Finding All Implied FD's

Motivation: Suppose we have a relation $A B C D$ with some FD's F. If we decide to decompose $A B C D$ into $A B C$ and $A D$, what are the FD's for $A B C, A D$?

- Example: $F=A B \rightarrow C, C \rightarrow D, D \rightarrow A$. It looks like just $A B \rightarrow C$ holds in $A B C$, but in fact $C \rightarrow A$ follows from F and applies to relation $A B C$.
- Problem is exponential in worst case.

Algorithm

For each set of attributes X compute X^{+}.

- \quad Add $X \rightarrow A$ for each A in $X^{+}-X$.
- Ignore or drop some "obvious" dependencies that follow from others:

1. Trivial FD's: right side is a subset of left side.

- Consequence: no point in computing \emptyset^{+} or closure of full set of attributes.

2. Drop $X Y \rightarrow A$ if $X \rightarrow A$ holds.

- Consequence: If X^{+}is all attributes, then there is no point in computing closure of supersets of X.

3. Ignore FD's whose right sides are not single attributes.

- Notice that after we project the discovered FD's onto some relation, the FD's eliminated by rules 1,2 , and 3 can be inferred in the projected relation.

Example

Example: $F=A B \rightarrow C, C \rightarrow D, D \rightarrow A$. What FD's follow?

- $A^{+}=A ; B^{+}=B$ (nothing).
- $C^{+}=A C D(\operatorname{add} C \rightarrow A)$.
- $D^{+}=A D$ (nothing new).
- $(A B)^{+}=A B C D($ add $A B \rightarrow D$; skip all supersets of $A B)$.
- $(B C)^{+}=A B C D$ (nothing new; skip all supersets of $B C)$.
- $(B D)^{+}=A B C D($ add $B D \rightarrow C$; skip all supersets of $B D)$.
- $(A C)^{+}=A C D ;(A D)^{+}=A D ;(C D)^{+}=$ $A C D$ (nothing new).
- $(A C D)^{+}=A C D$ (nothing new).
- All other sets contain $A B, B C$, or $B D$, so skip.
- Thus, the only interesting FD's that follow from F are: $C \rightarrow A, A B \rightarrow D, B D \rightarrow C$.

Decomposition to Reach BCNF

Setting: relation R, given FD's F. Suppose relation R has BCNF violation $X \rightarrow A$.

- We need only look among FD's of F for a BCNF violation.
- Proof: If $Y \rightarrow A$ is a BCNF violation and follows from F, then the computation of Y^{+} used at least one FD $X \rightarrow B$ from F.
- X must be a subset of Y.
- Thus, if Y is not a superkey, X cannot be a superkey either, and $X \rightarrow B$ is also a BCNF violation.

1. Compute X^{+}.
\checkmark Cannot be all attributes - why?
2. Decompose R into X^{+}and $\left(R-X^{+}\right) \cup X$.

3. Find the FD's for the decomposed relations.

- Project the FD's from $F=$ calculate all consequents of F that involve only attributes from X^{+}or only from $\left(R-X^{+}\right) \cup X$.

Example

$R=$ Drinkers(name, addr, beersLiked, manf, favoriteBeer)
$F=$

1. name \rightarrow addr
2. name \rightarrow favoriteBeer
3. beersLiked $\rightarrow \operatorname{manf}$

Pick BCNF violation name \rightarrow addr.

- Close the left side: name $^{+}=$ name addr favoriteBeer.
- Decomposed relations:

Drinkers1 (name, addr, favoriteBeer)
Drinkers2 (name, beersLiked, manf)

- Projected FD's (skipping a lot of work that leads nowhere interesting):
- For Drinkers1: name \rightarrow addr and name \rightarrow favoriteBeer.
- For Drinkers2: beersLiked \rightarrow manf.
- BCNF violations?
- For Drinkers1, name is key and all left sides of FD's are superkeys.
- For Drinkers2, \{name, beersLiked\} is the key, and beersLiked \rightarrow manf violates BCNF.

Decompose Drinkers2

- Close beersLiked ${ }^{+}=$beersLiked, manf.
- Decompose:

Drinkers3 (beersLiked, manf)
Drinkers4 (name, beersLiked)

- Resulting relations are all in BCNF:

Drinkers1 (name, addr, favoriteBeer)
Drinkers3 (beersLiked, manf)
Drinkers4 (name, beersLiked)

Relational Algebra

A small set of operators that allow us to manipulate relations in limited, but easily implementable and useful ways. The operators are:

1. Union, intersection, and difference: the usual set operators.

- But the relation schemas must be the same.

2. Selection: Picking certain rows from a relation.
3. Projection: Picking certain columns.
4. Products and joins: Composing relations in useful ways.
5. Renaming of relations and their attributes.

Selection

$$
R_{1}=\sigma_{C}\left(R_{2}\right)
$$

where C is a condition involving the attributes of relation R_{2}.

