
OQL

Motivation:

� Relational languages su�er from impedance

mismatch when we try to connect them to
conventional languages like C or C++.

✦ The data models of C and SQL are
radically di�erent, e.g. C does not have
relations, sets, or bags as primitive types;
C is tuple-at-a-time, SQL is relation-at-a-
time.

� OQL is an attempt by the OO community
to extend languages like C++ with SQL-like,
relation-at-a-time dictions.

1

OQL Types

� Basic types: strings, ints, reals, etc., plus class
names.

� Type constructors:

✦ Struct for structures.

✦ Collection types: set, bag, list, array.

� Like ODL, but no limit on the number of
times we can apply a type constructor.

� Set(Struct()) and Bag(Struct()) play special
roles akin to relations.

OQL Uses ODL as its Schema-De�nition

Portion

� For every class we can declare an extent =
name for the current set of objects of the
class.

✦ Remember to refer to the extent, not the
class name, in queries.

2

interface Bar

(extent Bars)

{

attribute string name;

attribute string addr;

relationship Set<Sell> beersSold

inverse Sell::bar;

}

interface Beer

(extent Beers)

{

attribute string name;

attribute string manf;

relationship Set<Sell> soldBy

inverse Sell::beer;

}

interface Sell

(extent Sells)

{

attribute float price;

relationship Bar bar

inverse Bar::beersSold;

relationship Beer beer

inverse Beer::soldBy;

}

3

Path Expressions

Let x be an object of class C.

� If a is an attribute of C, then x:a = the value
of a in the x object.

� If r is a relationship of C, then x:r = the
value to which x is connected by r.

✦ Could be an object or a collection of
objects, depending on the type of r.

� If m is a method of C, then x:m(� � �) is the
result of applying m to x.

4

Examples

Let s be a variable whose type is Sell.

� s.price = the price in the object s.

� s.bar.addr = the address of the bar
mentioned in s.

✦ Note: cascade of dots OK because s.bar
is an object, not a collection.

Example of Illegal Use of Dot

b.beersSold.price, where b is a Bar object.

� Why illegal? Because b.beersSold is a set of
objects, not a single object.

5

OQL Select-From-Where

SELECT <list of values>
FROM <list of collections and

typical members>
WHERE <condition>

� Collections in FROM can be:

1. Extents.

2. Expressions that evaluate to a collection.

� Following a collection is a name for a typical
member, optionally preceded by AS.

Example

Get the menu at Joe's.

SELECT s.beer.name, s.price

FROM Sells s

WHERE s.bar.name = "Joe's Bar"

� Notice double-quoted strings in OQL.

6

Example

Another way to get Joe's menu, this time focusing
on the Bar objects.

SELECT s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's Bar"

� Notice that the typical object b in the �rst
collection of FROM is used to help de�ne the
second collection.

Typical Usage

� If x is an object, you can extend the path
expression, like s or s.beer in s.beer.name.

� If x is a collection, you use it in the FROM list,
like b.beersSold above, if you want to access
attributes of x.

7

Tailoring the Type of the Result

� Default: bag of structs, �eld names taken from
the ends of path names in SELECT clause.

Example

SELECT s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's Bar"

has result type:

Bag(Struct(

name: string,

price: real

))

8

Rename Fields

Pre�x the path with the desired name and a colon.

Example

SELECT beer: s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's Bar"

has type:

Bag(Struct(

beer: string,

price: real

))

9

Change the Collection Type

� Use SELECT DISTINCT to get a set of structs.

Example

SELECT DISTINCT s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's Bar"

� Use ORDER BY clause to get a list of structs.

Example

joeMenu =

SELECT s.beer.name, s.price

FROM Bars b, b.beersSold s

WHERE b.name = "Joe's Bar"

ORDER BY s.price ASC

� ASC = ascending (default); DESC = descending.

� We can extract from a list as if it were an
array, e.g.

cheapest = joeMenu[1].name;

10

Subqueries

� Used mainly in FROM clauses and with
quanti�ers EXISTS and FORALL.

Example: Subquery in FROM

Find the manufacturers of the beers served at
Joe's.

SELECT DISTINCT b.manf

FROM (

SELECT s.beer

FROM Sells s

WHERE s.bar.name = "Joe's Bar"

) b

11

Quanti�ers

� Boolean-valued expressions for use in WHERE-
clauses.

FOR ALL x IN <collection> :

<condition>

EXISTS x IN <collection> :

<condition>

� The expression has value TRUE if the condition
is true for all (resp. at least one) elements of
the collection.

Example

Find all bars that sell some beer for more than $5.

SELECT b.name

FROM Bars b

WHERE EXISTS s IN b.beersSold :

s.price > 5.00

Problem

How would you �nd the bars that only sold beers
for more than $5?

12

Example

Find the bars such that the only beers they sell for
more than $5 are manufactured by Pete's.

SELECT b.name

FROM Bars b

WHERE FOR ALL be IN (

SELECT s.beer

FROM b.beersSold s

WHERE s.price > 5.00

) :

be.manf = "Pete's"

13

