochbaum in [75] for a survey), and for var-
ious problems on planar graphs [102, 22]. (Pla-
nar graphs are easier to treat because they have
small separators.) Wigderson showed how to color

1The approximation ratio of these BIN-PACKING algo-

rithms approaches 1 only if the value of the optimum ap-

proaches ∞.

3-colorable graphs with O(
√

n) colors [124].
Hochbaum and Shmoys [76] designed a PTAS for
MIN-MAKESPAN. In another work [77] they proved
a tight result for the k-CENTER problem: they
showed how to achieve an approximation ratio 2
and proved that achieving a ratio 2 − ε is NP-hard.

In the late 1980s two important developments
occurred. Leighton and Rao [98] used a powerful
method based upon linear programming duality to
design algorithms that achieve approximation ratio
O(log n) or O(log2 n) for a variety of graph sepa-
ration and layout problems. The influence of this
work can be seen in many approximation algorithms
today. Around the same time, Papadimitriou and
Yannakakis [111] sought to lay the study of approx-
imability on a sound footing and made a start by
defining a class of optimization problems they called
MAX-SNP. Using a certain approximability preserv-

ing reduction they defined completeness for MAX-
SNP and showed that MAX-3SAT is MAX-SNP-
complete (see Section 4.2). This showed that an
inapproximability result for MAX-3SAT would gen-
eralize to a large class of problems, which motivated
the discovery of the PCP Theorem a few years later.

Papadimitriou and Yannakakis also noted that
the classical style of reduction (Cook-Levin-Karp [41,
99, 85]) relies on representing a computational his-
tory by a combinatorial problem. A computational
history is a very non-robust object, since even chang-
ing a bit in it can affect its correctness. This nonro-
bustness lay at the root of the difficulty in proving
inapproximability results.

Luckily, more robust representations of compu-
tational histories were around the corner, thanks to
work on interactive proofs and program checking.

3 Probabilistically Checkable Proofs

The concept of PCPs evolved out of interactive proofs,
which were defined in the mid 1980s by Goldwasser,
Micali, and Rackoff [67] and Babai [17] as a proba-
bilistic extension of the nondeterminism used in NP.
Interactive proofs found many applications in cryp-
tography and complexity theory (see Goldreich’s ar-
ticle [64]), one of which involved an early version of
probabilistically checkable proof systems (Fortnow,
Rompel, and Sipser [54]). In 1990, Lund, Fortnow,
Karloff and Nisan [106] and Shamir [120] showed
IP=PSPACE, thus giving a new probabilistic def-
inition of PSPACE in terms of interactive proofs.
They introduced a revolutionary algebraic way of
looking at boolean formulae. In restrospect, this
algebraization can also be seen as a “robust” repre-
sentation of computation (cf. Section 2). The inspi-
ration to use polynomials came from works on pro-



gram checking [34] (see also [101, 23, 35]). Babai,
Fortnow, and Lund [19] used similar methods to
give a new probabilistic definition of NEXPTIME,
the exponential analogue of NP. To extend this re-
sult to NP, Babai, Fortnow, Levin, and Szegedy [20]
and Feige, Goldwasser, Lovász, Safra, and Szegedy [49]
studied variants of what we now call probabilisti-
cally checkable proof systems (Babai et al. called
their systems holographic proofs). Feige et al. also
proved the first inapproximability result to come
out of the PCP area. They showed that if any
polynomial-time algorithm can achieve a constant
approximation ratio for the MAX-CLIQUE prob-
lem, then each NP problem is solvable in nO(log log n)

time. This important result drew everybody’s at-
tention to the (as yet unnamed) area of probabilis-
tically checkable proofs. A year later, Arora and
Safra [12] formalized and named the class PCP and
used it to give a new probabilistic definition of NP.
(The works of Babai et al. and Feige et al. were
precursors of this new definition.) They also showed
that approximating MAX-CLIQUE is NP-hard. Soon,
Arora, Lund, Motwani, Sudan, and Szegedy [10]
proved the PCP Theorem (see below) and showed
that MAX-SNP-hard problems do not have a PTAS
if P 6= NP. Many sources attribute the PCP theo-
rem jointly to [12, 10]. For brief surveys of all the
above developments see [18, 64, 80]. In the years
since the discovery of the PCP Theorem, other vari-
ants of PCP have been studied and used in inap-
proximability results.

