
The Design of a Topology Information Maintenance 
Scheme for a Distributed Computer Network 

William D. Tajibnapis 
The University of Michigan 

MERIT Computer Network 

Abstract 

In order for the nodes of a 
distributed computer network to 
communicate, each node must have 
information about the network's topology. 
Since nodes and links sometimes crash, a 
scheme is needed to update this 
information. One of the major constraints 
on such a scheme is that it may not 
involve a central controller. 

In this report a straightforward 
scheme involving adjacency matrices and a 
broadcast scheme are discussed and their 
inadequacies described. The NETCHANGE 
Protocol which is based on Baran's "Hot 
Potato Heuristic Routing Doctrine," is 
presented. This system has been 
implemented on the MERIT Computer Network 
and its correctness has been proved. 

We end by showing how the NETCHANGE 
Protocol can be modified into a shortest 
path algorithm. 

Keywords: Distributed Computer Network, 
Distributed Control, Routing Problem in 
Networks, Store-and-Forward Message 
Switching. 

Introduction 

This paper will discuss the problem 
of maintaining up-to-date information in 
the nodes of a distributed computer 
network. Since such a network has no 
central node that controls the flow of 
messages, all nodes are equals. The nodes 
are interconnected by telecommunication 
lines. It is a matter of indifference to 
our discussion whether the nodes are 
minicomputers connected to one or more 
"host" computers (which are the computers 
of interest to the users) or whether the 
nodes are the host computers themselves. 
Examples of distributed computer networks 
are the MERIT Computer Network and 
the ARPANET. 

The Problem 

In a network of any size at all, it 
quickly becomes impractical to have a 

direct connection between every two 
nodes. In order for the network to route 
messages between nodes A and B, it may be 
necessary to route these messages via 
nodes C, D and E. Thus, it is essential 
for every node (i.e., minicomputer) in 
the network to have some knowledge of the 
topology of the network. 

It is a simple matter to store and 
use such topology information, but no 
real computer network is ever static, 
especially a large one. Telephone lines 
sometimes fail; computers sometimes 
crash. Thus a scheme or protocol is 
needed to keep the topology information 
up-to-date. The only practical way to do 
this is to send messages carrying 
information about topology changes along 
the very network that is experiencing 
these changes. 

Solutions that involve a central 
controller of some sort violate the 
distributed nature of the network and 
will not be discussed here. (There also 
is a problem in recovering from a crash 
in the central controller.) At least one 
computer network (TYMNET) uses such a 
scheme, proving that it is workable. 

We will discuss several solutions to 
the topology-information maintenance 
problem in distributed networks. In doing 
so we hope to illuminate some of the 
problems that arise in a system that has 
distributed control, and which therefore 
also has a distributed information base. 

A Straightforward Solution 
m 

The topology of a network can be 
stored within the node computers in a 
compact manner in an adjacency matrix 
(Fig. i). An entry (i,j) of the matrix is 
1 if there is a link between nodes i and 
j; otherwise it is 0. It is possible to 
determine whether there is a path of 
length k between any two nodes by doing 
at most k matrix multiplications. Since 
the maximum length of a path without 
loops in a network of N nodes is N-l, it 
is possible to determine whether there is 
any path at all between two nodes by 

3 5 8  * 



doing at most N-I matrix multiplications. 
The rules for adding and multiplying the 
entries are the standard ones, except 
that i+i = i. 

A B C D E 
B A 0 1 0 0 0 

i ~  B 1 0 1 0 0 

C 0 1 0 1 0 

C D 0 i 1 0 1 

E 0 0 0 I 0 
Fig. i A Network and its Adjacency Matrix 

Thus, if a copy of the adjacency 
matrix is stored in each node, each node 
will have complete information about the 
network topology. The following 
straightforward scheme then suggests 
itself for transmitting information about 
topology changes: 

i. 

2. 

When the link ij goes up (comes 
down), nodes i and j make the 
appropriate changes to their 
adjacency matrices. They then 
send the message "ij,l" ('ij,0") 
to every node that they can 
reach. This message indicates 
that link ij is now up (down). 
Whether or not a node can be 
reached is determined from the 
updated adjacency matrix. 

