
Logical Query Languages

Motivation:

1. Logical rules extend more naturally to
recursive queries than does relational algebra.

✦ Used in SQL3 recursion.

2. Logical rules form the basis for many
information-integration systems and
applications.

1



Datalog Example

Likes(drinker, beer)

Sells(bar, beer, price)

Frequents(drinker, bar)

Happy(d) <-

Frequents(d,bar) AND

Likes(d,beer) AND

Sells(bar,beer,p)

� Above is a rule.

� Left side = head.

� Right side = body = AND of subgoals.

� Head and subgoals are atoms.

✦ Atom = predicate and arguments.

✦ Predicate = relation name or arithmetic
predicate, e.g. <.

✦ Arguments are variables or constants.

� Subgoals (not head) may optionally be
negated by NOT.

2



Meaning of Rules

Head is true of its arguments if there exist values
for local variables (those in body, not in head) that
make all of the subgoals true.

� If no negation or arithmetic comparisons, just
natural join the subgoals and project onto the
head variables.

Example

Above rule equivalent to Happy(d) =
�drinker(Frequents ./ Likes ./ Sells)

3



Evaluation of Rules

Two, dual, approaches:

1. Variable-based : Consider all possible
assignments of values to variables. If all
subgoals are true, add the head to the result
relation.

2. Tuple-based : Consider all assignments of
tuples to subgoals that make each subgoal
true. If the variables are assigned consistent
values, add the head to the result.

Example: Variable-Based Assignment

S(x,y) <- R(x,z) AND R(z,y)

AND NOT R(x,y)

R =

A B

1 2
2 3

4



� Only assignments that make �rst subgoal true:

1. x! 1, z ! 2.

2. x! 2, z ! 3.

� In case (1), y ! 3 makes second subgoal true.
Since (1; 3) is not in R, the third subgoal is
also true.

✦ Thus, add (x; y) = (1; 3) to relation S.

� In case (2), no value of y makes the second
subgoal true. Thus, S =

A B

1 3

5



Example: Tuple-Based Assignment

Trick: start with the positive (not negated),
relational (not arithmetic) subgoals only.

S(x,y) <- R(x,z) AND R(z,y)

AND NOT R(x,y)

R =

A B

1 2
2 3

� Four assignments of tuples to subgoals:

R(x; z) R(z; y)

(1; 2) (1; 2)
(1; 2) (2; 3)
(2; 3) (1; 2)
(2; 3) (2; 3)

� Only the second gives a consistent value to z.

� That assignment also makes NOT R(x,y) true.

� Thus, (1; 3) is the only tuple for the head.

6



Safety

A rule can make no sense if variables appear in
funny ways.

Examples

� S(x) <- R(y)

� S(x) <- NOT R(x)

� S(x) <- R(y) AND x < y

In each of these cases, the result is in�nite, even if
the relation R is �nite.

� To make sense as a database operation, we
need to require three things of a variable x. If
x appears in either

1. The head,

2. A negated subgoal, or

3. An arithmetic comparison,

then x must also appear in a nonnegated,
\ordinary" (relational) subgoal of the body.

� We insist that rules be safe, henceforth.

7



Datalog Programs

� A collection of rules is a Datalog program.

� Predicates/relations divide into two classes:

✦ EDB = extensional database = relation
stored in DB.

✦ IDB = intensional database = relation
de�ned by one or more rules.

� A predicate must be IDB or EDB, not both.

✦ Thus, an IDB predicate can appear in the
body or head of a rule; EDB only in the
body.

8



Example

Convert the following SQL (Find the
manufacturers of the beers Joe sells):

Beers(name, manf)

Sells(bar, beer, price)

SELECT manf

FROM Beers

WHERE name IN(

SELECT beer

FROM Sells

WHERE bar = 'Joe''s Bar'

);

to a Datalog program.

JoeSells(b) <-

Sells('Joe''s Bar', b, p)

Answer(m) <-

JoeSells(b) AND Beers(b,m)

� Note: Beers, Sells = EDB; JoeSells,
Answer = IDB.

9



Expressive Power of Datalog

� Nonrecursive Datalog = relational algebra.

� Datalog simulates SQL select-from-where
without aggregation and grouping.

� Recursive Datalog expresses queries that
cannot be expressed in SQL.

� But none of these languages have full
expressive power (Turing completeness).

10



Relational Algebra to Datalog

� Text has constructions for each of the
operators of R.A.

✦ Only hard part: selections with OR's and
NOT's.

� Simulate a R.A. expression in Datalog by
creating an IDB predicate for each interior
node and using the constuction for the
operator at that node.

11



Example: Find the bars that sell two di�erent
beers at the same price.

Sells Sells

�bar

./

�S(bar;beer1;price)

�beer 6=beer1

R1(bar,beer1,beer,price) <-

Sells(bar,beer1,price) AND

Sells(bar,beer,price);

R2(bar,beer1,beer,price) <-

R1(bar,beer1,beer,price) AND

beer1 <> beer;

Answer(bar) <-

R2(bar,beer1,beer,price);

12



Datalog to Relational Algebra

� General rule is complex; the following often
works for single rules:

✦ Problems not handled: constant
arguments and variables appearing twice
in the same atom.

✦ Can you provide the necessary �xes?

1. Use � to create for each relational subgoal
a relation whose schema is the variables of
that subgoal.

2. Handle negated subgoals by �nding an
expression for the �nite set of all possible
values for each of its variables (� a
suitable column) and take their product.
Then subtract.

3. Natural join the relations from (1), (2).

4. Get the e�ect of arithmetic comparisons
with �.

5. Project onto head with �.

� Several rules for same predicate: use [.

13



Example

S(x,y) <- R(x,z) AND R(z,y)

AND NOT R(x,y)

S1(x,y,z) := �R1(x;z)(R) ./ �R2(z;y)(R);

S2(x,y) := �x(S1) � �y(S1);

S3(x,y) := S2 � �R3(x;y)(R);

S(x,y) := �x;y(S1(x,y,z) ./ S3(x,y));

14



Recursion

� IDB predicate P depends on predicate Q if
there is a rule with P in the head and Q in a
subgoal.

� Draw a graph: nodes = IDB predicates, arc
P ! Q means P depends on Q.

� Cycles i� recursive.

Recursive Example

Sib(x,y) <- Par(x,p) AND Par(y,p)

AND x <> y

Cousin(x,y) <- Sib(x,y)

Cousin(x,y) <- Par(x,xp)

AND Par(y,yp)

AND Cousin(xp,yp)

15



Iterative Fixed-Point Evaluates Recursive

Rules

Change

to IDB?

Start

IDB = ;

Apply rules

to IDB, EDB

yes no
done

16



Example

EDB Par =

a d

b c e

f g

j k i

h

� Note, because of symmetry, Sib and Cousin

facts appear in pairs, so we shall mention only
(x; y) when both (x; y) and (y; x) are meant.

17



Sib Cousin

Initial ; ;

Round 1 (b; c); (c; e) ;

add: (g; h); (j; k)

Round 2 (b; c); (c; e)
add: (g; h); (j; k)

Round 3 (f; g); (f; h)
add: (g; i); (h; i)

(i; k)

Round 4 (k; k)
add: (i; j)

18