Example

Relation Sells:

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Coors	3.00

JoeMenu $=\sigma_{b a r=J o e^{\prime} s}($ Sells $)$

Projection

$$
R_{1}=\pi_{L}\left(R_{2}\right)
$$

where L is a list of attributes from the schema of R_{2}.

Example

$\pi_{\text {beer,price }}$ (Sells)

Notice elimination of duplicate tuples.

Product

$$
R=R_{1} \times R_{2}
$$

pairs each tuple t_{1} of R_{1} with each tuple t_{2} of R_{2} and puts in R a tuple $t_{1} t_{2}$.

Theta-Join

$$
R=R_{1}{ }_{C}^{\bowtie} R_{2}
$$

is equivalent to $R=\sigma_{C}\left(R_{1} \times R_{2}\right)$.

Example

Sells =

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Coors	3.00

Bars =

name	addr
Joe's	Maple St.
Sue's	River Rd.

BarInfo = Sells Sells.Bar=Bars.Name Bars

bar	beer	price	name	addr
Joe's	Bud	2.50	Joe's	Maple St.
Joe's	Miller	2.75	Joe's	Maple St.
Sue's	Bud	2.50	Sue's	River Rd.
Sue's	Coors	3.00	Sue's	River Rd.

Natural Join

$$
R=R_{1} \bowtie R_{2}
$$

calls for the theta-join of R_{1} and R_{2} with the condition that all attributes of the same name be equated. Then, one column for each pair of equated attributes is projected out.

Example

Suppose the attribute name in relation Bars was changed to bar, to match the bar name in Sells.

BarInfo = Sells \bowtie Bars

bar	beer	price	addr
Joe's	Bud	2.50	Maple St.
Joe's	Miller	2.75	Maple St.
Sue's	Bud	2.50	River Rd.
Sue's	Coors	3.00	River Rd.

Renaming

$\rho_{S\left(A_{1}, \ldots, A_{n}\right)}(R)$ produces a relation identical to R but named S and with attributes, in order, named A_{1}, \ldots, A_{n}.

Example

Bars $=$

$\rho_{R(b a r, a d d r)}($ Bars $)=$

bar	addr
Joe's	Maple St.
Sue's	River Rd.

- The name of the above relation is R.

Combining Operations

Algebra =

1. Basis arguments +
2. Ways of constructing expressions.

For relational algebra:

1. \quad Arguments $=$ variables standing for relations + finite, constant relations.
2. Expressions constructed by applying one of the operators + parentheses.

- Query $=$ expression of relational algebra.

Operator Precedence

The normal way to group operators is:

1. Unary operators σ, π, and ρ have highest precedence.
2. Next highest are the "multiplicative" operators, $\bowtie, ~{ }_{C}^{\bowtie}$, and \times.
3. Lowest are the "additive" operators, \cup, \cap, and -.

- But there is no universal agreement, so we always put parentheses around the argument of a unary operator, and it is a good idea to group all binary operators with parentheses enclosing their arguments.

Example
Group $R \cup \sigma S \bowtie T$ as $R \cup(\sigma(S) \bowtie T)$.

Each Expression Needs a Schema

- If \cup, \cap, - applied, schemas are the same, so use this schema.
- Projection: use the attributes listed in the projection.
- Selection: no change in schema.
- Product $R \times S$: use attributes of R and S.
\checkmark But if they share an attribute A, prefix it with the relation name, as $R . A, S . A$.
- Theta-join: same as product.
- Natural join: use attributes from each relation; common attributes are merged anyway.
- Renaming: whatever it says.

Example

Find the bars that are either on Maple Street or sell Bud for less than $\$ 3$.

Sells(bar, beer, price) Bars (name, addr)

Example

Find the bars that sell two different beers at the same price.

Sells(bar, beer, price)

Linear Notation for Expressions

- Invent new names for intermediate relations, and assign them values that are algebraic expressions.
- Renaming of attributes implicit in schema of new relation.

Example
Find the bars that are either on Maple Street or sell Bud for less than $\$ 3$.

Sells(bar, beer, price)
Bars (name, addr)

$$
\begin{aligned}
\mathrm{R} 1(\text { bar }):=\pi_{\text {name }}\left(\sigma_{\text {addr }=\text { Maple St. }} \text { (Bars) }\right) \\
\mathrm{R} 2(\text { bar }):= \\
\pi_{\text {bar }}\left(\sigma_{\text {beer }=\text { Bud } A N D \text { price }<\$ 3}\right. \text { (Sells)) } \\
\mathrm{R} 3(\text { bar }):=\mathrm{R} 1 \cup \mathrm{R} 2
\end{aligned}
$$

Example

Find the bars that sell two different beers at the same price.

> Sells(bar, beer, price)

$$
\begin{aligned}
& \text { S1 (bar, beer1, price) }:=\text { Sells } \\
& \text { S2 (bar, beer, price, beer } 1):= \\
& \text { S1 } \bowtie \text { Sells } \\
& \text { S3(bar) }=\pi_{\text {bar }}\left(\sigma_{\text {beer } \neq \text { beer } 1}(\mathrm{~S} 2)\right)
\end{aligned}
$$

