
Oracle 8 Nested Tables

Another structuring tool provided in Oracle 8 is
the ability to have a relation with an attribute
whose value is not just an object, but a (multi)set
of objects, i.e., a relation.

� Keyword THE allows us to treat a nested
relation as a regular relation, e.g., in FROM

clauses.

� Keywords CAST(MULTISET(...)) let us turn
the result of a query into a nested relation.

De�ning Table Types

If we have an object type, we can create a new
type that is a bag of that type by AS TABLE OF.

1



Example

Suppose we have a more complicated beer type:

CREATE TYPE BeerType AS OBJECT (

name CHAR(20),

kind CHAR(5),

color CHAR(5)

);

/

We may create a type that is a (nested) table of
objects of this type by:

CREATE TYPE BeerTableType AS

TABLE OF BeerType;

/

2



Now, we can de�ne a relation of manufacturers
that will nest their beers inside.

� In a sense, we normalize an unnormalized
relation, since other data about the
manufacturer appears only once no matter
how many beers they produce.

CREATE TABLE Manfs (

name CHAR(30),

addr CHAR(50),

beers BeerTableType

);

3



Querying With Nested Tables

An attribute that is a nested table can be printed
like any other attribute.

� The value has two type constructors, one for
the table, one for the type of its tuples.

Example

List the beers made by Anheuser-Busch.

SELECT beers

FROM Manfs

WHERE name = 'Anheuser Busch';

� A single value will be printed, looking
something like:

BeerTableType(

BeerType('Bud', 'lager', 'yello'),

BeerType('Lite', 'malt', 'pale'),...

)

4



Operating on Nested Tables

Use THE to get the nested table itself, then treat it
like any other relation.

Example

Find the ales made by Anheuser-Busch.

SELECT bb.name

FROM THE(

SELECT beers

FROM Manfs

WHERE name = 'Anheuser Busch'

) bb

WHERE bb.kind = 'ale';

5



Casting to Create Nested Tables

Create a value for a nested table by using a select-
from-where query and \casting" it to the table
type.

Example

� Suppose we have a relation Beers(beer,

manf), where beer is a BeerType object and
manf its manufacturer.

� We want to insert into Manfs a tuple for
Pete's Brewing Co., with all the beers brewed
by Pete's (according to Beers) in one nested
table.

INSERT INTO Manfs VALUES(

'Pete''s', 'Palo Alto',

CAST(

MULTISET(

SELECT bb.beer

FROM Beers bb

WHERE bb.manf = 'Pete''s'

) AS BeerType

)

);

6



Return to Normalization

Recall that we learned how to \normalize"
relations (= put them in BCNF) by decomposing

their schemas into two or more sets of attributes.

� We acted as if the decomposition was OK; the
new relations were good substitutes for the
original relation.

� It turns out to be OK when the decomposition
is governed by a BCNF violation, but may not
be OK otherwise.

7



Why Decomposition \Works"?

What does it mean to \work"? Why can't we just
tear sets of attributes apart as we like?

� Answer: the decomposed relations need to
represent the same information as the original.

✦ We must be able to reconstruct the
original from the decomposed relations.

Projection and Join Connect the Original
and Decomposed Relations

� Suppose R is decomposed into S and T . We
project R onto S and onto T .

8



Example

R =

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete's WickedAle
Spock Enterprise Bud A.B. Bud

� Recall we decomposed this relation as:

R

Drinkers1 Drinkers2

Drinkers3 Drinkers4

9



� Project onto Drinkers1(name, addr,

favoriteBeer):

name addr favoriteBeer

Janeway Voyager WickedAle
Spock Enterprise Bud

� Project onto Drinkers3(beersLiked, manf):

beersLiked manf

Bud A.B.
WickedAle Pete's

� Project onto Drinkers4(name, beersLiked):

name beersLiked

Janeway Bud
Janeway WickedAle
Spock Bud

10



Reconstruction of Original

Can we �gure out the original relation from the
decomposed relations?

� Sometimes, if we natural join the relations.

Example

Drinkers3 ./ Drinkers4 =

name beersLiked manf

Janeway Bud A.B.
Janeway WickedAle Pete's
Spock Bud A.B.

� Join of above with Drinkers1 = original R.

11



Theorem

Suppose we decompose a relation with schema
XY Z into XY and XZ and project the relation
for XY Z onto XY and XZ. Then XY ./ XZ

is guaranteed to reconstruct XY Z if and only if
either X ! Y or X ! Z holds.

� Notice that whenever we decompose because
of a BCNF violation, one of these FD's must
hold.

Proof (if)

1. Anything you project comes back in the join.

✦ Doesn't depend on FD's.

t1 t2

Z X X Y

Z X Y

t

12



2. Anything that comes back in the join was in
the original XY Z.

Z X

Z X Y

X Y

r

t1 s2

t

s

� Notice that t1 and s2 agree on X; therefore so
do t and s.

� If X ! Y , then r = t.

� If X ! Z, then r = s.

� Either way, r is in original XY Z.

13



Proof (only-if)

If neither X ! Y nor X ! Z holds, then we can
�nd an example XY Z relation where the project-
join returns too much.

Z X Y

z1 x y1
z2 x y2

Z X

z1 x

z2 x

X Y

x y1
x y2

Z X Y

z1 x y1
z1 x y2
z2 x y1
z2 x y2

14



Application to BCNF Decomposition

� When we decompose R into S and T , it is
because there is a FD of the form (S \ T ) !
(T � S).

� Thus, we can always reconstruct R from S and
T .

15


