Object-Relational Systems

e Object-oriented ideas enter the relational
world.

[Keep relation as the fundamental
abstraction.

e Compare with “object-oriented DBMS,” which
uses the class as the fundamental abstraction
and tacks on relations as one of many types.

Motivations

e Allow DBMS’s to deal with specialized types
— maps, signals, images, etc. — with their
own specialized methods.

e Supports specialized methods even on
conventional relational data.

e Supports structure more complex than “flat
files.”

Plan

1. Basic ideas from SQL3 standards documents.
2. Use Oracle 8 notation when similar.
3. Introduce some new concepts from Oracle 8.

[On-line document: or-objects.html.

Two Levels of SQL3 Objects

1. For tuples of relations = “row types.”

2. For columns of relations = “types” or
“A_DT7S.”

References

Row types can have references.

e If T"is a row type, then REF (1) is the type of
a reference to a I' object.

e Unlike OO systems, refs are values that can be
seen by queries.

Oracle 8 Approach

While SQL3 talks about types (for columns) and
row-types (for relations), Oracle 8 uses object-
types for both.

Example

CREATE TYPE BarType AS OBJECT (
name CHAR(20) UNIQUE,
addr CHAR(20)

) ;

CREATE TYPE BeerType AS OBJECT (
name CHAR(20) UNIQUE,
manf CHAR(20)

) ;

CREATE TYPE MenuType AS OBJECT (
bar REF BarType,

beer REF BeerType,
price FLOAT

);

e Note: in Oracle, type definitions must be
followed by a slash (/) in order to get them
to compile.

Creating Tables

Type declarations do not create tables.

e They are used in place of element lists in
CREATE TABLE statements.

Example

CREATE TABLE Bars OF BarType;
CREATE TABLE Beers OF BeerType;
CREATE TABLE Sells OF MenuType;

Values of Object Types

Each object type (type defined with AS
OBJECT) has a type constructor of the same name.

e Values of that type are the values of its fields
wrapped in the constructor.

Example

SELECT * FROM Bars;
produces values such as

BarType(’Joe’’s Bar’, ’Maple St.’)

Accessing Fields of an Object

The dot operator works as expected.

Thus, if we want the bar name and address
without the constructor:

SELECT bb.name, bb.addr
FROM Bars bb;

The alias bb is not technically necessary, but
there are other places where we must use an
alias in order to access objects, and it is a
good habit to use an alias always.

Inserting Values

We can use the standard INSERT in Oracle, but
we must wrap the inserted object in its type-
constructor.

Example

INSERT INTO Bars VALUES(
BarType(’Joe’’s Bar’, ’Maple St.’)
) ;

Types for Columns

In Oracle 8, the same object-type declaration can
be the type of a column.

Example

Let’s create an address type for use with bars and
drinkers.

CREATE TYPE AddrType AS OBJECT (
street CHAR(30),
city CHAR(20),
zip INT

);

We can then create a table of drinkers that
includes their name, address, and favorite beer.

e The beer is included as a beer object, rather
than a reference, which “unnormalizes” the
relation but is legal.

CREATE TABLE Drinker (
name CHAR(30),
addr AddrType,
favBeer BeerType

);

Need to Use Aliases

If you access an attribute whose type is an object
type, you must use an alias for the relation. E.g.,

SELECT favBeer
FROM Drinker;

will not work. Neither will:

SELECT Drinker.favBeer
FROM Drinker;

You have to say:

SELECT dd.favBeer
FROM Drinker dd;

10

Dereferencing in SQL3

A — B = the B attribute of the object referred to
by reference A.

Example

Find the beers served by Joe.

SELECT beer -> name
FROM Sells
WHERE bar -> name = ’Joe’’s Bar’;

11

Dereferencing in Oracle 8

e Dereferencing automatic, using dot operator.

Example

Same query in Oracle 8:

SELECT ss.beer.name
FROM Sells ss
WHERE ss.bar.name = ’Joe’’s Bar’;

12

Oracle’s DEREF Operator

If we wanted the entire BeerType object, we might
try to write

SELECT ss.beer
FROM Sells ss
WHERE ss.bar.name = ’Joe’’s Bar’;

That is legal, but ss.beer is a reference, and we’d
get a gibberish value.

e To see the whole beer object, use:

SELECT DEREF (ss.beer)
FROM Sells ss
WHERE ss.bar.name = ’Joe’’s Bar’;

13

Methods

Real reason object-relational isn’t just nested
structures in relations.

e We'll follow Oracle 8 syntax.

e Declared in a CREATE TYPE statement, defined
in a CREATE TYPE BODY statement.

e Methods are functions or procedures; in Oracle
they are defined like any PL/SQL procedure
or function.

[1 But, there is a special tuple variable SELF
that refers to that object to which the
method is applied.

14

Example

Let’s add a method priceInYen to the MenuType
and thus to the Sells relation.

CREATE TYPE MenuType AS OBJECT (
bar REF BarType,
beer REF BeerType,
price FLOAT,
MEMBER FUNCTION priceInYen(
rate IN FLOAT) RETURN FLOAT,
PRAGMA RESTRICT_REFERENCES (pricelInVYen,
WNDS)
) ;
/

CREATE TYPE BODY MenuType AS
MEMBER FUNCTION
priceInYen(rate FLOAT) IS
BEGIN
RETURN rate *x SELF.price;
END;
END;
/

CREATE TABLE Sells OF MenuType;

15

Some Points to Remember

e The pragma is needed to allow priceInYen to
be used in queries.

[1 WNDS = “write no database state.”

e In the declaration, function/procedure

arguments need a mode, IN, OUT, or
IN OUT, just like PL/SQL procedures.

[1 But the mode does not appear in the
definition.

e Many methods will take no arguments (relying
on the built-in “self”).

[l You need () after the method name
anyway.

e The body can have any number of function
declarations, separated by semicolons.

16

Example of Method Use

Follow a designator for the object to which you
want to apply the method by a dot, the name of
the method, and argument(s).

SELECT ss.beer.name,
ss.priceInYen(106.0)

FROM Sells ss
WHERE ss.bar.name = ’Joe’’s Bar’;

17

Built-In Comparison Functions (SQL3)

We can define for each ADT two functions EQUAL
and LESSTHAN.

e Allow values of this ADT to participate in
WHERE clauses involving =, <=, etc. and in
ORDER-BY sorting.

Order Methods in Oracle 8

We can declare one method for a type to be an
ORDER method.

e Definition of this method must return <0, 0,
>0, if “selt” is less than, equal to, or greater
than the argument object.

e Also used in comparisons for WHERE and ORDER
BY.

18

Example

Order BarType objects by name.

CREATE TYPE BarType AS OBJECT (
name CHAR(20) UNIQUE,
addr CHAR(20),
ORDER MEMBER FUNCTION before(
bar2 IN BarType) RETURN INT,
PRAGMA RESTRICT_REFERENCES (before,
WNDS,RNDS ,WNPS,RNPS)

19

CREATE TYPE BODY BarType AS
ORDER MEMBER FUNCTION
before(bar2 BarType) IS
BEGIN
IF SELF .name < bar2.name
THEN RETURN -1;
ELSIF SELF .name = bar2.name
THEN RETURN O;
ELSE RETURN 1;
END IF;
END;
END;
/

The extra codes in the pragma guarantee no
reading or writing of the database state or the
“package state.”

20