Now we define the class PCP. A (r(n), q(n))-
restricted verifier for a language L, where r, q are
integer-valued functions, is a probabilistic turing
machine M that, given an input of size n, checks
membership proofs for the input in the following
way. The proof is an array of bits to which the
verifier has random-access (that is, it can query in-
dividual bits of the proof).

• The verifier reads the input, and uses O(r(n))
random bits to compute a sequence of O(q(n))
addresses in the proof.

• The verifier queries the bits at those addresses,
and depending upon what they were, outputs
“accept” or “reject”.

• If the input x is in L then

there exists proof Π s.t. Pr[MΠaccepts] = 1,
(1)

If x 6∈ L then

for every proof Π, Pr[MΠaccepts] ≤ 1/2 (2)

(In both cases the probability is over the choice
of the verifier’s random string.)

PCP(r(n), q(n)) is the complexity class consisting of
every language with an (r(n), q(n))-restricted veri-
fier. Since NP is the class of languages whose mem-
bership proofs can be checked by a deterministic
polynomial-time verifier, NP = ∪c≥0PCP(0, nc). The
PCP Theorem gives an alternative definition:

NP = PCP(log n, 1) (3)

Other PCP-like classes have been defined by us-
ing variants of the definition above, and shown to
equal NP(when the parameters are chosen appro-
priately). We mention some variants and the best
results known for them.

1. The probability 1 in condition (1) may be al-
lowed to be c < 1. Such a verifier is said to
have imperfect completeness c.

2. The probability 1/2 in condition (2) may be
allowed to be s < c. Such a verifier is said to
have soundness s. Using standard results on
random walks on expanders, it can be shown
from the PCP theorem that every NP language
has verifiers with perfect completeness that use
O(k) query bits for soundness 2−k (here k ≤
O(log n)).

3. The number of query bits, which was O(q(n))
above, may be specified more precisely together
with the leading constant. The constant is
important for many inapproximability results.
Building upon past results on PCPs and us-
ing fourier analysis, H̊astad [74] recently proved
that for each ε > 0, every NP language has a
verifier with completeness 1− ε, soundness 1/2
and only 3 query bits. He uses this to show the
inapproximability of MAX-3SAT upto a factor
8/7 − ε.

4. The free bit parameter may be used instead of
query bits [50, 29]. This parameter is defined as
follows. Suppose the query bit parameter is q.
After the verifier has picked its random string,
and picked a sequence of q addresses, there are
2q possible sequences of bits that could be con-
tained in those addresses. If the verifier accepts
for only t of those sequences, then we say that
the free bit parameter is log t (note that this
number need not be an integer).

5. Amortized free bits may be used [29]. This pa-
rameter is defined as lims→0 fs/ log(1/s), where



fs is the number of free bits needed by the veri-
fier to make soundness < s. Bellare and Sudan
show (modifying a reduction from [49]) that
if every NP language has a verifier that uses
O(log n) random bits and F amortized free bits
then MAX-CLIQUE is inapproximable upto a
factor n1/(1+F+δ) for each δ > 0. H̊astad has
shown that for each ε > 0, every NP language
has a verifier that uses O(log n) random bits
and ε amortized free bits [73]. This implies
that MAX-CLIQUE is inapproximable upto a
factor n1−ε.

6. The proof may contain not bits but letters from
a larger alphabet Σ. The verifier’s soundness
may then depend upon Σ. In a p prover 1-

round interactive proof system, the proof con-
sists of p arrays of letters from Σ. The veri-
fier is only allowed to query 1 letter from each
array. Since each letter of Σ is represented
by dlog |Σ|e bits, the number of bits queried
may be viewed as p · dlog |Σ|e. Constructions
of such proof systems for NP appeared in [30,
96, 52, 27, 50, 113]. Lund and Yannakakis [108]
used these proof systems to prove inapproxima-
bility results for SETCOVER and many sub-
graph maximization problems. The best con-
struction of such proof systems is due to Raz
and Safra [114]. They show that for each k ≤√

log n, every NP language has a verifier that
uses O(log n) random bits, has log |Σ| = O(k)
and soundness 2−k. The parameter p is O(1).

