
Subclasses ! Relations

Three approaches:

1. Object-oriented: each entity is in one class.
Create a relation for each class, with all the
attributes for that class.

✦ Don't forget inherited attributes.

2. E/R style: an entity is in a network of classes
related by isa. Create one relation for each
E.S.

✦ An entity is represented in the relation for
each subclass to which it belongs.

✦ Relation has only the attributes attached
to that E.S. + key.

3. Use nulls. Create one relation for the root
class or root E.S., with all attributes found
anywhere in its network of subclasses.

✦ Put NULL in attributes not relevant to a
given entity.

1



Example

isa

Beers

Ales

manf

color

name

2



OO-Style

name manf

Bud A.B.

Beers

name manf color

SummerBrew Pete's dark

Ales

E/R Style

name manf

Bud A.B.

SummerBrew Pete's

Beers

name color

SummerBrew dark

Ales

3



Using Nulls

name manf color

Bud A.B. NULL

SummerBrew Pete's dark

Beers

4



Functional Dependencies

X ! A = assertion about a relation R that
whenever two tuples agree on all the attributes of
X, then they must also agree on attribute A.

� Important as a constraint on the data that
may appear within a relation.

✦ Schema-level control of data.

� Mathematical tool for explaining the process
of \normalization" | vital for redesigning
database schemas when original design has
certain 
aws.

5



Example

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete's WickedAle
Spock Enterprise Bud A.B. Bud

� Reasonable FD's to assert:

1. name ! addr

2. name ! favoriteBeer

3. beersLiked ! manf

� Note: These happen to imply the underlined
key, but the FD's give more detail than the
mere assertion of a key.

6



� Key (in general) functionally determines all
attributes. In our example:

name beersLiked ! addr favoriteBeer beerManf

� Shorthand: combine FD's with common left
side by concatenating their right sides.

� When FD's are not of the form Key ! other
attribute(s), then there is typically an attempt
to \cram" too much into one relation.

� Sometimes, several attributes jointly
determine another attribute, although neither
does by itself. Example:

beer bar ! price

7



Formal Notion of Key

K is a key for relation R if:

1. K ! all attributes of R.

2. For no proper subset of K is (1) true.

� If K at least satis�es (1), then K is a
superkey.

FD Conventions

� X, etc., represent sets of attributes; A etc.,
represent single attributes.

� No set formers in FD's, e.g., ABC instead of
fA;B;Cg.

8



Example

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

� fname, beersLikedg FD's all attributes, as
seen.

✦ Shows fname, beersLikedg is a superkey.

� name ! beersLiked is false, so name not a
superkey.

� beersLiked ! name also false, so beersLiked

not a superkey.

� Thus, fname, beersLikedg is a key.

� No other keys in this example.

✦ Neither name nor beersLiked is on the
right of any observed FD, so they must be
part of any superkey.

9



Who Determines Keys/FD's?

� We could de�ne a relation schema by simply
giving a single key K.

✦ Then the only FD's asserted are that
K ! A for every attribute A.

✦ No surprise: K is then the only key
for those FD's, according to the formal
de�nition of \key."

� Or, we could assert some FD's and deduce one
or more keys by the formal de�nition.

✦ E/R diagram implies FD's by key
declarations and many-one relationship
declarations.

� Rule of thumb: FD's either come from
keyness, many-1 relationship, or from physics.

✦ E.g., \no two courses can meet in the
same room at the same time" yields
room time ! course.

10



Normalization

Goal = BCNF = Boyce-Codd Normal Form = all
FD's follow from the fact \key ! everything."

� Formally, R is in BCNF if every nontrivial FD
for R, say X ! A, has X a superkey.

✦ \Nontrivial" = right-side attribute not in
left side.

Why?

1. Guarantees no redundancy due to FD's.

2. Guarantees no update anomalies = one
occurrence of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact
is lost when tuple is deleted.

11



Example of Problems

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle
Janeway ??? WickedAle Pete's ???
Spock Enterprise Bud ??? Bud

FD's:

1. name ! addr

2. name ! favoriteBeer

3. beersLiked ! manf

� ???'s are redundant, since we can �gure them
out from the FD's.

� Update anomalies: If Janeway gets transferred
to the Intrepid, will we change addr in each of
her tuples?

� Deletion anomalies: If nobody likes Bud, we
lose track of Bud's manufacturer.

12



Each of the given FD's is a BCNF violation:

� Key = fname, beersLikedg

✦ Each of the given FD's has a left side a
proper subset of the key.

Another Example

Beers(name, manf, manfAddr).

� FD's = name ! manf, manf ! manfAddr.

� Only key is name.

✦ manf ! manfAddr violates BCNF with a
left side unrelated to any key.

13



Inferring FD's

And this is important because . . .

� When we talk about improving relational
designs, we often need to ask \does this FD
hold in this relation?"

Given FD's X1 ! A1, X2 ! A2 � � �Xn ! An,
does FD Y ! B necessarily hold in the same
relation?

� Start by assuming two tuples agree in Y . Use
given FD's to infer other attributes on which
they must agree. If B is among them, then
yes, else no.

14



Algorithm

De�ne Y + = closure of Y :

� Basis: Y + := Y .

� Induction: If X � Y +, and X ! A is a given
FD, then add A to Y +.

X
A

Y + new Y +

� End when Y + cannot be changed. Then Y
functionally determines all members of Y +,
and no other attributes.

15



Example

A! B, BC ! D.

� A+ = AB.

� C+ = C.

� (AC)+ = ABCD.

A

C

B

D

� Thus, AC is a key.

16


