
Assignment

Assign expressions to declared variables with :=.

Branches

IF <condition> THEN

<statement(s)>
ELSE

<statement(s)>
END IF;

� But in nests, use ELSIF in place of ELSE IF.

Loops

LOOP

. . .

EXIT WHEN <condition>
. . .

END LOOP;

1

Queries in PL/SQL

1. Single-row selects allow retrieval into a
variable of the result of a query that is
guaranteed to produce one tuple.

2. Cursors allow the retrieval of many tuples,
with the cursor and a loop used to process
each in turn.

2

Single-Row Select

� Select-from-where in PL/SQL must have an
INTO clause listing variables into which a tuple
can be placed.

� It is an error if the select-from-where returns
more than one tuple; you should have used a
cursor.

Example

Find the price Joe charges for Bud (and drop it on
the oor).

Sells(bar, beer, price)

DECLARE

p Sells.price%TYPE;

BEGIN

SELECT price

INTO p

FROM Sells

WHERE bar = 'Joe''s Bar' AND

beer = 'Bud';

END;

.

run

3

Cursors

Declare by:

CURSOR <name> IS

select-from-where statement

� Cursor gets each tuple from the relation
produced by the select-from-where, in turn,
using a fetch statement in a loop.

✦ Fetch statement:

FETCH <cursor name> INTO

variable list;

� Break the loop by a statement of the form:

EXIT WHEN <cursor name>%NOTFOUND;

✦ True when there are no more tuples to
get.

� Open and close the cursor with OPEN and
CLOSE.

4

Example

A procedure that examines the menu for Joe's Bar
and raises by $1.00 all prices that are less than
$3.00.

Sells(bar, beer, price)

� This simple price-change algorithm can be
implemented by a single UPDATE statement,
but more complicated price changes could not.

5

CREATE PROCEDURE joeGouge() AS

theBeer Sells.beer%TYPE;

thePrice Sells.price%TYPE;

CURSOR c IS

SELECT beer, price

FROM Sells

WHERE bar = 'Joe''s bar';

BEGIN

OPEN c;

LOOP

FETCH c INTO theBeer, thePrice;

EXIT WHEN c%NOTFOUND;

IF thePrice < 3.00 THEN

UDPATE Sells

SET price = thePrice + 1.00

WHERE bar = 'Joe''s Bar'

AND beer = theBeer;

END IF;

END LOOP;

CLOSE c;

END;

.

run

6

Row Types

Anything (e.g., cursors, table names) that has
a tuple type can have its type captured with
%ROWTYPE.

� We can create temporary variables that have
tuple types and access their components with
dot.

� Handy when we deal with tuples with many
attributes.

7

Example

The same procedure with a tuple variable bp.

CREATE PROCEDURE joeGouge() AS

CURSOR c IS

SELECT beer, price

FROM Sells

WHERE bar = 'Joe''s bar';

bp c%ROWTYPE;

BEGIN

OPEN c;

LOOP

FETCH c INTO bp;

EXIT WHEN c%NOTFOUND;

IF bp.price < 3.00 THEN

UDPATE Sells

SET price = bp.price + 1.00

WHERE bar = 'Joe''s Bar'

AND beer = bp.beer;

END IF;

END LOOP;

CLOSE c;

END;

.

run

8

SQL2 Embedded SQL

Add to a conventional programming language (C
in our examples) certain statements that represent
SQL operations.

� Each embedded SQL statement introduced
with EXEC SQL.

� Preprocessor converts C + SQL to pure C.

✦ SQL statements become procedure calls.

9

Shared Variables

A special place for C declarations of variables that
are accessible to both SQL and C.

� Bracketed by

EXEC SQL BEGIN/END DECLARE SECTION;

� In Oracle Pro/C (not C++) the \brackets"
are optional.

� In C, variables used normally; in SQL, they
must be preceded by a colon.

10

Example

Find the price for a given beer at a given bar.

Sells(bar, beer, price)

EXEC SQL BEGIN DECLARE SECTION;

char theBar[21], theBeer[21];

float thePrice;

EXEC SQL END DECLARE SECTION;

. . .

/* assign to theBar and theBeer */

. . .

EXEC SQL SELECT price

INTO :thePrice

FROM Sells

WHERE beer = :theBeer AND

bar = :theBar;

. . .

11

Cursors

Similar to PL/SQL cursors, with some syntactic
di�erences.

Example

Print Joe's menu.

Sells(bar, beer, price)

EXEC SQL BEGIN DECLARE SECTION;

char theBeer[21];

float thePrice;

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE c CURSOR FOR

SELECT beer, price

FROM Sells

WHERE bar = 'Joe''s Bar';

EXEC SQL OPEN CURSOR c;

while(1) {

EXEC SQL FETCH c

INTO :theBeer, :thePrice;

if(NOT FOUND) break;

/* format and print beer and price */

}

EXEC SQL CLOSE CURSOR c;

12

Oracle Vs. SQL2 Features

� SQL2 expects FROM in fetch-statement.

� SQL2 de�nes an array of characters SQLSTATE
that is set every time the system is called.

✦ Errors are signaled there.

✦ A failure for a cursor to �nd any more
tuples is signaled there.

✦ However, Oracle provides us with a
header �le sqlca.h that declares a
communication area and de�nes macros
to access it.

✦ In particular, NOT FOUND is a macro that
says \the no-tuple-found signal was set."

13

Dynamic SQL

Motivation:

� Embedded SQL is �ne for �xed applications,
e.g., a program that is used by a sales clerk to
book an airline seat.

� It fails if you try to write a program like
sqlplus, because you have compiled the
code for sqlplus before you see the SQL
statements typed in response to the SQL>
prompt.

� Two special statements of embedded SQL:

✦ PREPARE turns a character string into an
SQL query.

✦ EXECUTE executes that query.

14

Example: Sqlplus Sketch

EXEC SQL BEGIN DECLARE SECTION;

char query[MAX QUERY LENGTH];

EXEC SQL END DECLARE SECTION;

/* issue SQL> prompt */

/* read user's text into array query */

EXEC SQL PREPARE q FROM :query;

EXEC SQL EXECUTE q;

/* go back to reissue prompt */

� Once prepared, a query can be executed many
times.

✦ \Prepare" = optimize the query, e.g., �nd
a way to execute it using few disk-page
I/O's.

� Alternatively, PREPARE and EXECUTE can be
combined into:

EXEC SQL EXECUTE IMMEDIATE :query;

15