We mention here a few of the ideas at the core
of all the above-mentioned results. First, note that
it suffices to design verifiers for 3SAT since 3SAT
is NP-complete and a verifier for any other lan-
guage can transform the input to a 3SAT instance
as a first step. The verifier for 3SAT is designed by
“lifting” the question of whether or not the input
3CNF formula is satisfiable to an algebraic domain:
the formula has a satisfying assignment iff a related
polynomial exists with certain specified properties.
The verifier expects the membership proof to con-
tain this polynomial presented by value. The ver-
ifier uses certain algorithms that, given a function
specified by value, can check that it satisfies the de-
sired properties. Two of those algorithms are Sum
Check [106] and Low Degree Test (invented in [19]
and improved in [20, 49, 116, 12, 10, 114, 13]). An
important technique introduced in [12] and used in
all subsequent papers is verifier composition, which
composes two verifiers to give a new verifier some
of whose parameters are lower than those in either
verifier. Verifier composition relies on the notion

of a probabilistically checkable encoding, a notion
to which Arora and Safra were led by results in
[20]. (Later, in the proof of the PCP Theorem [10],
Hadamard codes were used to implement such en-
codings.) Another result that plays a crucial role in
recent works on PCP is Raz’s parallel repetition the-

orem [113]. Finally, the work of H̊astad [73, 74] uses
encodings based upon the so-called Long Code [26].

A striking feature of the PCP area is that each
advance has built upon previous papers, often us-
ing them in a “black-box” fashion. Consequently,
a proof of H̊astad’s MAX-CLIQUE result from first
principles would fill well over 100 pages!

3.1 Connection to Inapproximability

The connection between PCPs and inapproximabil-
ity was first established by the result of Feige et
al. [49] on MAX-CLIQUE. (Condon [38] had discov-
ered a connection somewhat earlier; but she worked
with a different notion of proof verification and a
less natural optimization problem.) For a while,
this connection was viewed as “just” coincidental,
and this viewpoint began to change only after the
PCP theorem was shown to be equivalent to the in-
approximability of MAX-SNP [11, 10]. The connec-
tion finally became undeniable after Lund and Yan-
nakis [108, 107] used PCP constructions to prove
the inapproximability of SETCOVER, CHROMATIC-
NUMBER, and many MAX-π-SUBGRAPH prob-
lems. Since then many other inapproximability re-
sults have been discovered as described in [9, 43].

As pointed out in [9], just as 3SAT is the “canon-
ical” problem in the theory of NP-completeness,
MAX-3SAT is the “canonical” problem in the the-
ory of inapproximability. Once we prove the in-
approximability of MAX-3SAT, we can prove most
other inapproximability results, though not always
in the strongest possible form.

The inapproximability of MAX-3SAT is intimately
related to the PCP theorem: It is easy to see that
NP ⊆ PCP(log n, 1) iff there is a reduction τ from
SAT to MAX-3SAT that ensures the following for
some fixed ε > 0:

I ∈ SAT ⇒ MAX-3SAT(τ(I)) = 1

I 6∈ SAT ⇒ MAX-3SAT(τ(I)) ≤ 1

1 + ε
.

Here MAX-3SAT(τ(I)) is the maximum fraction of
clauses in formula τ(I) that are simultaneously sat-
isfiable.

Let’s check that the “if” part holds: if the above
reduction exists then NP ⊆ PCP(log n, 1). Given
any NP language L and an input, the verifier re-
duces it to SAT, and then to MAX-3SAT using the



above reduction. It expects the membership proof
to contain a satisfying assignment to the MAX-
3SAT instance. To check this membership proof
probabilistically, it picks a clause uniformly at ran-
dom, reads the values of the variables in it (notice,
this requires reading only 3 bits), and accepts iff
these values satisfy the clause. Clearly, if the origi-
nal input is in L, there is a proof which the verifier
accepts with probability 1. Otherwise every proof
is rejected with probability at least 1 − 1/(1 + ε).
Of course, repeating the verification O(1/ε) times
makes the rejection probability ≥ 1/2.

The “only if” part (NP ⊆ PCP(log n, 1) implies
the existence of the above-mentioned reduction) is
only a little more difficult. It involves replacing
a verifier’s actions by an equivalent 3CNF formula
(see [9]).