When a node goes down, the 
situation is treated as if all 
the links to that node went down. 

3. When a node comes up, it obtains 
a copy of the adjacency matrix 
from the first (neighboring) node 
that it establishes contact with. 

The above scheme will work as long 
as all the messages caused by one 
topology change reach their destinations 
before the next topology change occurs. 
However, if several changes occur in 
quick succession, the scheme may fail 
miserably, as the following example 
illustrates. 

Consider the network of Fig. 2, in 
which links AB and DE come up 
simultaneously. At A's request, B will 
send A a copy of its adjacency matrix; 
but note that this matrix will indicate 
that E is not in the network. Node B will 
send the message "AB,I" to nodes C and D, 
but not to E, since B thinks that E 
cannot be reached. Similarly E will get a 
copy of D's matrix, which indicates that 
A cannot be reached, and D will send the 
message "DE,I" to nodes B and C but not 
to A. Thus when the activity has ceased, 
A and E will not know that a path exists 
between them. 

A B C D E 

B A 0 0 0 0 0 

I >  A.-" ___4 B oo 1 1 o 
C 0 1 0 1 0 

C D 0 1 1 0 0 
E 0 0 0 0 0 

Fig. 2 Failure of Straightforward Scheme 

The flaw of our "straightforward" 
scheme is now apparent; a sender node (B 
or D in our example) assumes that its 
adjacency matrix is correct when it sends 
out messages about topology changes - 
that assumption cannot safely be made. 

The Broadcast Scheme 

Removing the assumption of a valid 
adjacency matrix implies that the senders 
must use a broadcast scheme for the 
topology-change messages. Broadcasting 
works as follows. The initial sender 
sends the message to all its neighbors. 
These nodes in turn send the message to 
all their neighbors, which in turn send 
it to all their neighbors, etc. To 
prevent the message from reverberating 
around the network forever, it is 
necessary for each node to keep a list of 
received messages. When, and if, a 
message is received a second time, it 
will already be on the list and is then 
not transmitted further. 

Consider again the example of Fig. 
2. When B receives the broadcast message 
"DE,I', it will make the change in its 
adjacency matrix and send the message on 
to A if the link AB is already up. If AB 
is not yet up, then when it does come up 
A will get the up-to-date adjacency 
matrix and thus will still find out about 
link DE. 

It can, in fact, be proven that, 
under appropriate conditions, a 
broadcasted message will eventually be 
received by all nodes and then will stop 
reverberating around the network. 
However, there are still serious problems 
with the broadcast scheme. The first 
problem is the list of received messages 
that each node must keep; this list will 
get arbitrarily long! One can get around 
this by keeping only a finite number of 
messages, and throwing away the oldest 
message when a new message comes in, 
under the assumption that the oldest 
message is no longer roaming around the 
network. 

The second problem is more serious. 
If the link ij goes down and comes up 
again shortly thereafter, there is no 
guarantee that the messages "ij,0" and 
"ij,l', which will be sent out in that 
order by nodes i and j, will arrive in 
that same order at every node. If the 
messages are received in the wrong order, 

359 



the node will incorrectly conclude that 
link ij is down. This problem can only be 
solved by having sender nodes sequence 
their messages, but this means that the 
sequence number has to be preserved 
across node crashes. This is a tricky 
business, since most network 
minicomputers do not have any permanent 
storage, such as disk. 

The third problem is also tricky. If 
a network breaks into two (or more) 
disjoint parts, the adjacency matrices 
will correctly reflect the change, but 
the matrices of the nodes in part A (Fig. 
3) will still contain information about 
the topology of part B. If anything 
happens to part B before it is rejoined 
with A, the matrices in A will not 
reflect those changes, and problems will 
arise when the parts are rejoined. Again, 
schemes can be devised to get around this 
problem, but they are quite elaborate and 
clumsy. We are running into a case of 
diminishing returns -- a rare event is 
requiring a disproportionate amount of 
code and effort. 

r~-----~ A B C D E F G 
f ~ -  - -  iI I i A i 1 0 i 0 i ~ ADJAEEIICYi'IATRIX 

/ " \  B 0 0  0 ~ EVERYWHERE AFTER 
[ ]~"--J~/ c oo o o ,_' K BC GOES DON,. 

