
3NF

One FD structure causes problems:

� If you decompose, you can't check the FD's in
the decomposed relations.

� If you don't decompose, you violate BCNF.

Abstractly: AB ! C and C ! B.

� In book: title city ! theatre and theatre

! city.

� Another example: street city ! zip, zip !
city.

Keys: fA;Bg and fA;Cg, but C ! B has a left
side not a superkey.

� Suggests decomposition into BC and AC.

✦ But you can't check the FD AB ! C in
these relations.
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Example

A = street, B = city, C = zip.

street zip

545 Tech Sq. 02138
545 Tech Sq. 02139

city zip

Cambridge 02138
Cambridge 02139

Join:

city street zip

Cambridge 545 Tech Sq. 02138
Cambridge 545 Tech Sq. 02139
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\Elegant" Workaround

De�ne the problem away.

� A relation R is in 3NF i� for every nontrivial
FD X ! A, either:

1. X is a superkey, or

2. A is prime = member of at least one key.

� Thus, the canonical problem goes away: you
don't have to decompose because all attributes
are prime.
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Taking Advantage of 3NF

Theorem: For any relation R and set of FD's
F , we can �nd a decomposition of R into 3NF
relations, such that if the decomposed relations
satisfy their projected dependencies from F , then
their join will satisfy F itself.

� In fact, with some more e�ort, we can
guarantee that the decomposition is also
\lossless"; i.e., the join of the projections of
R onto the decomposed relations is always R
itself, just as for the BCNF decomposition.

� But what we give up is absolute absence of
redundancy due to FD's.

� The \obvious" approach of doing a BCNF
decomposition, but stopping when a relation
schema is in 3NF, doesn't always work | it
might still allow some FD's to get lost.
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Roadmap

1. Study minimal sets of FD's: needed for the
decompositions.

✦ Requires study of when two sets of FD's
are equivalent, in the sense that they are
satis�ed by exactly the same relation
instances.

2. Give the algorithm for constructing a
decomposition into 3NF schemas that
preserves all FD's.

✦ Called the synthesis algorithm.

3. Show how to modify this construction to
guarantee losslessness.
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3NF Synthesis Algorithm

Goal: decompose a relation R with FD's F so all
relations are 3NF, yet are capable of checking F .

� Roughly, we create for each FD in F a relation
containing only its attributes.

� Exception: it is a good idea to merge common
left sides; i.e., if X ! Y and X ! Z are FD's,
make one relation X ! Y Z.

� But | we need �rst to make F minimal in the
sense that:

a) No FD can be eliminated from F , and

b) No attribute can be eliminated from a left
side of an FD of F

without producing a set of FD's that is not
equivalent to F .

� Note that minimal sets of FD's are not
necessarily unique.

6



Why is Minimality Important?

Example: A! B, B ! C, and AB ! C.

� Tells us to create a relation ABC.

✦ But that's not in 3NF because A is the
only key, and B ! C holds.
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Testing Equivalence of FD Sets

Check whether each FD follows logically from the
other set.

X1! A1 Y 1! B1
X2! A2 Y 2! B2
� � � � � �
Xn! An Y m! Bm

� For each i, Y i ! Bi must follow from the set
on the left.

✦ i.e, (Y i)+ must contain Bi, when closure
is computed using the FD's on the left.

� Also, each Xi ! Ai must follow from the set
on the right.
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� Important special case: no need to check an
FD that appears in both sets.

� Thus, if F 0 is constructed from F by deleting
an FD, all we have to check is that the deleted
FD follows from F 0.

� If F 0 is constructed from F by deleting some
attributes from the left side of one FD (i.e., F
has XY ! Z and F 0 has X ! Z), then:

✦ Surely XY ! Z follows from X ! Z.

✦ Thus, to check F � F 0, we have only to
check that X ! Z follows from all of
F , i.e., Z is in X+ when the closure is
computed with respect to F .
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Example

Suppose F has A! B, B ! C, and AC ! D.

� F is not minimal.

� F1 with A ! B, B ! C, and A ! D is
minimal.

✦ Note that from F we can infer A ! D,
and from F1 we can infer AC ! D.

� F2 consisting of A ! B, B ! C and C ! D

is not equivalent to F .

✦ Note you cannot infer C ! D from F .

