Subclasses — Relations

Three approaches:

1.

Object-oriented: each entity is in one class.
Create a relation for each class, with all the
attributes for that class.

[1 Don’t forget inherited attributes.

E/R style: an entity is in a network of classes
related by isa. Create one relation for each

E.S.

[An entity is represented in the relation for
each subclass to which it belongs.

[1 Relation has only the attributes attached
to that E.S. + key.

Use nulls. Create one relation for the root
class or root E.S., with all attributes found
anywhere in its network of subclasses.

[1 Put NULL in attributes not relevant to a
given entity.

Example

Beers

Ales

O0O-Style

name manf

Bud A.B.

Beers

name manf color

SummerBrew | Pete’s | dark

Ales
E/R Style
name manf
Bud A.B.
SummerBrew | Pete’s
Beers
name color

SummerBrew dark

Ales

Using Nulls

name manf color

Bud A.B. NULL
SummerBrew | Pete’s | dark

Beers

Functional Dependencies

X — A = assertion about a relation R that
whenever two tuples agree on all the attributes of
X, then they must also agree on attribute A.

e Important as a constraint on the data that
may appear within a relation.

[1 Schema-level control of data.

e Mathematical tool for explaining the process
of “normalization” — vital for redesigning
database schemas when original design has
certain flaws.

Example

Drinkers(name, addr, beerslLiked, manf,
favoriteBeer)

name |addr beersLiked {mant |favoriteBeer
Janeway|Voyager |Bud A.B. |WickedAle
Janeway|Voyager |WickedAle|Pete’s|WickedAle
Spock |Enterprise|Bud A.B. |Bud

e Reasonable FD’s to assert:
1. name — addr

2. name — favoriteBeer

3. beersLiked — manf

e Note: These happen to imply the underlined
key, but the FD’s give more detail than the
mere assertion of a key.

e Key (in general) functionally determines all
attributes. In our example:

name beerslLiked — addr favoriteBeer beerManf

° Shorthand: combine FD’s with common left
side by concatenating their right sides.

e When FD’s are not of the form Key — other
attribute(s), then there is typically an attempt
to “cram” too much into one relation.

e Sometimes, several attributes jointly
determine another attribute, although neither
does by itself. Example:

beer bar — price

Formal Notion of Key

K is a key for relation R if:

1. K — all attributes of R.

2. For no proper subset of K is (1) true.

e If K at least satisfies (1), then K is a
superkey.

FD Conventions

e X, etc., represent sets of attributes; A etc.,
represent single attributes.

e No set formers in FD’s, e.g., ABC instead of
{A, B, C}.

Example

Drinkers(name, addr, beerslLiked, manf,
favoriteBeer)

{name, beersLiked} FD’s all attributes, as
seen.

[0 Shows {name, beersLiked} is a superkey.

name — beersLiked is false, so name not a
superkey.

beersLiked — name also false, so beersLiked
not a superkey.

Thus, {name, beersLiked} is a key.
No other keys in this example.

[1 Neither name nor beersLiked is on the
right of any observed FD, so they must be
part of any superkey.

Who Determines Keys/FD’s?

We could define a relation schema by simply
giving a single key K.

[1 Then the only FD’s asserted are that
K — A for every attribute A.

[1 No surprise: K is then the only key
for those FD’s, according to the formal
definition of “key.”

Or, we could assert some FD’s and deduce one
or more keys by the formal definition.

[0 E/R diagram implies FD’s by key
declarations and many-one relationship
declarations.

Rule of thumb: FD’s either come from
keyness, many-1 relationship, or from physics.

[E.g., “no two courses can meet in the
same room at the same time” yields
room time — course.

10

Normalization

Goal = BCNF = Boyce-Codd Normal Form = all
FD’s follow from the fact “key — everything.”

e Formally, R is in BCNF if every nontrivial FD
for R, say X — A, has X a superkey.

(1 “Nontrivial” = right-side attribute not in
left side.

Why?
1. Guarantees no redundancy due to FD’s.

2. Guarantees no update anomalies = one
occurrence of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact
is lost when tuple is deleted.

11

Example of Problems

Drinkers(name, addr, beerslLiked, manf,

favoriteBeer)

name |addr beersLiked |mant |favoriteBeer
Janeway|Voyager |Bud A.B. |WickedAle
Janeway | 777 WickedAle |Pete’s| 777

Spock |Enterprise|Bud 7?7 |Bud

FD’s:

1. name — addr

2. name — favoriteBeer

3. DbeersLiked — manf

?77’s are redundant, since we can figure them
out from the FD’s.

Update anomalies: If Janeway gets transferred
to the Intrepid, will we change addr in each of

her tuples?

Deletion anomalies: If nobody likes Bud, we
lose track of Bud’s manufacturer.

12

Each of the given FD’s is a BCNF violation:
e Key = {name, beersLiked}

[1 Each of the given FD’s has a left side a
proper subset of the key.

Another Example

Beers (name, manf, manfAddr).
¢ FD’s = name — manf, manf — manfAddr.
e Only key is name.

[1 manf — manfAddr violates BCNF with a
left side unrelated to any key.

13

Inferring FD’s

And this is important because . . .

e When we talk about improving relational
designs, we often need to ask “does this FD
hold in this relation?”

Given FD’s X1 — Al, X2 — A2---Xn — An,
does FD Y — B necessarily hold in the same
relation?

e Start by assuming two tuples agree in Y. Use
given FD’s to infer other attributes on which
they must agree. If B is among them, then
yes, else no.

14

Algorithm
Define Y = closure of Y:

e DBasis: YT =Y.

e Induction: If X C Y™, and X — A is a given
FD, then add A to Y.

e End when Y cannot be changed. Then Y
functionally determines all members of YT,
and no other attributes.

15

Example

A— B, BC — D.

A+ = AB.
c+=cC.
(AC)* = ABCD.

Thus, AC is a key.

16