3.1.1 Other inapproximability results

In the past few years, two types of research has
been done on inapproximability. One tries to im-
prove the inapproximability results that are already
known. Usually this involves improving the param-
eters of some known verifier. MAX-3SAT, MAX-
CLIQUE, SET-COVER, and CHROMATIC NUM-
BER are the main problems for which such im-
proved results have been obtained. The first pa-
per in this area was Bellare, Goldwasser, Lund, and
Russell [27]; others are Feige and Kilian [50, 51];
Bellare and Sudan [29]; Bellare, Goldreich, and Su-
dan [26]; Fürer [56], H̊astad [73, 74]; Feige [47]; Raz
and Safra [114]; and Arora and Sudan [13]. Thanks
to this work, we now know of tight results for the
four problems mentioned above: in other words,
the inapproximability results for these problems al-
most match the performance of the best algorithms.
The tight approximation ratios for the various prob-
lems are: 8/7 − ε for MAX-3SAT [74], n1−ε for
MAX-CLIQUE [73], n1−ε for CHROMATIC NUM-
BER [51] and (1 − ε) ln n for SET-COVER [47].

Other papers have tried to prove inapproximabil-
ity results for problems that were not already known
to be inapproximable. In the two years after the
discovery of the PCP Theorem, many new results
were discovered by Lund and Yannakakis [108, 107],
Arora, Babai, Stern, and Sweedyk [6], Bellare [24],
Bellare and Rogaway [28], Zuckerman [128], etc..
Since then, there has been essentially no progress
except for a few MAX-SNP-hardness results.

Crescenzi and Kann [43] maintain a compendium
that lists the current approximation status of im-
portant optimization problems.

3.2 Other applications of PCP Techniques

The PCP Theorem and related techniques have found
many other theoretical applications in complexity
theory and cryptography, including new definitions
of PSPACE [40] and PH [92], probabilistically check-
able codes, zero-knowledge proofs, checkable VLSI
computations, etc. See [3] for a survey. One inter-
esting application first observed by Babai et al. [20]
(and given prominence in the New York Times [94]
article on the PCP Theorem) is that the PCP The-
orem implies that formal mathematical proofs can
be rewritten —with at most a polynomial blowup
in size— such that a probabilistic checker can ver-
ify their correctness by examining only a constant
number of bits in them. (The constant does not de-
pend upon the length of the proof.) To see that this
follows from the PCP Theorem, just notice that for
most known axiomatic systems, the following lan-
guage is in NP (and consequently has a (log n, 1)-
restricted verifier):

{< T, 1n >: T is a theorem with a proof of size ≤ n} .

4 Classifying NP-hard problems by

approximability

Soon after the discovery of NP-completeness, it was
recognized that optimization versions of NP-complete
problems are not necessarily polynomial-time equiv-
alent in terms of approximability. As mentioned in
Section 2, KNAPSACK was found to have an FP-
TAS whereas TSP was shown to be inapproximable
upto any constant factor.

We are therefore led naturally to the following
research program. (i) Define an approximation pre-

serving reduction appropriately, such that if two
problems are interreducible then they have the same
approximability. (ii) Show that the interreducibil-
ity relation divides NP-hard optimization problems
into a small number of equivalence classes and give
“complete” problems for each class.

Of course, the above program is too ambitious in
general because the number of equivalence classes
may not be small and may even be infinite. (For
example a classical result of Ladner [95] says that
there are infinitely many equivalence classes in NP
for the usual polynomial-time reducibility.) Nev-
ertheless, we could conceivably declare such a pro-
gram a success if all interesting problems could be
shown to fall into a small number of classes. (For
example, Ladner’s result notwithstanding, in prac-
tice most decision problems are found to be either
NP-complete or in P, and that is why we consider
NP-completeness a successful theory.)



Moreover, the task in (i) —defining an approx-
imation-preserving reduction— is also harder than
it looks. After several competing definitions the
consensus choices these days are the A-reduction [45]
and the AP-reduction [44]. An A-reduction is de-
fined such that if a problem Π is A-reducible to
problem Γ and Γ is approximable upto a factor
α, then we can conclude that Π is approximable
upto a factor O(α). Thus A-reductions are use-
ful for studying coarse structure of classes of prob-
lems, when approximation ratios can be specified
with big-Oh notation. An AP-reduction is defined
such that if problem Π is AP-reducible to problem
Γ and Γ is approximable upto a factor 1+α, then we
can conclude that Π is approximable upto a factor
1+O(α). Thus AP-reductions are suited for study-
ing the fine structure of problem classes for which
approximation ratios are close to 1.