10



A Dependency-Preserving Decomposition

1. Minimize the given set of dependencies.

2. Create a relation with schema XY for each
FD X ! Y .

3. Eliminate a relation schema that is a subset of
another.

4. Add in a relation schema with all attributes
that are not part of any FD.
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Example

� Start with R = ABCD and F consisting of
A! B, B ! C, and AC ! D.

� F1 with A ! B, B ! C, and A ! D is a
minimal equivalent.

� With F1 as our minimal set of FD's, we get
database schema AB, BC, and AD, which is
su�cient to check F1 and therefore F .
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Dependency Preservation with Losslessness

Same as for just dependency preservation, but add
in a relation schema consisting of a key for R.

Example

In above example, A is a key for R, so we should
add A as a relation schema. However, A is a subset
of AB, and so nothing is needed; the original
database schema fAB;BC;ADg is lossless.

Not Covered

� Why basing the decomposition on a minimal
equivalent set of FD's guarantees 3NF.

� Why the key + FD's synthesis approach
guarantees losslessness.
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Multivalued Dependencies

Consider the relation Drinkers(name, addr,

phone, beersLiked), with the FD name ! addr.
That is, drinkers can have several phones and like
several beers. Typical relation:

name addr phone beersLiked

sue a p1 b1
sue a p1 b2
sue a p1 b3
sue a p2 b1
sue a p2 b2
sue a p2 b3

� Key = fname, phone, beersLikedg.

� BCNF violation: name ! addr. Decompose
into D1(name, addr), D2(name, phone,

beersLiked).

✦ Both are in BCNF.

14



� But look at D2:

name phone beersLiked

sue p1 b1
sue p1 b2
sue p1 b3
sue p2 b1
sue p2 b2
sue p2 b3

� The phones and beers are each repeated.

✦ If Sue had n phones and liked m beers,
there would be nm tuples for Sue, when
max(n;m) should be enough.
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Multivalued Dependencies

The multivalued dependency X !! Y holds in
a relation R if whenever we have two tuples of R
that agree in all the attributes of X, then we can
swap their Y components and get two new tuples
that are also in R.

X Y others
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Example

In Drinkers, we have MVD name !! phone. For
example:

name addr phone beersLiked

sue a p1 b1
sue a p2 b2

with phone components swapped yields:

name addr phone beersLiked

sue a p1 b2
sue a p2 b1

which are also tuples of the relation.

� Note: we must check this condition for all
pairs of tuples that agree on name, not just
one pair.
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MVD Rules

1. Every FD is an MVD.

✦ Because if X ! Y , then swapping Y 's
between tuples that agree on X doesn't
create new tuples.

✦ Example, in Drinkers: name !! addr.

2. Complementation: if X !! Y , then X !! Z,
where Z is all attributes not in X or Y .

✦ Example: since name !! phone

holds in Drinkers, so does
name !! addr beersLiked.
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Splitting Doesn't Hold

Sometimes you need to have several attributes on
the right of an MVD. For example:

Drinkers(name, areaCode, phone, beersLiked,

beerManf)

name areaCode phone BeersLiked beerManf

Sue 650 555-1111 Bud A.B.
Sue 650 555-1111 WickedAle Pete's
Sue 415 555-9999 Bud A.B.
Sue 415 555-9999 WickedAle Pete's

� name !! areaCode phone holds, but neither
name !! areaCode nor name !! phone do.
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4NF

Eliminate redundancy due to multiplicative e�ect
of MVD's.

� Roughly: treat MVD's as FD's for
decomposition, but not for �nding keys.

� Formally: R is in Fourth Normal Form if
whenever MVD X !! Y is nontrivial (Y
is not a subset of X, and X [ Y is not all
attributes), then X is a superkey.

✦ Remember, X ! Y implies X !! Y , so
4NF is more stringent than BCNF.

� Decompose R, using 4NF violation X !! Y ,
into XY and X [ (R � Y ).

R X Y
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Example

Drinkers(name, addr, areaCode, phone,

beersLiked, beerManf)

� FD: name ! addr

� Nontrivial MVD's: name !! areaCode phone

and name !! beersLiked beerManf.

� Only key: fname, areaCode, phone,

beersLiked, beerManfg

� All three dependencies violate 4NF.

� Successive decomposition yields 4NF relations:

D1(name, addr)

D2(name, areaCode, phone)

D3(name, beersLiked, beerManf)
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