3NF

One FD structure causes problems:

- If you decompose, you can't check the FD's in the decomposed relations.
- If you don't decompose, you violate BCNF. Abstractly: $A B \rightarrow C$ and $C \rightarrow B$.
- In book: title city \rightarrow theatre and theatre \rightarrow city.
- Another example: street city \rightarrow zip, zip \rightarrow city.
Keys: $\{A, B\}$ and $\{A, C\}$, but $C \rightarrow B$ has a left side not a superkey.
- Suggests decomposition into $B C$ and $A C$.
- But you can't check the FD $A B \rightarrow C$ in these relations.

Example
$A=$ street,$B=$ city,$C=$ zip.

street	zip
545 Tech Sq.	02138
545 Tech Sq.	02139

city	zip
Cambridge	02138
Cambridge	02139

Join:

city	street	zip
Cambridge	545 Tech Sq.	02138
Cambridge	545 Tech Sq.	02139

"Elegant" Workaround

Define the problem away.

- A relation R is in 3NF iff for every nontrivial FD $X \rightarrow A$, either:

1. X is a superkey, or
2. A is prime $=$ member of at least one key.

Thus, the canonical problem goes away: you don't have to decompose because all attributes are prime.

Taking Advantage of 3NF

Theorem: For any relation R and set of FD's F, we can find a decomposition of R into 3 NF relations, such that if the decomposed relations satisfy their projected dependencies from F, then their join will satisfy F itself.

- In fact, with some more effort, we can guarantee that the decomposition is also "lossless"; i.e., the join of the projections of R onto the decomposed relations is always R itself, just as for the BCNF decomposition.
- But what we give up is absolute absence of redundancy due to FD's.
- The "obvious" approach of doing a BCNF decomposition, but stopping when a relation schema is in 3NF, doesn't always work - it might still allow some FD's to get lost.

Roadmap

1. Study minimal sets of FD's: needed for the decompositions.

- Requires study of when two sets of FD's are equivalent, in the sense that they are satisfied by exactly the same relation instances.

2. Give the algorithm for constructing a decomposition into 3NF schemas that preserves all FD's.

- Called the synthesis algorithm.

3. Show how to modify this construction to guarantee losslessness.

3NF Synthesis Algorithm

Goal: decompose a relation R with FD's F so all relations are 3NF, yet are capable of checking F.

- Roughly, we create for each FD in F a relation containing only its attributes.
- Exception: it is a good idea to merge common left sides; i.e., if $X \rightarrow Y$ and $X \rightarrow Z$ are FD's, make one relation $X \rightarrow Y Z$.
- But - we need first to make F minimal in the sense that:
a) No FD can be eliminated from F, and
b) No attribute can be eliminated from a left side of an FD of F
without producing a set of FD's that is not equivalent to F.
- Note that minimal sets of FD's are not necessarily unique.

Why is Minimality Important?

Example: $A \rightarrow B, B \rightarrow C$, and $A B \rightarrow C$.

- Tells us to create a relation $A B C$.
- But that's not in 3NF because A is the only key, and $B \rightarrow C$ holds.

Testing Equivalence of FD Sets

Check whether each FD follows logically from the other set.

$$
\begin{array}{ll}
X 1 \rightarrow A 1 & Y 1 \rightarrow B 1 \\
X 2 \rightarrow A 2 & Y 2 \rightarrow B 2 \\
\cdots & \cdots \\
X n \rightarrow A n & Y m \rightarrow B m
\end{array}
$$

- For each $i, Y i \rightarrow B i$ must follow from the set on the left.
- i.e, $(Y i)^{+}$must contain $B i$, when closure is computed using the FD's on the left.

Also, each $X i \rightarrow A i$ must follow from the set on the right.

- Important special case: no need to check an FD that appears in both sets.
- Thus, if F^{\prime} is constructed from F by deleting an FD, all we have to check is that the deleted FD follows from F^{\prime}.
- If F^{\prime} is constructed from F by deleting some attributes from the left side of one FD (i.e., F has $X Y \rightarrow Z$ and F^{\prime} has $X \rightarrow Z$), then:
- Surely $X Y \rightarrow Z$ follows from $X \rightarrow Z$.
- Thus, to check $F \equiv F^{\prime}$, we have only to check that $X \rightarrow Z$ follows from all of F, i.e., Z is in X^{+}when the closure is computed with respect to F.

Example

Suppose F has $A \rightarrow B, B \rightarrow C$, and $A C \rightarrow D$.

- $\quad F$ is not minimal.
$F 1$ with $A \rightarrow B, B \rightarrow C$, and $A \rightarrow D$ is minimal.
- Note that from F we can infer $A \rightarrow D$, and from $F 1$ we can infer $A C \rightarrow D$.
- $\quad F 2$ consisting of $A \rightarrow B, B \rightarrow C$ and $C \rightarrow D$ is not equivalent to F.
- Note you cannot infer $C \rightarrow D$ from F.

A Dependency-Preserving Decomposition

1. Minimize the given set of dependencies.
2. Create a relation with schema $X Y$ for each FD $X \rightarrow Y$.
3. Eliminate a relation schema that is a subset of another.
4. Add in a relation schema with all attributes that are not part of any FD.