{ ~ ' ~ I / Y '  LC-----.--EP D 0 0 1 0 1 0 0  )THIS IS ALSO THE 
~, E 0 0 0 1 0 1 0  ,ADJACEIICY HATRIX li~ 

~ F 0 0  1 0 1 0  0 ~ I NOI)ES A, B. & G 
6 1  i 0 0  O 0 0  'AFTER DE, EFGODOW~¢. 

A B C D E F G  
A O I O 0 0 0 1  

A B I 0 0 0 0 0 i ADJACEIICYI~TRIX 
C 0 0 0 I 0 1 0 |~I/IODESC, D, E 
D 0 0 1 0 0 0 0 &F~TERLI{IKS 

C F E 0 0 0 0 0 0 0 DE& EF GODOWtl. 
6 F O 0 1 0 0 0 0  

G l 1 0 0 0 0 0  

A B C D E F G 
I ~, Aolooool 

B i 0 1 0  O 0 1  (IRCORRECT)ADJACE;KY 
C 0 I 0 I 0 i 0 I'iATRIX IN IIODES 

- D 0 0 1 0 i 0 0 A, B, & G AFTER 
C F E 0 0 0 I 0 1 0 BC CO.~IESUPAGAIN. 

F 0 0 1 0  ] O O 
G G i 1 0 0 0 0 0  

Fig. 3 Failure of Broadcast Scheme 

Before we go on to the next (and 
final) solution, we would like to review 
the two problems that must be solved in 
any topology information maintenance 
scheme. 

The first problem is caused by the 
fact that the messages carrying 
information about topology changes must 
travel through the network which is 
experiencing these changes, and by the 
fact that there is a time lapse between 
the occurrence of a change and the 
arrival of the news of that change at any 
particular node. Thus a node nevers knows 
for certain that the topology information 
that it has is correct. 

The second problem is similar; the 
topology messages need to be sequenced. 
Since it is virtually impossible for a 
node to "remember" a sequence number 
"across" a crash, the sequence number is 
reset to zero every time a node restarts. 
This means that a node must resynchronize 
with the other nodes every time it 
restarts. This can only be done when the 
nodes in question know they can 
communicate, a fact which they learn from 
the topology messages that need to be 
sequenced in the first place. 

The NETCHANGE Protocol 

This next solution solves the two 
problems just described. The NETCHANGE 
Protocol is the topology-information 
maintenance scheme implemented on the 
MERIT Computer Network; it is based on 
Baran's "Hot-Potato Heuristic Routing 
Doctrine" 

Now, no matter how rapidly the 
network is changing, there is one part of 
the network topology that a node always 
knows about; the identity of its 
neighbors (i and j are neighbors if the 
link ij is up). Furthermore, if and i and 
j are neighbors, then every time j 
crashes or restarts, i finds out about it 
immediately. These facts are a result of 
the "hand-shaking" protocol that 
neighboring nodes carry out every time 
they (re)-establish communication. 

In the NETCHANGE Protocol, the 
messages carrying information about 
topology changes (hereafter referred to 
as NETCHANGE messages) are only sent from 
one neighbor to another. Since a node 
always knows who its neighbors are, this 
solves problem i. A node always finds out 
immediately when one of its neighbors 
restarts; thus two neighboring nodes can 
always maintain message sequencing 
between them. This solves problem 2. 

The NETCHANGE Protocol differs from 
the adjacency matrix scheme in the extent 
of the information stored at each node. 
In order to relay (or send) a record 
correctly, a node need not know the 
complete, exact topology of the network. 
All it needs to know is in what direction 
to send the record, i.e., on what link it 
should transmit the record. In other 
words, it should know the identity of the 
first node along the route between itself 
and the destination node. If there is 
more than one route, it needs to know the 
relative lengths of these routes (in our 
scheme the nodes know the absolute length 
of these routes). 

