
Finding All Implied FD's

Motivation: Suppose we have a relation ABCD

with some FD's F . If we decide to decompose
ABCD into ABC and AD, what are the FD's for
ABC, AD?

� Example: F = AB ! C, C ! D, D ! A.
It looks like just AB ! C holds in ABC, but
in fact C ! A follows from F and applies to
relation ABC.

� Problem is exponential in worst case.

1

Algorithm

For each set of attributes X compute X+.

� Add X ! A for each A in X+ �X.

� Ignore or drop some \obvious" dependencies
that follow from others:

1. Trivial FD's: right side is a subset of left side.

✦ Consequence: no point in computing ;+

or closure of full set of attributes.

2. Drop XY ! A if X ! A holds.

✦ Consequence: If X+ is all attributes, then
there is no point in computing closure of
supersets of X.

3. Ignore FD's whose right sides are not single
attributes.

� Notice that after we project the discovered
FD's onto some relation, the FD's eliminated
by rules 1, 2, and 3 can be inferred in the

projected relation.

2

Example

Example: F = AB ! C, C ! D, D ! A. What
FD's follow?

� A+ = A; B+ = B (nothing).

� C+ = ACD (add C ! A).

� D+ = AD (nothing new).

� (AB)+ = ABCD (add AB ! D; skip all
supersets of AB).

� (BC)+ = ABCD (nothing new; skip all
supersets of BC).

� (BD)+ = ABCD (add BD ! C; skip all
supersets of BD).

� (AC)+ = ACD; (AD)+ = AD; (CD)+ =
ACD (nothing new).

� (ACD)+ = ACD (nothing new).

� All other sets contain AB, BC, or BD, so
skip.

� Thus, the only interesting FD's that follow
from F are: C ! A, AB ! D, BD ! C.

3

Decomposition to Reach BCNF

Setting: relation R, given FD's F . Suppose
relation R has BCNF violation X ! A.

� We need only look among FD's of F for a
BCNF violation.

� Proof: If Y ! A is a BCNF violation and
follows from F , then the computation of Y +

used at least one FD X ! B from F .

✦ X must be a subset of Y .

✦ Thus, if Y is not a superkey, X cannot be
a superkey either, and X ! B is also a
BCNF violation.

4

1. Compute X+.

✦ Cannot be all attributes | why?

2. Decompose R into X+ and (R �X+) [X.

XR

X+

3. Find the FD's for the decomposed relations.

✦ Project the FD's from F = calculate
all consequents of F that involve
only attributes from X+ or only from
(R �X+) [X.

5

Example

R = Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

F =

1. name ! addr

2. name ! favoriteBeer

3. beersLiked ! manf

Pick BCNF violation name ! addr.

� Close the left side: name+ =
name addr favoriteBeer.

� Decomposed relations:

Drinkers1(name, addr, favoriteBeer)

Drinkers2(name, beersLiked, manf)

� Projected FD's (skipping a lot of work that
leads nowhere interesting):

✦ For Drinkers1: name ! addr and
name ! favoriteBeer.

✦ For Drinkers2: beersLiked ! manf.

6

� BCNF violations?

✦ For Drinkers1, name is key and all left
sides of FD's are superkeys.

✦ For Drinkers2, {name, beersLiked} is
the key, and beersLiked ! manf violates
BCNF.

Decompose Drinkers2

� Close beersLiked+ = beersLiked, manf.

� Decompose:

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

� Resulting relations are all in BCNF:

Drinkers1(name, addr, favoriteBeer)

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

7

Relational Algebra

A small set of operators that allow us to
manipulate relations in limited, but easily
implementable and useful ways. The operators are:

1. Union, intersection, and di�erence: the usual
set operators.

✦ But the relation schemas must be the
same.

2. Selection: Picking certain rows from a
relation.

3. Projection: Picking certain columns.

4. Products and joins: Composing relations in
useful ways.

5. Renaming of relations and their attributes.

8

Selection

R1 = �C(R2)

where C is a condition involving the attributes of
relation R2.

Example

Relation Sells:

bar beer price

Joe's Bud 2.50
Joe's Miller 2.75
Sue's Bud 2.50
Sue's Coors 3.00

JoeMenu = �bar=Joe0s(Sells)

bar beer price

Joe's Bud 2.50
Joe's Miller 2.75

9

Projection

R1 = �L(R2)

where L is a list of attributes from the schema of
R2.

