
3NF

One FD structure causes problems:

� If you decompose, you can't check the FD's in
the decomposed relations.

� If you don't decompose, you violate BCNF.

Abstractly: AB ! C and C ! B.

� In book: title city ! theatre and theatre

! city.

� Another example: street city ! zip, zip !
city.

Keys: fA;Bg and fA;Cg, but C ! B has a left
side not a superkey.

� Suggests decomposition into BC and AC.

✦ But you can't check the FD AB ! C in
these relations.

1

Example

A = street, B = city, C = zip.

street zip

545 Tech Sq. 02138
545 Tech Sq. 02139

city zip

Cambridge 02138
Cambridge 02139

Join:

city street zip

Cambridge 545 Tech Sq. 02138
Cambridge 545 Tech Sq. 02139

2

\Elegant" Workaround

De�ne the problem away.

� A relation R is in 3NF i� for every nontrivial
FD X ! A, either:

1. X is a superkey, or

2. A is prime = member of at least one key.

� Thus, the canonical problem goes away: you
don't have to decompose because all attributes
are prime.

3

Taking Advantage of 3NF

Theorem: For any relation R and set of FD's
F , we can �nd a decomposition of R into 3NF
relations, such that if the decomposed relations
satisfy their projected dependencies from F , then
their join will satisfy F itself.

� In fact, with some more e�ort, we can
guarantee that the decomposition is also
\lossless"; i.e., the join of the projections of
R onto the decomposed relations is always R
itself, just as for the BCNF decomposition.

� But what we give up is absolute absence of
redundancy due to FD's.

� The \obvious" approach of doing a BCNF
decomposition, but stopping when a relation
schema is in 3NF, doesn't always work | it
might still allow some FD's to get lost.

4

Roadmap

1. Study minimal sets of FD's: needed for the
decompositions.

✦ Requires study of when two sets of FD's
are equivalent, in the sense that they are
satis�ed by exactly the same relation
instances.

2. Give the algorithm for constructing a
decomposition into 3NF schemas that
preserves all FD's.

✦ Called the synthesis algorithm.

3. Show how to modify this construction to
guarantee losslessness.

5

3NF Synthesis Algorithm

Goal: decompose a relation R with FD's F so all
relations are 3NF, yet are capable of checking F .

� Roughly, we create for each FD in F a relation
containing only its attributes.

� Exception: it is a good idea to merge common
left sides; i.e., if X ! Y and X ! Z are FD's,
make one relation X ! Y Z.

� But | we need �rst to make F minimal in the
sense that:

a) No FD can be eliminated from F , and

b) No attribute can be eliminated from a left
side of an FD of F

without producing a set of FD's that is not
equivalent to F .

� Note that minimal sets of FD's are not
necessarily unique.

6

Why is Minimality Important?

Example: A! B, B ! C, and AB ! C.

� Tells us to create a relation ABC.

✦ But that's not in 3NF because A is the
only key, and B ! C holds.

7

Testing Equivalence of FD Sets

Check whether each FD follows logically from the
other set.

X1! A1 Y 1! B1
X2! A2 Y 2! B2
� � � � � �
Xn! An Y m! Bm

� For each i, Y i ! Bi must follow from the set
on the left.

✦ i.e, (Y i)+ must contain Bi, when closure
is computed using the FD's on the left.

� Also, each Xi ! Ai must follow from the set
on the right.

8

� Important special case: no need to check an
FD that appears in both sets.

� Thus, if F 0 is constructed from F by deleting
an FD, all we have to check is that the deleted
FD follows from F 0.

� If F 0 is constructed from F by deleting some
attributes from the left side of one FD (i.e., F
has XY ! Z and F 0 has X ! Z), then:

✦ Surely XY ! Z follows from X ! Z.

✦ Thus, to check F � F 0, we have only to
check that X ! Z follows from all of
F , i.e., Z is in X+ when the closure is
computed with respect to F .

9

Example

Suppose F has A! B, B ! C, and AC ! D.

� F is not minimal.

� F1 with A ! B, B ! C, and A ! D is
minimal.

✦ Note that from F we can infer A ! D,
and from F1 we can infer AC ! D.

� F2 consisting of A ! B, B ! C and C ! D

is not equivalent to F .

✦ Note you cannot infer C ! D from F .