For example, consider node A in the 
network of Fig. 4a. The shortest distance 
from A to E via node B (one of A's 
neighbors) is 3; the shortest distance 
from node A to E via A's other neighbor D 
is 2. Thus, in accordance with the 

360 



previous paragraph, all A needs to know 
about E is that via B it is 3 hops away, 
and via D it is 2 hops away. Similarly, 
all A needs to know about C is that it is 
2 hops away via B, and 2 hops away via D. 
Similarly for nodes B and D. 

The above mentioned information can 
be stored in tabular form, as shown in 
Fig. 4b. Such a table, called the 
Distance Table, has a column for every 
neighbor of the node in question, and a 
row for every node in the network. Each 
node has such a distance table, and it 
should be clear that each node's distance 
table will be different from those of the 
other nodes. 

DISTANCE TABLE 

DA DC DE 
A 1 3 3 
B 2 2 3 
C 3 1 2 
D 
E 3 2 1 

B / 
w 

A 

ROUTE TABLE 

1,A 
2,A 
LC 

1,E 

Fig. 4 

C 

2> 
v 

D 

(B) 

E (A) 

BCmF._A 
DISTANCE TABLE 

AB AD 
A 
B 1 3 
C 2 2 
D 3 1 
E 3 2 

ROUTE TABLE 

I,B 
2,B 
13 
2,D 

Examples of Distance and Route 
Tables 

Both for expository ease and for 
programming reasons we now introduce a 
second table, the Route Table. It is 
structured to take advantage of the fact 
that the information usually needed is 
the shortest route to a particular node. 
The route table has an entry for every 
node in the network. The entry for node X 
contains the shortest distance to node X, 
and the name of the first node on the 
route along which the shortest distance 
obtains. Thus the route table in node A 
(Fig. 4b) has "2,D" in the entry for node 
E, since the shortest route from A to E 
is AD, DE. It should be clear that the 
route table can easily be constructed 
from the information in the distance 
table; and once again, the route table in 
each node is different from those in the 
other nodes. 

When the topology of the network 
changes, the distance and routing tables 
in some (or perhaps all) of the nodes 
have to be updated. This update 
information is disseminated by means of 
the NETCHANGE messages. The general idea 
behind the NETCHANGE messages runs 
something like this. 

When a node discovers that one of 
its immediate neighbors is no longer a 
neighbor (either because the link between 

them went down or because the neighbor 
crashed), or conversely when it discovers 
that it has a new neighbor, the node 
updates its distance and route tables, 
and then sends the updates to all its 
neighbors. In the case of a new neighbor, 
it also sends a copy of the route table 
to that new neighbor. These updates and 
the copy of the routing table are the 
NETCHANGE messages. These neighbors will 
in turn use the information in these 
NETCHANGE messages to update their 
distance and route tables. If this causes 
any entries of their route tables to 
change, i.e., if the update changed the 
shortest distance to some node, then the 
neighbor in question would send these 
changes to all its neighbors in the form 
of NETCHANGE messages. The process 
continues until all the tables of all 
nodes have been correctly updated. 

Now it is quite possible that while 
the above process is going on, another 
link goes down or comes up, or another 
node crashes or comes up. This will cause 
another stream of NETCHANGE messages, 
which will mingle with the first stream. 
We have proved that this causes no 
problems and have discussed this in 
another report. 

Before going into this in more 
detail, we would like to point out a 
basic fact about the NETCHANGE process. 
The distance table of each node consists 
of nothing more than a collection of the 
information in the route tables of all 
the neighbors of that node. NETCHANGE 
messages merely insure that a node is 
informed of changes in its neighbors" 
route tables. 

The NETCHANGE Protocol Detailed 
Specification 

A NETCHANGE message "SN ON, SD" has 
the following meaning: The (new) 
shortest distance from the sender of the 
message SN to some other node ON is SD. 

