
Object-Relational Systems

� Object-oriented ideas enter the relational
world.

✦ Keep relation as the fundamental
abstraction.

� Compare with \object-oriented DBMS," which
uses the class as the fundamental abstraction
and tacks on relations as one of many types.

Motivations

� Allow DBMS's to deal with specialized types
| maps, signals, images, etc. | with their
own specialized methods.

� Supports specialized methods even on
conventional relational data.

� Supports structure more complex than \at
�les."

1

Plan

1. Basic ideas from SQL3 standards documents.

2. Use Oracle 8 notation when similar.

3. Introduce some new concepts from Oracle 8.

✦ On-line document: or-objects.html.

2

Two Levels of SQL3 Objects

1. For tuples of relations = \row types."

2. For columns of relations = \types" or
\ADT's."

References

Row types can have references.

� If T is a row type, then REF(T) is the type of
a reference to a T object.

� Unlike OO systems, refs are values that can be
seen by queries.

3

Oracle 8 Approach

While SQL3 talks about types (for columns) and
row-types (for relations), Oracle 8 uses object-
types for both.

Example

CREATE TYPE BarType AS OBJECT (

name CHAR(20) UNIQUE,

addr CHAR(20)

);

CREATE TYPE BeerType AS OBJECT (

name CHAR(20) UNIQUE,

manf CHAR(20)

);

CREATE TYPE MenuType AS OBJECT (

bar REF BarType,

beer REF BeerType,

price FLOAT

);

� Note: in Oracle, type de�nitions must be
followed by a slash (/) in order to get them
to compile.

4

Creating Tables

Type declarations do not create tables.

� They are used in place of element lists in
CREATE TABLE statements.

Example

CREATE TABLE Bars OF BarType;

CREATE TABLE Beers OF BeerType;

CREATE TABLE Sells OF MenuType;

5

Values of Object Types

Each object type (type de�ned with AS

OBJECT) has a type constructor of the same name.

� Values of that type are the values of its �elds
wrapped in the constructor.

Example

SELECT * FROM Bars;

produces values such as

BarType('Joe''s Bar', 'Maple St.')

6

Accessing Fields of an Object

The dot operator works as expected.

� Thus, if we want the bar name and address
without the constructor:

SELECT bb.name, bb.addr

FROM Bars bb;

� The alias bb is not technically necessary, but
there are other places where we must use an
alias in order to access objects, and it is a
good habit to use an alias always.

7

Inserting Values

We can use the standard INSERT in Oracle, but
we must wrap the inserted object in its type-
constructor.

Example

INSERT INTO Bars VALUES(

BarType('Joe''s Bar', 'Maple St.')

);

8

Types for Columns

In Oracle 8, the same object-type declaration can
be the type of a column.

Example

Let's create an address type for use with bars and
drinkers.

CREATE TYPE AddrType AS OBJECT (

street CHAR(30),

city CHAR(20),

zip INT

);

We can then create a table of drinkers that
includes their name, address, and favorite beer.

� The beer is included as a beer object, rather
than a reference, which \unnormalizes" the
relation but is legal.

CREATE TABLE Drinker (

name CHAR(30),

addr AddrType,

favBeer BeerType

);

9

Need to Use Aliases

If you access an attribute whose type is an object
type, you must use an alias for the relation. E.g.,

SELECT favBeer

FROM Drinker;

will not work. Neither will:

SELECT Drinker.favBeer

FROM Drinker;

You have to say:

SELECT dd.favBeer

FROM Drinker dd;

10

Dereferencing in SQL3

A ! B = the B attribute of the object referred to
by reference A.

Example

Find the beers served by Joe.

SELECT beer -> name

FROM Sells

WHERE bar -> name = 'Joe''s Bar';

11

Dereferencing in Oracle 8

� Dereferencing automatic, using dot operator.

Example

Same query in Oracle 8:

SELECT ss.beer.name

FROM Sells ss

WHERE ss.bar.name = 'Joe''s Bar';

12

Oracle's DEREF Operator

If we wanted the entire BeerType object, we might
try to write

SELECT ss.beer

FROM Sells ss

WHERE ss.bar.name = 'Joe''s Bar';

That is legal, but ss.beer is a reference, and we'd
get a gibberish value.

� To see the whole beer object, use:

SELECT DEREF(ss.beer)

FROM Sells ss

WHERE ss.bar.name = 'Joe''s Bar';

13

Methods

Real reason object-relational isn't just nested
structures in relations.

� We'll follow Oracle 8 syntax.

� Declared in a CREATE TYPE statement, de�ned
in a CREATE TYPE BODY statement.

� Methods are functions or procedures; in Oracle
they are de�ned like any PL/SQL procedure
or function.

✦ But, there is a special tuple variable SELF

that refers to that object to which the
method is applied.

14

Example

Let's add a method priceInYen to the MenuType
and thus to the Sells relation.

CREATE TYPE MenuType AS OBJECT (

bar REF BarType,

beer REF BeerType,

price FLOAT,

MEMBER FUNCTION priceInYen(

rate IN FLOAT) RETURN FLOAT,

PRAGMA RESTRICT REFERENCES(priceInYen,

WNDS)

);

/

CREATE TYPE BODY MenuType AS

MEMBER FUNCTION

priceInYen(rate FLOAT) IS

BEGIN

RETURN rate * SELF.price;

END;

END;

/

CREATE TABLE Sells OF MenuType;

15

Some Points to Remember

� The pragma is needed to allow priceInYen to
be used in queries.

✦ WNDS = \write no database state."

� In the declaration, function/procedure
arguments need a mode, IN, OUT, or
IN OUT, just like PL/SQL procedures.

✦ But the mode does not appear in the
de�nition.

� Many methods will take no arguments (relying
on the built-in \self").

✦ You need () after the method name
anyway.

� The body can have any number of function
declarations, separated by semicolons.

16

Example of Method Use

Follow a designator for the object to which you
want to apply the method by a dot, the name of
the method, and argument(s).

SELECT ss.beer.name,

ss.priceInYen(106.0)

FROM Sells ss

WHERE ss.bar.name = 'Joe''s Bar';

17

Built-In Comparison Functions (SQL3)

We can de�ne for each ADT two functions EQUAL
and LESSTHAN.

� Allow values of this ADT to participate in
WHERE clauses involving =, <=, etc. and in
ORDER-BY sorting.

Order Methods in Oracle 8

We can declare one method for a type to be an
ORDER method.

� De�nition of this method must return <0, 0,
>0, if \self" is less than, equal to, or greater
than the argument object.

� Also used in comparisons for WHERE and ORDER

BY.

18

Example

Order BarType objects by name.

CREATE TYPE BarType AS OBJECT (

name CHAR(20) UNIQUE,

addr CHAR(20),

ORDER MEMBER FUNCTION before(

bar2 IN BarType) RETURN INT,

PRAGMA RESTRICT REFERENCES(before,

WNDS,RNDS,WNPS,RNPS)

);

/

19

CREATE TYPE BODY BarType AS

ORDER MEMBER FUNCTION

before(bar2 BarType) IS

BEGIN

IF SELF.name < bar2.name

THEN RETURN -1;

ELSIF SELF.name = bar2.name

THEN RETURN 0;

ELSE RETURN 1;

END IF;

END;

END;

/

� The extra codes in the pragma guarantee no
reading or writing of the database state or the
\package state."

20

