
Subclasses ! Relations

Three approaches:

1. Object-oriented: each entity is in one class.
Create a relation for each class, with all the
attributes for that class.

✦ Don't forget inherited attributes.

2. E/R style: an entity is in a network of classes
related by isa. Create one relation for each
E.S.

✦ An entity is represented in the relation for
each subclass to which it belongs.

✦ Relation has only the attributes attached
to that E.S. + key.

3. Use nulls. Create one relation for the root
class or root E.S., with all attributes found
anywhere in its network of subclasses.

✦ Put NULL in attributes not relevant to a
given entity.

1



Example

isa

Beers

Ales

manf

color

name
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OO-Style

name manf

Bud A.B.

Beers

name manf color

SummerBrew Pete's dark

Ales

E/R Style

name manf

Bud A.B.

SummerBrew Pete's

Beers

name color

SummerBrew dark

Ales
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Using Nulls

name manf color

Bud A.B. NULL

SummerBrew Pete's dark

Beers
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Functional Dependencies

X ! A = assertion about a relation R that
whenever two tuples agree on all the attributes of
X, then they must also agree on attribute A.

� Important as a constraint on the data that
may appear within a relation.

✦ Schema-level control of data.

� Mathematical tool for explaining the process
of \normalization" | vital for redesigning
database schemas when original design has
certain 
aws.
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Example

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete's WickedAle
Spock Enterprise Bud A.B. Bud

� Reasonable FD's to assert:

1. name ! addr

2. name ! favoriteBeer

3. beersLiked ! manf

� Note: These happen to imply the underlined
key, but the FD's give more detail than the
mere assertion of a key.
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� Key (in general) functionally determines all
attributes. In our example:

name beersLiked ! addr favoriteBeer beerManf

� Shorthand: combine FD's with common left
side by concatenating their right sides.

� When FD's are not of the form Key ! other
attribute(s), then there is typically an attempt
to \cram" too much into one relation.

� Sometimes, several attributes jointly
determine another attribute, although neither
does by itself. Example:

beer bar ! price
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Formal Notion of Key

K is a key for relation R if:

1. K ! all attributes of R.

2. For no proper subset of K is (1) true.

� If K at least satis�es (1), then K is a
superkey.

FD Conventions

� X, etc., represent sets of attributes; A etc.,
represent single attributes.

� No set formers in FD's, e.g., ABC instead of
fA;B;Cg.
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Example

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

� fname, beersLikedg FD's all attributes, as
seen.

✦ Shows fname, beersLikedg is a superkey.

� name ! beersLiked is false, so name not a
superkey.

� beersLiked ! name also false, so beersLiked

not a superkey.

� Thus, fname, beersLikedg is a key.

� No other keys in this example.

✦ Neither name nor beersLiked is on the
right of any observed FD, so they must be
part of any superkey.
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Who Determines Keys/FD's?

� We could de�ne a relation schema by simply
giving a single key K.

✦ Then the only FD's asserted are that
K ! A for every attribute A.

✦ No surprise: K is then the only key
for those FD's, according to the formal
de�nition of \key."

� Or, we could assert some FD's and deduce one
or more keys by the formal de�nition.

✦ E/R diagram implies FD's by key
declarations and many-one relationship
declarations.

� Rule of thumb: FD's either come from
keyness, many-1 relationship, or from physics.

✦ E.g., \no two courses can meet in the
same room at the same time" yields
room time ! course.
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Normalization

Goal = BCNF = Boyce-Codd Normal Form = all
FD's follow from the fact \key ! everything."

� Formally, R is in BCNF if every nontrivial FD
for R, say X ! A, has X a superkey.

✦ \Nontrivial" = right-side attribute not in
left side.

Why?

1. Guarantees no redundancy due to FD's.

2. Guarantees no update anomalies = one
occurrence of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact
is lost when tuple is deleted.
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Example of Problems

Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle
Janeway ??? WickedAle Pete's ???
Spock Enterprise Bud ??? Bud

FD's:

1. name ! addr

2. name ! favoriteBeer

3. beersLiked ! manf

� ???'s are redundant, since we can �gure them
out from the FD's.

� Update anomalies: If Janeway gets transferred
to the Intrepid, will we change addr in each of
her tuples?

� Deletion anomalies: If nobody likes Bud, we
lose track of Bud's manufacturer.
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Each of the given FD's is a BCNF violation:

� Key = fname, beersLikedg

✦ Each of the given FD's has a left side a
proper subset of the key.

Another Example

Beers(name, manf, manfAddr).

� FD's = name ! manf, manf ! manfAddr.

� Only key is name.

✦ manf ! manfAddr violates BCNF with a
left side unrelated to any key.
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Inferring FD's

And this is important because . . .

� When we talk about improving relational
designs, we often need to ask \does this FD
hold in this relation?"

Given FD's X1 ! A1, X2 ! A2 � � �Xn ! An,
does FD Y ! B necessarily hold in the same
relation?

� Start by assuming two tuples agree in Y . Use
given FD's to infer other attributes on which
they must agree. If B is among them, then
yes, else no.
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Algorithm

De�ne Y + = closure of Y :

� Basis: Y + := Y .

� Induction: If X � Y +, and X ! A is a given
FD, then add A to Y +.

X
A

Y + new Y +

� End when Y + cannot be changed. Then Y
functionally determines all members of Y +,
and no other attributes.
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Example

A! B, BC ! D.

� A+ = AB.

� C+ = C.

� (AC)+ = ABCD.

A

C

B

D

� Thus, AC is a key.

16


