
Triggers (Oracle Version)

Often called event-condition-action rules.

� Event = a class of changes in the DB, e.g.,
\insert into Beers."

� Condition = a test as in a where-clause for
whether or not the trigger applies.

� Action = one or more SQL statements.

� Oracle version and SQL3 version; not in
SQL2.

� Di�er from checks or SQL2 assertions in that:

1. Triggers invoked by the event; the system
doesn't have to �gure out when a trigger
could be violated.

2. Condition not available in checks.

1

Example

Whenever we insert a new tuple into Sells, make
sure the beer mentioned is also mentioned in
Beers, and insert it (with a null manufacturer) if
not.

Sells(bar, beer, price)

CREATE OR REPLACE TRIGGER BeerTrig

AFTER INSERT ON Sells

FOR EACH ROW

WHEN(new.beer NOT IN

(SELECT name FROM Beers))

BEGIN

INSERT INTO Beers(name)

VALUES(:new.beer);

END;

.

run

2

Options

1. Can omit OR REPLACE. But if you do, it is an
error if a trigger of this name exists.

2. AFTER can be BEFORE.

3. If the relation is a view, AFTER can be INSTEAD
OF.

✦ Useful for allowing \modi�cations" to a
view; you modify the underlying relations
instead.

4. INSERT can be DELETE or UPDATE OF

<attribute>.

✦ Also, several conditions like INSERT ON

Sells can be connected by OR.

5. FOR EACH ROW can be omitted, with an
important e�ect: the action is done once for
the relation(s) consisting of all changes.

3

Notes

� More information in on-line document or-
plsql.html

� There are two special variables new and old,
representing the new and old tuple in the
change.

✦ old makes no sense in an insert, and new

makes no sense in a delete.

� Notice: in WHEN we use new and old without
a colon, but in actions, a preceding colon is
needed.

� The action is a PL/SQL statement.

✦ Simplest form: surround one or more SQL
statements with BEGIN and END.

✦ However, select-from-where has a limited
form.

4

� Dot and run cause the de�nition of the trigger
to be stored in the database.

✦ Oracle triggers are part of the database
schema, like tables or views.

� Important Oracle constraint: the action
cannot change the relation that triggers the
action.

✦ Worse, the action cannot even change
a relation connected to the triggering
relation by a constraint, e.g., a foreign-key
constraint.

5

Example

Maintain a list of all the bars that raise their price
for some beer by more than $1.

Sells(bar, beer, price)

RipoffBars(bar)

CREATE TRIGGER PriceTrig

AFTER UPDATE OF price ON Sells

FOR EACH ROW

WHEN(new.price > old.price + 1.00)

BEGIN

INSERT INTO RipoffBars

VALUES(:new.bar);

END;

.

run

6

Modi�cation to Views Via Triggers

Oracle allows us to \intercept" a modi�cation to a
view through an instead-of trigger.

Example

Likes(drinker, beer)

Sells(bar, beer, price)

Frequents(drinker, bar)

CREATE VIEW Synergy AS

SELECT Likes.drinker, Likes.beer,

Sells.bar

FROM Likes, Sells, Frequents

WHERE Likes.drinker =

Frequents.drinker AND

Likes.beer = Sells.beer AND

Sells.bar = Frequents.bar;

7

CREATE TRIGGER ViewTrig

INSTEAD OF INSERT ON Synergy

FOR EACH ROW

BEGIN

INSERT INTO Likes VALUES(

:new.drinker, :new.beer);

INSERT INTO Sells(bar, beer)

VALUES(:new.bar, :new.beer);

INSERT INTO Frequents VALUES(

:new.drinker, :new.bar);

END;

.

run

8

SQL3 Triggers

� Read in text.

� Some di�erences, including:

1. Position of FOR EACH ROW.

2. The Oracle restriction about not
modifying the relation of the trigger or
other relations linked to it by constraints
is not present in SQL3 (but Oracle is real;
SQL3 is paper).

3. The action in SQL3 is a list of SQL3
statements, not a PL/SQL statement.

9

SQL2 Assertions

� Database-schema constraint.

� Not present in Oracle.

� Checked whenever a mentioned relation
changes.

� Syntax:

CREATE ASSERTION <name>
CHECK(<condition>);

10

Example

No bar may charge an average of more than $5 for
beer.

Sells(bar, beer, price)

CREATE ASSERTION NoRipoffBars

CHECK(NOT EXISTS(

SELECT bar

FROM Sells

GROUP BY bar

HAVING 5.0 < AVG(price)

)

);

� Checked whenever Sells changes.

11

Example

There cannot be more bars than drinkers.

Bars(name, addr, license)

Drinkers(name, addr, phone)

CREATE ASSERTION FewBar

CHECK(

(SELECT COUNT(*) FROM Bars) <=

(SELECT COUNT(*) FROM Drinkers)

);

� Checked whenever Bars or Drinkers changes.

12

Class Problem

Suppose we have our usual relations

Beers(name, manf)

Sells(bar, beer, price)

and we want to maintain the foreign-key constraint
that if you sell a beer, its name must appear in
Beers.

1. If we don't have foreign-key declarations
available, how could we arrange for this
constraint to be maintained:

a) Using attribute-based constraints?

b) Using SQL2 assertions?

c) Using Oracle triggers?

2. What if we also want to make sure that each
beer mentioned in Beers is sold at at least one
bar?

13

PL/SQL

� Found only in the Oracle SQL processor
(sqlplus).

� A compromise between completely procedural
programming and SQL's very high-level, but
limited statements.

� Allows local variables, loops, procedures,
examination of relations one tuple at a time.

� Rough form:

DECLARE

declarations
BEGIN

executable statements
END;

.

run;

� DECLARE portion is optional.

� Dot and run (or a slash in place of run;) are
needed to end the statement and execute it.

14

Simplest Form: Sequence of Modi�cations

Likes(drinker, beer)

BEGIN

INSERT INTO Likes

VALUES('Sally', 'Bud');

DELETE FROM Likes

WHERE drinker = 'Fred' AND

beer = 'Miller';

END;

.

run;

15

Procedures

Stored database objects that use a PL/SQL
statement in their body.

Procedure Declarations

CREATE OR REPLACE PROCEDURE

<name>(<arglist>) AS

<declarations>
BEGIN

<PL/SQL statements>
END;

.

run;

16

� Argument list has name-mode-type triples.

✦ Mode: IN, OUT, or IN OUT for read-
only, write-only, read/write, respectively.

✦ Types: standard SQL + generic types like
NUMBER = any integer or real type.

✦ Since types in procedures must match
their types in the DB schema, you should
generally use an expression of the form

relation.attribute%TYPE

to capture the type correctly.

17

Example

A procedure to take a beer and price and add it to
Joe's menu.

Sells(bar, beer, price)

CREATE PROCEDURE joeMenu(

b IN Sells.beer%TYPE,

p IN Sells.price%TYPE

) AS

BEGIN

INSERT INTO Sells

VALUES('Joe''s Bar', b, p);

END;

.

run;

� Note \run" only stores the procedure; it
doesn't execute the procedure.

18

Invoking Procedures

A procedure call may appear in the body of a
PL/SQL statement.

� Example:

BEGIN

joeMenu('Bud', 2.50);

joeMenu('MooseDrool', 5.00);

END;

.

run;

19

