
Object-Oriented DBMS's

� ODMG = Object Data Management Group:
an OO standard for databases.

� ODL = Object Description Language: design
in the OO style.

� OQL = Object Query Language: queries
an OO database with an ODL schema, in a
manner similar to SQL.

1



ODL Overview

� Class declarations (interfaces).

� Interface includes:

1. Name for the interface.

2. Key declaration(s), which are optional.

3. Extent declaration = name for the set of
currently existing objects of a class.

4. Element declarations. An element is an
attribute, a relationship, or a method.

2



ODL Class Declarations

interface <name> {

elements = attributes, relationships,
methods

}

Element Declarations

attribute <type> <name>;
relationship <rangetype> <name>;

� Relationships involve objects; attributes
involve non-object values, e.g., integers.

Method Example

float gpa(in: Student) raises(noGrades)

� float = return type.

� in: indicates Student argument is read-only.

✦ Other options: out, inout.

� noGrades is an exception that can be raised
by method gpa.

3



ODL Relationships

� Only binary relations supported.

✦ Multiway relationships require a
\connecting" class, as discussed for E/R
model.

� Relationships come in inverse pairs.

✦ Example: \Sells" between beers and bars
is represented by a relationship in bars,
giving the beers sold, and a relationship
in beers giving the bars that sell it.

� Many-many relationships have a set type
(called a collection type) in each direction.

� Many-one relationships have a set type for the
one, and a simple class name for the many.

� One-one relations have classes for both.

4



Beers-Bars-Drinkers Example

interface Beers {

attribute string name;

attribute string manf;

relationship Set<Bars> servedAt

inverse Bars::serves;

relationship Set<Drinkers> fans

inverse Drinkers::likes;

}

� An element from another class is indicated by
<class>::

� Form a set type with Set<type>.

5



interface Bars {

attribute string name;

attribute Struct Addr

{string street, string city, int zip}

address;

attribute Enum Lic {full, beer, none}

licenseType;

relationship Set<Drinkers> customers

inverse Drinkers::frequents;

relationship Set<Beers> serves

inverse Beers::servedAt;

}

� Structured types have names and bracketed
lists of �eld-type pairs.

� Enumerated types have names and bracketed
lists of values.

6



interface Drinkers {

attribute string name;

attribute Struct Bars::Addr

address;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Set<Bars> frequents

inverse Bars::customers;

}

� Note reuse of Addr type.

7



ODL Type System

� Basic types: int, real/oat, string, enumerated
types, and classes.

� Type constructors: Struct for structures and
four collection types: Set, Bag, List, and
Array.

Limitation on Nesting

class collection

Relationship

Attribute

basic,

no class
collectionstruct

8



Many-One Relationships

Don't use a collection type for relationship in the
\many" class.

Example: Drinkers Have Favorite Beers

interface Drinkers {

attribute string name;

attribute Struct Bars::Addr

address;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Beers favoriteBeer

inverse Beers::realFans;

relationship Set<Bars> frequents

inverse Bars::customers;

}

� Also add to Beers:

relationship Set<Drinkers> realFans

inverse Drinkers::favoriteBeer;

9



Example: Multiway Relationship

Consider a 3-way relationship bars-beers-prices.
We have to create a connecting class BBP.

interface Prices {

attribute real price;

relationship Set<BBP> toBBP

inverse BBP::thePrice;

}

interface BBP {

relationship Bars theBar inverse ...

relationship Beers theBeer inverse ...

relationship Prices thePrice

inverse Prices::toBBP;

}

� Inverses for theBar, theBeer must be added
to Bars, Beers.

� Better in this special case: make no Prices

class; make price an attribute of BBP.

� Notice that keys are optional.

✦ BBP has no key, yet is not \weak." Object
identity su�ces to distinguish di�erent
BBP objects.

10



Roles in ODL

Names of relationships handle \roles."

Example: Spouses and Drinking Buddies

interface Drinkers {

attribute string name;

attribute Struct Bars::Addr

address;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Set<Bars> frequents

inverse Bars::customers;

relationship Drinkers husband

inverse wife;

relationship Drinkers wife

inverse husband;

relationship Set<Drinkers> buddies

inverse buddies;

}

� Notice that Drinkers:: is optional when the
inverse is a relationship of the same class.

11



ODL Subclasses

Follow name of subclass by colon and its
superclass.

Example: Ales are Beers with a Color

interface Ales:Beers {

attribute string color;

}

� Objects of the Ales class acquire all the
attributes and relationships of the Beers class.

� While E/R entities can have manifestations in
a class and subclass, in ODL we assume each
object is a member of exactly one class.

12



Keys in ODL

Indicate with key(s) following the class name, and
a list of attributes forming the key.

� Several lists may be used to indicate several
alternative keys.

� Parentheses group members of a key, and also
group key to the declared keys.

� Thus, (key(a1; a2; : : : ; an)) = \one
key consisting of all n attributes."
(key a1; a2; : : : ; an) = \each ai is a key by
itself."

Example

interface Beers

(key name)

{

attribute string name ...

� Remember : Keys are optional in ODL. The
\object ID" su�ces to distinguish objects that
have the same values in their elements.

13



Example: A Multiattribute Key

interface Courses

(key (dept, number), (room, hours))

{

...

14



Translating ODL to Relations

1. Classes without relationships: like entity set,
but several new problems arise.

2. Classes with relationships:

a) Treat the relationship separately, as in
E/R.

b) Attach a many-one relationship to the
relation for the \many."

15



ODL Class Without Relationships

� Problem: ODL allows attribute types built
from structures and collection types.

� Structure: Make one attribute for each �eld.

� Set: make one tuple for each member of the
set.

✦ More than one set attribute? Make tuples
for all combinations.

� Problem: ODL class may have no key, but we
should have one in the relation to represent
\OID."

16



Example

interface Drinkers (key name) {

attribute string name;

attribute Struct Addr

{string street, string city,

int zip} address;

attribute Set<string> phone;

}

name street city zip phone

n1 s1 c1 z1 p1
n1 s1 c1 z1 p2

� Surprise: the key for the class (name) is not
the key for the relation (name, phone).

✦ name in the class determines a unique
object, including a set of phones.

✦ name in the relation does not determine a
unique tuple.

✦ Since tuples are not identical to objects,
there is no inconsistency!

� BCNF violation: separate out name-phone.

17



ODL Relationships

� If the relationship is many-one from A to B,
put key of B attributes in the relation for class
A.

� If relationship is many-many, we'll have to
duplicate A-tuples as in ODL with set-valued
attributes.

✦ Wouldn't you really rather create a
separate relation for a many-many-
relationship?

✦ You'll wind up separating it anyway,
during BCNF decomposition.

18



Example

interface Drinkers (key name) {

attribute string name;

attribute string addr;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Beers favorite

inverse Beers::realFans;

relationship Drinkers husband

inverse wife;

relationship Drinkers wife

inverse husband;

relationship Set<Drinkers> buddies

inverse buddies;

}

Drinkers(name, addr, beerName, favBeer, wife,
buddy)

� Not in BCNF; decompose to:

Drinkers(name, addr, favBeer, wife)

DrBeer(name, beer)

DrBuddy(name, buddy)

19