Whatever the definition of an approximation-pre-
serving reduction, coming up with reductions be-
tween concrete problems is definitely not easy. Even
seemingly related problems such as MAX-CLIQUE
and CHROMATIC NUMBER (both of which were
recently proven to be inapproximable upto a factor
n1−ε [73, 51]) are not known to be interreducible.
Of course, once a class of interreducible problems
has been identified, we still have to find the “right”
approximation ratio to associate with it. Namely,
we have to find an α such that Θ(α) is achievable
by some polynomial-time algorithm and achieving
a ratio o(α) is impossible if P 6= NP.

Having outlined some of the difficulties, I now
trace the progress made on the above program.

4.1 Empirical Classification of Known

Inapproximability Results

In a survey article, Arora and Lund [9] briefly de-
scribe how to prove most known inapproximabil-
ity results. They list at least two dozen important
problems for which inapproximability was proved
using PCP-based techniques. They make the empir-
ical observation that these problems divide into four
broad classes, based upon the approximation ratio
that is provably hard to achieve for them. Class
I contains all problems for which achieving an ap-
proximation ratio 1+ε is NP-hard for some fixed ε >
0. Classes II, III, and IV contain problems for which
the corresponding ratios are Θ(log n), 2log1−ε n for
every fixed ε > 0, and nε for some fixed ε > 0. (Of
course, each class contains every higher numbered
class.) Inapproximability results within a class seem
to use similar techniques, and in fact the authors
identify a canonical problem in each class which can
be used to prove the inapproximability results for

all other problems in that class. The inapproxima-
bility of the canonical problems can be proved using
MAX-3SAT.

The authors pose an open question whether or
not these empirically observed classes can be de-
rived from some deeper theory. (Only Class I seems
to have an explanation, using MAX-SNP.)

4.2 MAX-SNP

Papadimitriou and Yannakakis [111] were interested
in determining which problems have a PTAS and
which don’t. They defined a class of optimization
problems, MAX-SNP, as well as a notion of com-
pleteness for this class. Roughly speaking, a MAX-
SNP-complete problem is one that behaves just like
MAX-3SAT in terms of approximability: MAX-3SAT
has a PTAS iff every MAX-SNP-complete problem
does. (This made MAX-3SAT a plausible candi-
date problem for an inapproximability result, and
in particular motivated the discovery of the PCP
theorem.)

MAX-SNP contains constraint-satisfaction prob-
lems, where the constraints are local. The goal is
to satisfy as many constraints as possible. The con-
cept of “local” constraints is formalized using logic:
constraints are local iff they are definable using a
quantifier-free propositional formula. The inspira-
tion to use this definition came from Fagin’s char-
acterization of NP using 2nd order logic [46]

A maximization problem is in MAX-SNP if there
is a sequence of relation symbols G1, . . . , Gm, a re-
lation symbol S, and a quantifier-free formula
φ(G1, . . . , Gm, S, x1, . . . , xk) (where each xi is a vari-
able) such that the following are true: (i) there
is a polynomial-time algorithm that, given any in-
stance I of the problem produces a set U and a
sequence of relations GU

1 , . . . , GU
m on U , where each

GU
i has the same arity (“arity” refers to the num-

ber of arguments) as the relation symbol Gi. (ii)
The value of the optimum solution on instance I,
denoted OPT(I) equals

max
SU

|
{

~x ∈ Uk : φ(GU
1 , . . . , GU

m, SU , ~x) = TRUE
}

|,

where ~x = (x1, . . . , xk), SU is a relation on U with
the same arity as S, and Uk is the set of k-tuples of
U .