10

A Dependency-Preserving Decomposition

1. Minimize the given set of dependencies.

2. Create a relation with schema XY for each
FD X ! Y .

3. Eliminate a relation schema that is a subset of
another.

4. Add in a relation schema with all attributes
that are not part of any FD.

11

Example

� Start with R = ABCD and F consisting of
A! B, B ! C, and AC ! D.

� F1 with A ! B, B ! C, and A ! D is a
minimal equivalent.

� With F1 as our minimal set of FD's, we get
database schema AB, BC, and AD, which is
su�cient to check F1 and therefore F .

12

Dependency Preservation with Losslessness

Same as for just dependency preservation, but add
in a relation schema consisting of a key for R.

Example

In above example, A is a key for R, so we should
add A as a relation schema. However, A is a subset
of AB, and so nothing is needed; the original
database schema fAB;BC;ADg is lossless.

Not Covered

� Why basing the decomposition on a minimal
equivalent set of FD's guarantees 3NF.

� Why the key + FD's synthesis approach
guarantees losslessness.

13

Multivalued Dependencies

Consider the relation Drinkers(name, addr,

phone, beersLiked), with the FD name ! addr.
That is, drinkers can have several phones and like
several beers. Typical relation:

name addr phone beersLiked

sue a p1 b1
sue a p1 b2
sue a p1 b3
sue a p2 b1
sue a p2 b2
sue a p2 b3

� Key = fname, phone, beersLikedg.

� BCNF violation: name ! addr. Decompose
into D1(name, addr), D2(name, phone,

beersLiked).

✦ Both are in BCNF.

14

� But look at D2:

name phone beersLiked

sue p1 b1
sue p1 b2
sue p1 b3
sue p2 b1
sue p2 b2
sue p2 b3

� The phones and beers are each repeated.

✦ If Sue had n phones and liked m beers,
there would be nm tuples for Sue, when
max(n;m) should be enough.

15

Multivalued Dependencies

The multivalued dependency X !! Y holds in
a relation R if whenever we have two tuples of R
that agree in all the attributes of X, then we can
swap their Y components and get two new tuples
that are also in R.

X Y others

16

Example

In Drinkers, we have MVD name !! phone. For
example:

name addr phone beersLiked

sue a p1 b1
sue a p2 b2

with phone components swapped yields:

name addr phone beersLiked

sue a p1 b2
sue a p2 b1

which are also tuples of the relation.

� Note: we must check this condition for all
pairs of tuples that agree on name, not just
one pair.

17

MVD Rules

1. Every FD is an MVD.

✦ Because if X ! Y , then swapping Y 's
between tuples that agree on X doesn't
create new tuples.

✦ Example, in Drinkers: name !! addr.

2. Complementation: if X !! Y , then X !! Z,
where Z is all attributes not in X or Y .

✦ Example: since name !! phone

holds in Drinkers, so does
name !! addr beersLiked.

18

Splitting Doesn't Hold

Sometimes you need to have several attributes on
the right of an MVD. For example:

Drinkers(name, areaCode, phone, beersLiked,

beerManf)

name areaCode phone BeersLiked beerManf

Sue 650 555-1111 Bud A.B.
Sue 650 555-1111 WickedAle Pete's
Sue 415 555-9999 Bud A.B.
Sue 415 555-9999 WickedAle Pete's

� name !! areaCode phone holds, but neither
name !! areaCode nor name !! phone do.

19

4NF

Eliminate redundancy due to multiplicative e�ect
of MVD's.

� Roughly: treat MVD's as FD's for
decomposition, but not for �nding keys.

� Formally: R is in Fourth Normal Form if
whenever MVD X !! Y is nontrivial (Y
is not a subset of X, and X [Y is not all
attributes), then X is a superkey.

✦ Remember, X ! Y implies X !! Y , so
4NF is more stringent than BCNF.

� Decompose R, using 4NF violation X !! Y ,
into XY and X [(R � Y).

R X Y

20

Example

Drinkers(name, addr, areaCode, phone,

beersLiked, beerManf)

� FD: name ! addr

� Nontrivial MVD's: name !! areaCode phone

and name !! beersLiked beerManf.

� Only key: fname, areaCode, phone,

beersLiked, beerManfg

� All three dependencies violate 4NF.

� Successive decomposition yields 4NF relations:

D1(name, addr)

D2(name, areaCode, phone)

D3(name, beersLiked, beerManf)

21