Notations 
explanation 

C. 

the 

used in the following 

Node B: node carrying out the 
algorithm 

Node C: A neighbor of node B. 
Node Y: Some node other than B or 

N: The number of nodes in 

network. 

There are three events that can occur to 
node B: 

i. An adjacent link BC comes up, or 
a neighbor node C comes up. 

2. An adjacent link BC goes down, or 
a neighbor node C goes down. 

3. A NETCHANGE message [CY,D] is 

361 



received (from node C) . 

Note that, as in the adjacency 
matrix scheme, a node going down is 
treated as if all the links to that node 
were going down. 

The following three algorithms 
describe what a node does when one of the 
three possible events occur. 

Algorithm #i: An adjacent link (BC) or 
neighbor (C) comes up. 

i. Entry (C,BC) of the distance 
table is set to i. 

2. Entry (C) of the route table is 
set to I,C. 

3. The NETCHANGE message [BC,I] is 
sent to al] neighbors of B. 

4. A copy of B's route table is sent 
to C in the form of a series of 
NETCHANGE messages. 

Figure 5 gives an example of nodes 
executing algorithm 1. Note that the 
number N (N=5 in this example) is used to 
indicate the lack of a path, since the 
longest path without loops in a network 
of N nodes can be no longer than N-I 
links. Thus when a link is down, the 
corresponding column in the distance 
table of an adjacent node is filled with 
N's. 

Algorithm #2: An adjacent link (BC) or 
neighbor (C) goes down. 

1. All entries in column BC of B's 
distance table are set to N. Let 
X take on the value of every node 
ID except B, and for each value 
of X: 

2. Examine row X of the distance 
table to see if step 1 increased 
the minimum distance to node X. 
If it did not, do nothing further 
for this value of X. 

3. If it did, call the new value D'. 
Make the appropriate change to 
entry X of the route table, and 
send the NETCHANGE message 
[BX,D'] to all neighbors. 

Algorithm #3: A NETCHANGE message [CY,D] 
is received. 

i. If Y=B, the message is accepted 
by node B, but then it is simply 
ignored. If Y=B, go to next step. 

2. Entry (Y,BC) of B's distance 
table is set equal to Min(D+I,N) . 

3. Row Y of the distance table is 
examined to see if step 2 changed 
the shortest distance to node Y. 

B 

/ 
w 

A 

If not, nothing further is done. 
If the distance is changed, go to 
step 4. 

c 

,TE ACT o, BE T E, ,o s ,~ND ~WH~N LIilK D~ C0"1~ UB. 
D 

BD]IE_D. NODE E 

DISTANCE TABLE ROUTE TABLE DISTANCE TABLEIROUTE TABLE 

A 1 3 5 1,A ,,. 3,C 

E 2® @ E-  

~ SENDS THE tlETCH~PIGE P.IESSAGE 
BE.I  +o A. C 

S; tDA.II.tDB.21 

E SEi'IDS THE NETCHANGE t,IESSAGE 
lED,l] TO D & C 

I ALSO ~[iBS: [EA,3],[EB,2] 
EC, 1] 

DISTANCE TABLE ROUTE TABLE DISTANCE TABLE ROUTE TABLE 

DA DC DE EC ED 
A 1 3~ I,A EFFECT A 3~ @ 
B 2 2 2,A OF B 2 2,B 
C 3 1 1,C ,.,__EXCHANGE__. C 1 1,C 
D - - - P.IES~AGES D 2 1 1,D 
E 4 2 1 1,E E . . . .  

E SENDS [EA,2] TO D & C 

DISTANCE TABLE ROUTE TABLE 

DA DC DE 
A 1 3(~) 1,A 

Fig. 5 Example showing part of the NET- 
CHANGE message activity induced 
by a topology change 

4. Let the new shortest distance be 
D" The appropriate change is 
made to entry Y of the route 
table, and the NETCHANGE message 
BY,D is sent to all neighbors. 

Figure 6 gives an example of nodes 
executing algorithm #3 (and parts of 
algorithm #i) . 