To understand this definition in more familiar
terms, note that the sequence of relation symbols
G1, . . . , Gm, S, as well as their arities, are fixed for
the problem. Thus when the universe U has size n,
the sequence of relations GU

1 , . . . , GU
m implicitly de-

fines an “input” of size O(nc) where c is the largest
arity of a relation in G. Solving the optimization



problem involves finding a relation SU ⊆ Uk that
maximizes the number of k-tuples satisfying φ. Since
|U|k = nk, this relation SU can be viewed as a “fea-
sible solution,” which can be specified using nk bits.

As an example, let us reformulate MAX-CUT,
the problem of partitioning the vertex set of an
undirected graph into two parts such that the num-
ber of edges crossing the partition is maximized.
Let the universe U be the vertex set of the graph,
and let G consist of E, a binary relation whose
interpretation is “adjacency.” Let S be a unary
relation (interpreted as one side of the cut), and
φ(E, S, (u, v)) = (u < v) ∧ E(u, v) ∧ (S(u) 6= S(v)).
Clearly, the optimum value of MAX-CUT on the
graph is

max
S⊆U

|
{

(u, v) ∈ U2 : φ(E, S, (u, v)) = TRUE
}

|.

Papadimitriou and Yannakakis defined an approxi-
mation-preserving reduction called an L-reduction,
and showed that every MAX-SNP problem L-reduces
to MAX-3SAT, MAX-CUT, Metric TSP, Vertex Cover,
etc. Thus these problems are MAX-SNP-hard. MAX-
CUT and MAX-3SAT are also in MAX-SNP, so
they are MAX-SNP-complete.

Khanna, Motwani, Sudan and Vazirani [89] have
shown an interesting structural fact about MAX-
SNP: every NP-optimization problem that is ap-
proximable within a constant factor is AP-reducible
to MAX-3SAT. This fact is a consequence of the
PCP Theorem.

4.3 Constraint Satisfaction Problems

A constraint satisfaction problem consists of c bool-
ean functions f1, . . . , fc of arity at most k, where
c, k are some constants. An instance of the prob-
lem consists of n boolean variables and m functions,
each of which is drawn from the c specified func-
tions. For each of the m functions, a sequence of k
inputs is specified to which the function is to be ap-
plied. Note that each 0/1 assignment to the inputs
results in every function being set to 0/1. The goal
is to find an assignment to the inputs that makes all
functions 1. Note that 3SAT is a special case of this
problem (k = 3 and c = 16; the 16 allowable func-
tions are x, x, x∨y, x∨y, etc.). MAX-CSP problems
are defined similarly, except the goal is to maxi-
mize the number of functions set to 1. MAX-CUT,
MAX-2SAT, and MAX-3SAT lie in MAX-CSP.

A classical result of Schaefer [119] shows that
each constraint satisfaction problem is either in P or
NP-complete. (In other words, the infinitely many
levels in NP exhibited by Ladner’s theorem [95]
are absent among constraint satisfaction problems.)

Schaefer also gives simple properties of the con-
straint functions which determine whether the prob-
lem is NP-complete.

Thus MAX-CSP problems present a good test-
ing ground for the hypothesis that approximability
properties divide all interesting optimization prob-
lems into a small number of classes. (A simple
greedy algorithm achieves a constant approxima-
tion ratio for every MAX-CSP problem, so this class
does not contain the rich diversity of approximation
ratios found in the real world.) Creignou [42] and
Khanna, Sudan, and Williamson [91] show that, in-
deed, there are only two types of MAX-CSP prob-
lems: those that can be optimally solved in poly-
nomial time, and those that are MAX-SNP-hard.
(Which case holds depends upon certain syntactic
properties of the constraint functions.)

More recently Khanna, Sudan, and Trevisan [90]
have studied minimization problems connected with
constraint satisfaction. These classes contain famil-
iar problems such as s-t min-cut, vertex cover, hit-
ting set with bounded size sets, integer programs
with two variables per inequality, deleting the min-
imum number of edges to make a graph bipartite,
and the nearest codeword problem. Again, the classes
are found to divide into a constant number of equiv-
alence classes.

The above research touches a good number of
problems, and seems to provide clues to what a
more comprehensive theory might look like.

5 Good Upperbounds: New Algorithms

Approximation algorithms is a big area and some
of its high points of the past few years are surveyed
in chapters of [75]. See, for example, Goemans and
Williamson’s primal-dual technique for network de-
sign [63]; Linial, London, and Rabinovich’s discov-
ery of geometric embeddings of graphs [103] and
their use in algorithms (see Shmoy’s chapter [121]);
and the use of linear programming techniques in
scheduling problems (see Hall’s chapter [71]).

