Extraction of Collection Elements

a) A collection with a single member: Extract
the member with ELEMENT.

Example

Find the price Joe charges for Bud and put the
result in a variable p.

p = ELEMENT (
SELECT s.price
FROM Sells s
WHERE s.bar.name = "Joe’s Bar"
AND s.beer.name = "Bud"

b) Extracting all elements of a collection, one at
a time:

1. Turn the collection into a list.

2. Extract elements of a list with
<list name>[i].

Example

Print Joe’s menu, in order of price, with beers of
the same price listed alphabetically.

[=
SELECT s.beer.name, s.price
FROM Sells s
WHERE s.bar.name = "Joe’s Bar"

ORDER BY s.price, s.beer.name;

printf ("Beer\tPrice\n\n");
for(i=1; i<=COUNT(L); i++)
printf ("%s\t%f\n",
L[i] .name,
L[i].price
)

Aggregation

The five operators avg, min, max, sum, count
apply to any collection, as long as the operators
make sense for the element type.

Example

Find the average price of beer at Joe’s.

x = AVG(
SELECT s.price
FROM Sells s
WHERE s.bar.name = "Joe’s Bar"

);

e Note coersion: result of SELECT is technically
a bag of 1-field structs, which is identified with
the bag of the values of that field.

Grouping
Recall SQL grouping, for example:

SELECT bar, AVG(price)
FROM Sells
GROUP BY bar;

e Is the bar value the “name” of the group, or
the common value for the bar component of
all tuples in the group?

e In SQL it doesn’t matter, but in OQL, you
can create groups from the values of any
function(s), not just attributes.

[1 Thus, groups are identified by common
values, not “name.”

[1 Example: group by first letter of bar
names (method needed).

Outline of OQL Group-By

Collection

Defined by
FROM, WHERE

y

Group by values
of function(s)

Collection with
function values
and partition

y

Terms from
SELECT clause

Output

collection

Example

Find the average price of beer at each bar.

SELECT barName, avgPrice: AVG(
SELECT p.s.price
FROM partition p

)
FROM Sells s

GROUP BY barName: s.bar.name
1. Initial collection = Sells.

[1 But technically, it is a bag of structs of
the form

Struct(s: sl)

Where sl is a Sell object. Note, the lone
field is named s; in general, there are
fields for all of the “typical objects” in
the FROM clause.

2. Intermediate collection:

[1 One function: s.bar.name maps Sell
objects s to the value of the name of the
bar referred to by s.

[1 Collection is a set of structs of type:

Struct{barName: string,
partition: Set<
Struct{s: Sell}

}

For example:

Struct (barName = "Joe’s Bar",
partition = {s1,...,5,})

where s1,...,s, are all the structs with
one field, named s, whose value is one of
the Sell objects that represent Joe’s Bar
selling some beer.

Output collection: consists of beer-average
price pairs, one for each struct in the
intermediate collection.

[1 Type of structures in the output:

Struct{barName: string,
avgPrice: real}t

[1 Note that in the subquery of the SELECT
clause:

SELECT barName, avgPrice: AVG(
SELECT p.s.price
FROM partition p

)

We let p range over all structs in
partition. Each of these structs contains
a single field named s and has a Sell
object as its value. Thus, p.s.price
extracts the price from one of the Sell
objects.

[1 Typical output struct:

Struct (barName = "Joe’s Bar",
avgPrice = 2.83)

Another, Less Typical Example

Find, for each beer, the number of bars that charge
a “low” price (< 2.00) and a “high” price (> 4.00)
for that beer.

e Strategy: group by three things:
1. The beer name,

2. A boolean function that is true iff the
price is low.

3. A boolean function that is true iff the
price is high.

The Query

SELECT beerName, low, high,
count: COUNT (partition)

FROM Beers b, b.soldBy s

GROUP BY beerName: b.name,
low: s.price <= 2.00,
high: s.price >=4.00

1. Initial collection: Pairs (b, s), where b
is a Beer object, and s is a Sell object
representing the sale of that beer at some bar.

[1 Type of collection members:

Struct{b: Beer, s: Sell}

10

Intermediate collection: Quadruples consisting
of a beer name, booleans telling whether this
group is for high, low, or neither prices for
that beer, and the partition for that group.

[1 The partition is a set of structs of the
type:
Struct{b: Beer, s: Sell}
A typical value:

Struct (b: "Bud" object,
s: a Sell object involving Bud)

11

[1 Type of quadruples in the intermediate
collection:

Struct{
beerName: string,
low: boolean,
high: boolean,
partition: Set<Struct{

b: Beer,
s: Sell
>
+
Typical structs in intermediate collection:

beerName | low high partition
Bud TRUE FALSE Slow
Bud FALSE TRUE Shigh
Bud FALSE FALSE Simid

where Siow Shigh, and Sy,;q are the sets of beer-
sells pairs (b, s) where the beer is Bud and s has,
respectively, a low (< 2.00), high (> 4.00) and
medium (between 2.00 and 4.00) price.

e Note the partition with low = high = TRUE
must be empty and will not appear.

12

Output collection: The first three components
of each group’s struct are copied to the
output, and the last (partition) is counted.
The result:

beerName low high count
Bud TRUE FALSE 27
Bud FALSE TRUE 14
Bud FALSE FALSE 36

13