The activity in a network when a 
link goes down is very much like the 
activity when a link comes up, except the 
link's going down can cause one or more 
nodes to become isolated from the 
network. When this happens, NETCHANGE 
message traffic is generated causing the 
entries in row Y of the distance tables 
(where Y is the isolated node) to 
percolate up to the value N. 

When a node is initialized, all the 
distance table entries are set equal to 
N. 

We implemented the NETCHANGE message 

362 



protocol, in the MERIT Network in the 
summer of 1973. It was easy to install 
and has been absolutely reliable. In 

/ ~ E THIS DIAGRAM OULY SHOWS THE 
.LI- INTERACTION BETWEEN IIODES A. 
"~ B,C,&D. 

NODE D'S TABLES CI~ANGE AS SHOWN IN FIG, 5, IT SErEDS THE ~ETCHAIIGE 
MESSAGE [DE,l] TO A & C: 

NODE A rIODE C 

DISTAI~CE TABLE I ROUTE TABLE DISTANCE TABLE ROUTE TABI F 

AB AD 
A 
B 1 3 
C 2 2 
D 3 1 
E 3 3 

DISTAHCE TABLE 

AB AD 
A 
B 1 3 
C 2 2 
D 3 1 
E 3 @ 

CB CD CE 
-- TABLES A 2 2 4 2,B 
I,B PRIOR TO B 1 3 3 I,B 
2.B "- CHANGE "'C . . . . .  
1,D D 3 1 3 1.D 
3,B E 3 3 1 I,E 

A & C RECEIVE [DE,l] FROM D, 

ROUTE TABLE DIST.A[ICE TABLE 

CB CD CE 
-- A 2 2 4 
1.B B 1 3 3 
2,B C - - - 
I,D D 3 13 
( ZE) E3@I 

NODE B 

DIS~NCE TABLEt ROUTE TABLE 
~ B C  

A I 3  
B 
C 3 1  
D 2 2  
E 4 2  

DISTANCE TABLE 
BA BC 

A 1 3  
B - 
C 3 1  
D 2 2  
E @ 2  

F i g .  6 

[40W NODE A SENDS [AE,2] TO B & D: 

NODE D 

DISTANCE TABLE 
DA DC DE 

1,A A 1 3 3 
-- B 2 2 3 
1,C C 3 1 2 
2,C D - - - 
2,C E 4 2 1 

B & D RECEIVE [AE,2] FROM A 

ROUTE TABLE DISTAl,ICE TABt E 
DA DC DE 

1,A A 1 3 3 
-- B 2 2 3 
1.C C 3 1 2 
2,C D - - - 
2,C E(~)2 1 

Further NETCHANGE message 
activity induced by the 
change of Fig. 5 

ROUTE TABLV_ 

2,B 
I,B 

1,D 
1,E 

ROUTE_ TABLE 

1,A 
2,A 
I,C 

ROHT,L] A~ILE 

1,A 
2,A 
1,C 

1,E 

fact, we have proved that the NETCHANGE 
protocol is correct. 

We only have space here to sketch 
our correctness proof. The proof borrows 
a technique from automata theory. First, 
we show that if the protocol terminates, 
it terminates correctly, then we show 
that it always terminates. 

The proof of correct termination is 
based on the structure of the route and 
distance tables. Entry Y of B's route 
table is based on row Y of B's distance 
table, which in turn is based on the Y 
entries of the route tables of B's 
neighbors. One can thus trace a path back 
to some neighbor of Y, which is always 
correct about its distance from Y. 

The proof of certain termination is 
more complicated. It is based on the 
observation that a NETCHANGE message with 
ON=Y can only affect row Y of a distance 
table, and can only cause the generation 
of other NETCHANGE messages that also 
have ON=Y. By confining our attention to 
NETCHANGE messages on "level" Y (i.e., 
with ON=Y), we were able to show that a 
finite number of topology changes could 
not cause an infinite number of messages 
to be generated on level Y, and hence 
could not cause an infinite number of 
NETCHANGE messages to be generated. 