Example

�beer;price(Sells)

beer price

Bud 2.50
Miller 2.75
Coors 3.00

� Notice elimination of duplicate tuples.

10

Product

R = R1 �R2

pairs each tuple t1 of R1 with each tuple t2 of R2

and puts in R a tuple t1t2.

Theta-Join

R = R1
./
C
R2

is equivalent to R = �C(R1 �R2).

11

Example

Sells =

bar beer price

Joe's Bud 2.50
Joe's Miller 2.75
Sue's Bud 2.50
Sue's Coors 3.00

Bars =

name addr

Joe's Maple St.
Sue's River Rd.

BarInfo = Sells ./
Sells:Bar=Bars:Name

Bars

bar beer price name addr

Joe's Bud 2.50 Joe's Maple St.
Joe's Miller 2.75 Joe's Maple St.
Sue's Bud 2.50 Sue's River Rd.
Sue's Coors 3.00 Sue's River Rd.

12

Natural Join

R = R1 ./ R2

calls for the theta-join of R1 and R2 with the
condition that all attributes of the same name
be equated. Then, one column for each pair of
equated attributes is projected out.

Example

Suppose the attribute name in relation Bars was
changed to bar, to match the bar name in Sells.

BarInfo = Sells ./ Bars

bar beer price addr

Joe's Bud 2.50 Maple St.
Joe's Miller 2.75 Maple St.
Sue's Bud 2.50 River Rd.
Sue's Coors 3.00 River Rd.

13

Renaming

�S(A1;:::;An)(R) produces a relation identical to R
but named S and with attributes, in order, named
A1; : : : ; An.

Example

Bars =

name addr

Joe's Maple St.
Sue's River Rd.

�R(bar;addr)(Bars) =

bar addr

Joe's Maple St.
Sue's River Rd.

� The name of the above relation is R.

14

Combining Operations

Algebra =

1. Basis arguments +

2. Ways of constructing expressions.

For relational algebra:

1. Arguments = variables standing for relations
+ �nite, constant relations.

2. Expressions constructed by applying one of
the operators + parentheses.

� Query = expression of relational algebra.

15

Operator Precedence

The normal way to group operators is:

1. Unary operators �, �, and � have highest
precedence.

2. Next highest are the \multiplicative"
operators, ./, ./

C
, and �.

3. Lowest are the \additive" operators, [, \, and
�.

� But there is no universal agreement, so we
always put parentheses around the argument
of a unary operator, and it is a good idea to
group all binary operators with parentheses
enclosing their arguments.

Example

Group R [�S ./ T as R [(�(S) ./ T).

16

Each Expression Needs a Schema

� If [, \, � applied, schemas are the same, so
use this schema.

� Projection: use the attributes listed in the
projection.

� Selection: no change in schema.

� Product R� S: use attributes of R and S.

✦ But if they share an attribute A, pre�x it
with the relation name, as R:A, S:A.

� Theta-join: same as product.

� Natural join: use attributes from each
relation; common attributes are merged
anyway.

� Renaming: whatever it says.

17

Example

Find the bars that are either on Maple Street or
sell Bud for less than $3.

Sells(bar, beer, price)

Bars(name, addr)

�name

�addr=MapleSt:

Bars

�R(name)

�bar

�price<$3 AND beer=Bud

Sells

[

18

Example

Find the bars that sell two di�erent beers at the
same price.

Sells(bar, beer, price)

Sells Sells

�bar

./

�S(bar;beer1;price)

�beer 6=beer1

19

Linear Notation for Expressions

� Invent new names for intermediate relations,
and assign them values that are algebraic
expressions.

� Renaming of attributes implicit in schema of
new relation.

Example

Find the bars that are either on Maple Street or
sell Bud for less than $3.

Sells(bar, beer, price)

Bars(name, addr)

R1(bar) := �name(�addr=Maple St:(Bars))

R2(bar) :=

�bar(�beer=Bud AND price<$3(Sells))

R3(bar) := R1 [R2

20

Example

Find the bars that sell two di�erent beers at the
same price.

Sells(bar, beer, price)

S1(bar,beer1,price) := Sells

S2(bar,beer,price,beer1) :=

S1 ./ Sells

S3(bar) = �bar(�beer 6=beer1(S2))

21