Example

- Start with $R=A B C D$ and F consisting of $A \rightarrow B, B \rightarrow C$, and $A C \rightarrow D$.
- $\quad F 1$ with $A \rightarrow B, B \rightarrow C$, and $A \rightarrow D$ is a minimal equivalent.
- With $F 1$ as our minimal set of FD's, we get database schema $A B, B C$, and $A D$, which is sufficient to check $F 1$ and therefore F.

Dependency Preservation with Losslessness

Same as for just dependency preservation, but add in a relation schema consisting of a key for R.

Example

In above example, A is a key for R, so we should add A as a relation schema. However, A is a subset of $A B$, and so nothing is needed; the original database schema $\{A B, B C, A D\}$ is lossless.

Not Covered

- Why basing the decomposition on a minimal equivalent set of FD's guarantees 3 NF .
- Why the key + FD's synthesis approach guarantees losslessness.

Multivalued Dependencies

Consider the relation Drinkers(name, addr, phone, beersLiked), with the FD name \rightarrow addr. That is, drinkers can have several phones and like several beers. Typical relation:

name	addr	phone	beersLiked
sue	a	$p 1$	$b 1$
sue	a	$p 1$	$b 2$
sue	a	$p 1$	$b 3$
sue	a	$p 2$	$b 1$
sue	a	$p 2$	$b 2$
sue	a	$p 2$	$b 3$

- Key $=\{$ name, phone, beersLiked $\}$.
- BCNF violation: name \rightarrow addr. Decompose into D1 (name, addr), D2 (name, phone, beersLiked).
\checkmark Both are in BCNF.
- But look at D2:

name	phone	beersLiked
sue	$p 1$	$b 1$
sue	$p 1$	$b 2$
sue	$p 1$	$b 3$
sue	$p 2$	$b 1$
sue	$p 2$	$b 2$
sue	$p 2$	$b 3$

The phones and beers are each repeated.

- If Sue had n phones and liked m beers, there would be $n m$ tuples for Sue, when $\max (n, m)$ should be enough.

Multivalued Dependencies

The multivalued dependency $X \rightarrow Y$ holds in a relation R if whenever we have two tuples of R that agree in all the attributes of X, then we can swap their Y components and get two new tuples that are also in R.

Example

In Drinkers, we have MVD name \rightarrow phone. For example:

name	addr	phone	beersLiked
sue	a	$p 1$	$b 1$
sue	a	$p 2$	$b 2$

with phone components swapped yields:

$$
\begin{array}{l|l|l|l}
\text { name } & \text { addr } & \text { phone } & \text { beersLiked } \\
\hline \hline \text { sue } & a & p 1 & b 2 \\
\text { sue } & a & p 2 & b 1
\end{array}
$$

which are also tuples of the relation.

- Note: we must check this condition for all pairs of tuples that agree on name, not just one pair.

MVD Rules

1. Every FD is an MVD.

- Because if $X \rightarrow Y$, then swapping Y 's between tuples that agree on X doesn't create new tuples.
\rightarrow Example, in Drinkers: name \rightarrow addr.

2. Complementation: if $X \rightarrow Y$, then $X \rightarrow Z$, where Z is all attributes not in X or Y.

- Example: since name \rightarrow phone holds in Drinkers, so does name \rightarrow addr beersLiked.

Splitting Doesn't Hold

Sometimes you need to have several attributes on the right of an MVD. For example:

Drinkers(name, areaCode, phone, beersLiked, beerManf)

name	areaCode	phone	BeersLiked	beerManf
Sue	650	$555-1111$	Bud	A.B.
Sue	650	$555-1111$	WickedAle	Pete's
Sue	415	$555-9999$	Bud	A.B.
Sue	415	$555-9999$	WickedAle	Pete's

- name \rightarrow areaCode phone holds, but neither name \rightarrow areaCode nor name \rightarrow phone do.

4NF

Eliminate redundancy due to multiplicative effect of MVD's.

- Roughly: treat MVD's as FD's for decomposition, but not for finding keys.
- Formally: R is in Fourth Normal Form if whenever MVD $X \rightarrow Y$ is nontrivial (Y is not a subset of X, and $X \cup Y$ is not all attributes), then X is a superkey.
- Remember, $X \rightarrow Y$ implies $X \rightarrow Y$, so 4 NF is more stringent than BCNF.
- Decompose R, using 4NF violation $X \rightarrow Y$, into $X Y$ and $X \cup(R-Y)$.

Example

Drinkers(name, addr, areaCode, phone, beersLiked, beerManf)

- FD: name \rightarrow addr
- Nontrivial MVD's: name \rightarrow areaCode phone and name \rightarrow beersLiked beerManf.
- Only key: \{name, areaCode, phone, beersLiked, beerManf $\}$
- All three dependencies violate 4 NF .
- Successive decomposition yields 4NF relations:

D1 (name, addr)
D2 (name, areaCode, phone)
D3 (name, beersLiked, beerManf)