Extensions of the NETCHANGE Protocol 

The reader will recall that each 
node has limited information about the 
network topology, to wit: 

I . 

2. 

the identity of its neighbors. 

for every node Y, the distances 
from itself to Y via each of its 
neighbors. 

This information is sufficient for 
our purposes, but may not be enough in 
other cases. However, it turns out that 
our NETCHANGE Protocol can be modified to 
provide the nodes with more information. 

In some applications, the identity 
of the nodes along the shortest paths is 
important information. By modifying the 
NETCHANGE messages so that they contain 
not only SN and ON, but also the ID's of 
the nodes in between, the extra 
information is maintained inside each 
node (Fig. 7). Thus our NETCHANGE 
Protocol can easily be turned into a 
"shortest path" algorithm. 

~[BE,3]-..-[CE,2]~ r[OE,1]~ ,[BCDE,3]~[COE,2]\ w[OE,l]\ 

A B C D E A B C D E 

EXAMPLE OF MESSAGE FLOW USING EXAI~PLE OF ;IESSAGE FLO~t US[[~G 
Ur~IIODIFIED PROTOCOL, A MODIF[ED PROTOCOL THAT PRO- 

VIDES EACH :lODE l,l|Ttl A COMPLETL 
DESCRIPTIO[I OF THE SIIORTEST PATtiS. 

Fig. 7 

By applying a similar 
straightforward modification, it is 
possible to maintain in each node a list 
of all paths from it to any other node 
(this implies having the identity of all 
the nodes along each such path). 

We conclude by noting that our 
NETCHANGE Protocol is only the first step 
in the development of an effective 
message routing scheme. Other problems 
that remain are flow control and 
congestion control. Flow control is 
necessary to synchronize communicating 
processes in different nodes; one of its 
runc~iuH~ is to prevent a receiving 
process from being flooded with messages. 
Congestion control is necessary to route 

363 



messages around congested parts of the 
network, and to prevent congestion 
whenever possible. We plan to pursue 
research on these subjects. 

Acknowledgments 

I would like to thank Wayne Fischer and 
Eric Aupperle for their helpful insights 
during the course of this research. 

Bibliography 

I. Aupperle, E. M., "The MERIT Network 
Re-examined," Report No. MCN-0273- 
TPI3, MERIT Computer Network, 
University of Michigan, Ann Arbor, 
Michigan, February 1973. 

2. Baran, Paul "On Distributed 
Communication Networks," IEEE 
Transactions on Communication Systems 

V CS-12, March 1964, pp. 1-9. 

3. Beere, Max P. and Sullivan, Nell C., 
"TYMNET-A Serendipitous Evolution," 
IEEE Transactions on Communications, 
~--C5M-20 #3, June 1972, pp. 5-rf~5Y57 

4. Cocanower, A. B. et al., "The 
Communications Computer Operating 
System--The Initial Design," MERIT 
Computer Network, University of 
Michigan, October 1970. 

5. Dreyfus, Stuart E. "An Appraisal of 
Some Shortest-Path Algorithms," 
O~erations Research, VI7, #3, May- 
June 1969, pp. 395-412. 

6. Heart, F. W. et al., "The Interface 
Message Processor for the ARPA 
Computer Network," AFIPS Conference 
Proc., V36, 1970 SJCC, pp. 551-567. 

7. Herzog, B., "Computer Networks," 
Proc. of the International Computing 
Symp----6s1"-6m, Venice Italy, 12cr~U-K-pFl-~ 
1972. 

8. Frank, Howard, Kahn, R. E., and 
Kleinrock, Leonard, "Computer 
Communication Network Design- 
Experience with Theory and Practice," 
AFIPS Conference Proc., V40, 1972 
SJCC, pp. 255-270. (Contains an 
extensive bibliography on computer 
networks.) 

9. Tajibnapis, William D., "A 
Correctness Proof of a Topology 
Information Maintenance Scheme for a 
Distributed Computer Network," 
submitted for publication to the 
Communications of the ACM. 

364 


