
Extraction of Collection Elements

a) A collection with a single member: Extract
the member with ELEMENT.

Example

Find the price Joe charges for Bud and put the
result in a variable p.

p = ELEMENT(

SELECT s.price

FROM Sells s

WHERE s.bar.name = "Joe's Bar"

AND s.beer.name = "Bud"

)

1



b) Extracting all elements of a collection, one at
a time:

1. Turn the collection into a list.

2. Extract elements of a list with
<list name>[i].

Example

Print Joe's menu, in order of price, with beers of
the same price listed alphabetically.

L =

SELECT s.beer.name, s.price

FROM Sells s

WHERE s.bar.name = "Joe's Bar"

ORDER BY s.price, s.beer.name;

printf("Beer\tPrice\n\n");

for(i=1; i<=COUNT(L); i++)

printf("%s\t%f\n",

L[i].name,

L[i].price

);

2



Aggregation

The �ve operators avg, min, max, sum, count
apply to any collection, as long as the operators
make sense for the element type.

Example

Find the average price of beer at Joe's.

x = AVG(

SELECT s.price

FROM Sells s

WHERE s.bar.name = "Joe's Bar"

);

� Note coersion: result of SELECT is technically
a bag of 1-�eld structs, which is identi�ed with
the bag of the values of that �eld.

3



Grouping

Recall SQL grouping, for example:

SELECT bar, AVG(price)

FROM Sells

GROUP BY bar;

� Is the bar value the \name" of the group, or
the common value for the bar component of
all tuples in the group?

� In SQL it doesn't matter, but in OQL, you
can create groups from the values of any
function(s), not just attributes.

✦ Thus, groups are identi�ed by common
values, not \name."

✦ Example: group by �rst letter of bar
names (method needed).

4



Outline of OQL Group-By

Collection
De�ned by

FROM, WHERE

Collection with
function values
and partition

Group by values
of function(s)

Terms from
SELECT clause

Output
collection

5



Example

Find the average price of beer at each bar.

SELECT barName, avgPrice: AVG(

SELECT p.s.price

FROM partition p

)

FROM Sells s

GROUP BY barName: s.bar.name

1. Initial collection = Sells.

✦ But technically, it is a bag of structs of
the form

Struct(s: s1)

Where s1 is a Sell object. Note, the lone
�eld is named s; in general, there are
�elds for all of the \typical objects" in
the FROM clause.

6



2. Intermediate collection:

✦ One function: s.bar.name maps Sell
objects s to the value of the name of the
bar referred to by s.

✦ Collection is a set of structs of type:

Struct{barName: string,

partition: Set<

Struct{s: Sell}

>

}

For example:

Struct(barName = "Joe's Bar",

partition = fs1; : : : ; sng)

where s1; : : : ; sn are all the structs with
one �eld, named s, whose value is one of
the Sell objects that represent Joe's Bar
selling some beer.

7



3. Output collection: consists of beer-average
price pairs, one for each struct in the
intermediate collection.

✦ Type of structures in the output:

Struct{barName: string,

avgPrice: real}

✦ Note that in the subquery of the SELECT
clause:

SELECT barName, avgPrice: AVG(

SELECT p.s.price

FROM partition p

)

We let p range over all structs in
partition. Each of these structs contains
a single �eld named s and has a Sell

object as its value. Thus, p.s.price
extracts the price from one of the Sell
objects.

✦ Typical output struct:

Struct(barName = "Joe's Bar",

avgPrice = 2.83)

8



Another, Less Typical Example

Find, for each beer, the number of bars that charge
a \low" price (� 2:00) and a \high" price (� 4:00)
for that beer.

� Strategy: group by three things:

1. The beer name,

2. A boolean function that is true i� the
price is low.

3. A boolean function that is true i� the
price is high.

9



The Query

SELECT beerName, low, high,

count: COUNT(partition)

FROM Beers b, b.soldBy s

GROUP BY beerName: b.name,

low: s.price <= 2.00,

high: s.price >= 4.00

1. Initial collection: Pairs (b; s), where b
is a Beer object, and s is a Sell object
representing the sale of that beer at some bar.

✦ Type of collection members:

Struct{b: Beer, s: Sell}

10



2. Intermediate collection: Quadruples consisting
of a beer name, booleans telling whether this
group is for high, low, or neither prices for
that beer, and the partition for that group.

✦ The partition is a set of structs of the
type:

Struct{b: Beer, s: Sell}

A typical value:

Struct(b: "Bud" object,
s: a Sell object involving Bud)

11



✦ Type of quadruples in the intermediate
collection:

Struct{

beerName: string,

low: boolean,

high: boolean,

partition: Set<Struct{

b: Beer,

s: Sell

}>

}

Typical structs in intermediate collection:

beerName low high partition

Bud TRUE FALSE Slow
Bud FALSE TRUE Shigh
Bud FALSE FALSE Smid

� � � � � � � � � � � �

where Slow Shigh, and Smid are the sets of beer-
sells pairs (b; s) where the beer is Bud and s has,
respectively, a low (� 2:00), high (� 4:00) and
medium (between 2.00 and 4.00) price.

� Note the partition with low = high = TRUE

must be empty and will not appear.

12



3. Output collection: The �rst three components
of each group's struct are copied to the
output, and the last (partition) is counted.
The result:

beerName low high count

Bud TRUE FALSE 27
Bud FALSE TRUE 14
Bud FALSE FALSE 36
� � � � � � � � � � � �

13


