
Strati�ed Negation

� Negation wrapped inside a recursion makes no
sense.

� Even when negation and recursion are
separated, there can be ambiguity about what
the rules mean, and some one meaning must
be selected.

� Strati�ed negation is an additional restraint on
recursive rules (like safety) that solves both
problems:

1. It rules out negation wrapped in
recursion.

2. When negation is separate from recursion,
it yields the intuitively correct meaning of
rules.

1



Problem with Recursive Negation

Consider:

P(x) <- Q(x) AND NOT P(x)

� Q = EDB = f1; 2g.

� Compute IDB P iteratively?

✦ Initially, P = ;.

✦ Round 1: P = f1; 2g.

✦ Round 2: P = ;, etc., etc.

2



Strata

Intuitively: stratum of an IDB predicate =
maximum number of negations you can pass
through on the way to an EDB predicate.

� Must not be 1 in \strati�ed" rules.

� De�ne stratum graph:

✦ Nodes = IDB predicates.

✦ Arc P ! Q if Q appears in the body of a
rule with head P .

✦ Label that arc � if Q is in a negated
subgoal.

Example

P(x) <- Q(x) AND NOT P(x)

P�

3



Example

Reach(x) <- Source(x)

Reach(x) <- Reach(y) AND Arc(y,x)

NoReach(x) <- Target(x)

AND NOT Reach(x)

Reach

NoReach

�

4



Computing Strata

Stratum of an IDB predicate A = maximum
number of � arcs on any path from A in the
stratum graph.

Examples

� For �rst example, stratum of P is 1.

� For second example, stratum of Reach is 0;
stratum of NoReach is 1.

Strati�ed Negation

A Datalog program with recursion and negation
is strati�ed if every IDB predicate has a �nite
stratum.

Strati�ed Model

If a Datalog program is strati�ed, we can compute
the relations for the IDB predicates lowest-
stratum-�rst.

5



Example

Reach(x) <- Source(x)

Reach(x) <- Reach(y) AND Arc(y,x)

NoReach(x) <- Target(x)

AND NOT Reach(x)

� EDB:

✦ Source = f1g.

✦ Arc = f(1; 2); (3; 4); (4; 3)g.

✦ Target = f2; 3g.

1 2 3 4

source target target

� First compute Reach = f1; 2g (stratum 0).

� Next compute NoReach = f3g.

6



Is the Strati�ed Solution \Obvious"?

Not really.

� There is another model that makes the rules
true no matter what values we substitute for
the variables.

✦ Reach = f1; 2; 3; 4g.

✦ NoReach = ;.

� Remember: the only way to make a Datalog
rule false is to �nd values for the variables
that make the body true and the head false.

✦ For this model, the heads of the rules
for Reach are true for all values, and
in the rule for NoReach the subgoal
NOT Reach(x) assures that the body
cannot be true.

7



SQL3 Recursion

WITH

stu� that looks like Datalog rules
an SQL query about EDB, IDB

� Rule =

[RECURSIVE] R(<arguments>) AS
SQL query

8



Example

Find Sally's cousins, using EDB Par(child,

parent).

WITH

Sib(x,y) AS

SELECT p1.child, p2,child

FROM Par p1, Par p2

WHERE p1.parent = p2.parent

AND p1.child <> p2.child,

RECURSIVE Cousin(x,y) AS

Sib

UNION

(SELECT p1.child, p2.child

FROM Par p1, Par p2, Cousin

WHERE p1.parent = Cousin.x

AND p2.parent = Cousin.y

)

SELECT y

FROM Cousin

WHERE x = 'Sally';

9



Plan for Describing Legal SQL3 recursion

1. De�ne \monotonicity," a property that
generalizes \strati�cation."

2. Generalize stratum graph to apply to SQL
queries instead of Datalog rules.

✦ (Non)monotonicity replaces NOT in
subgoals.

3. De�ne semantically correct SQL3 recursions in
terms of stratum graph.

Monotonicity

If relation P is a function of relation Q (and
perhaps other things), we say P is monotone in
Q if adding tuples to Q cannot cause any tuple of
P to be deleted.

10



Monotonicity Example

In addition to certain negations, an aggregation
can cause nonmonotonicity.

Sells(bar, beer, price)

SELECT AVG(price)

FROM Sells

WHERE bar = 'Joe''s Bar';

� Adding to Sells a tuple that gives a new beer
Joe sells will usually change the average price
of beer at Joe's.

� Thus, the former result, which might be a
single tuple like (2:78) becomes another single
tuple like (2:81), and the old tuple is lost.

11



Generalizing Stratum Graph to SQL

� Node for each relation de�ned by a \rule."

� Node for each subquery in the \body" of a
rule.

� Arc P ! Q if

a) P is \head" of a rule, and Q is a relation
appearing in the FROM list of the rule
(not in the FROM list of a subquery), as
argument of a UNION, etc.

b) P is head of a rule, and Q is a subquery
directly used in that rule (not nested
within some larger subquery).

c) P is a subquery, and Q is a relation
or subquery used directly within P

[analogous to (a) and (b) for rule heads].

� Label the arc � if P is not monotone in Q.

� Requirement for legal SQL3 recursion: �nite
strata only.

12



Example

For the Sib/Cousin example, there are three nodes:
Sib, Cousin, and SQ (the second term of the
union in the rule for Cousin.

Sib Cousin

SQ

� No nonmonotonicity, hence legal.

13



A Nonmonotonic Example

Change the UNION to EXCEPT in the rule for
Cousin.

RECURSIVE Cousin(x,y) AS

Sib

EXCEPT

(SELECT p1.child, p2.child

FROM Par p1, Par p2, Cousin

WHERE p1.parent = Cousin.x

AND p2.parent = Cousin.y

)

� Now, Adding to the result of the subquery
can delete Cousin facts; i.e., Cousin is
nonmonotone in SQ.

Sib Cousin

SQ

�

� In�nite number of �'s in cycle, so illegal in
SQL3.

14



Another Example: NOT Doesn't Mean

Nonmonotone

Leave Cousin as it was, but negate one of the
conditions in the where-clause.

RECURSIVE Cousin(x,y) AS

Sib

UNION

(SELECT p1.child, p2.child

FROM Par p1, Par p2, Cousin

WHERE p1.parent = Cousin.x

AND NOT (p2.parent = Cousin.y)

)

� You might think that SQ depends negatively
on Cousin, but it doesn't.

✦ If I add a new tuple to Cousin, all the old
tuples still exist and yield whatever tuples
in SQ they used to yield.

✦ In addition, the new Cousin tuple might
combine with old p1 and p2 tuples to
yield something new.

15