Below I focus only on some algorithms whose
discovery appears to have been stimulated by the
issues raised by inapproximability results. Some-
times, inapproximability results can direct algorithm
designers to the right problem and the right result.

5.1 MAX-CUT, MAX-2SAT, MAX-3SAT

Soon after the work on MAX-SNP and PCP showed
that PTAS’s were unlikely for problems such MAX-
CUT and MAX-2SAT, Goemans and Williamson
discovered an algorithm that achieves approxima-
tion ratio 1.13 for MAX-CUT and MAX-2SAT. The



best algorithms before that point could only achieve
approximation ratios 2 and 1.33 respectively.

Their chief tool, semidefinite programming [70],
has since been applied to other constraint satisfac-
tion problems. Karloff and Zwick [83] have used it
to achieve an approximation ratio 8/7, for MAX-
3SAT. This is an example of a tight result, since
H̊astad had already shown that achieving an ap-
proximation ratio 8/7 − ε is hard. (Thus Karloff
and Zwick knew the “correct” approximation ratio
to shoot for, which must have helped.) Semidefi-
nite programming has also been used in better algo-
rithms for coloring 3-colorable graphs [82] and for
the MIN-BANDWIDTH problem [33] (a stronger
version of the latter result was independently ob-
tained by Feige using geometric embeddings [48]).

5.2 Geometric Network Design Problems

The status of geometric problems such as Euclidean
TSP or Steiner tree was a major open question in
the post-PCP years. The more general case where
the points lie in a metric space was known to be
MAX-SNP-hard [32]. I tried unsuccessfully to prove
inapproximability in the geometric case, and then
became convinced that no such result was provable.
This led me to try to design a PTAS, at which I suc-
ceeded [4]. Insights gained from my failed attempt
to prove inapproximability were invaluable. (Note,
however, that Mitchell independently arrived at a
similar PTAS a few months later, while working
from a different angle [109].)

For similar reasons, I suspect that graph bisec-
tion and layout problems may also have good ap-
proximation algorithms; I do not currently see how
to apply PCP techniques to prove an inapproxima-
bility result for them.

5.3 Problems on Dense Graphs and

Hypergraphs

Recent work shows that dense instances of prob-
lems such as MAX-CUT, MAX-ACYCLIC SUB-
GRAPH, MAX-k-SAT, MIN-BISECTION etc., have
PTAS’s ([8]; some of these results were indepen-
dently obtained by Fernandez de la Vega [dlV94]).
(A dense graph is one in which each vertex has de-
gree Θ(n); denseness for formulae is defined analo-
gously.) We were led to this PTAS when we were
investigating whether MAX-SNP problems are in-
approximable on dense instances, and we could not
come up with an inapproximability result.

The work on dense graphs has recently been ex-
tended in [7, 55, 66]. The last two papers make the
PTAS’s extremely efficient.

6 Future Directions

Simplifying the proofs of the results on PCP’s is
an extremely important task. Current proofs fill
several dozen pages each. As has happened in many
other areas in the past, the process of simplifying
the proofs will very likely lead to new insights.

Very few new inapproximability results (as op-
posed to improvements of known inapproximabil-
ity results) have been proved in the past couple of
years, and the time is ripe for the next big result.
This result (either an algorithm or an inapproxima-
bility result) could come from the field of graph
separation and layout problems, which have been
intensively studied [121]. The MIN-BISECTION
problem (divide a graph into two equal halves so as
to minimize the number of edges crossing between
them) is particularly intriguing. We currently know
neither an algorithm that achieves an approxima-
tion ratio better than around n1/2, nor an inap-
proximability result of any sort.

Recently, Ajtai [1] and Ajtai and Dwork [2] have
shown deep connections between (conjectured) in-
approximability and cryptography by constructing
cryptographic primitives whose security is based upon
the inapproximability of certain lattice problems
(such as SHORTEST VECTOR and NEAREST VEC-
TOR). A strong inapproximability result for these
problems (which would probably have to be based
upon an assumption other than P 6= NP) would
therefore have exciting implications.
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