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In order for the nodes of a distributed computer 
network to communicate,  each node must have infor- 
mation about the network's topology.  Since nodes and 
links sometimes crash, a scheme is needed to update 
this information. One of the major constraints on such 
a topology information scheme is that it may not in- 
volve a central controller. The Topology Information 
Protocol that was implemented on the MERIT Com- 
puter Network is presented and explained; this proto- 
col is quite general and could be implemented on any 
computer network. It is based on Baran's "Hot Potato 
Heuristic Routing Doctrine." A correctness proof of 
this Topology Information Protocol is also presented. 
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Introduction 

In this paper we present a problem that the design- 
ers of a distributed computer network must solve. We 
then describe a solution to that problem and proof of 
its correctness. We would like to point out that our 
descriptions of both the problem and its solution are 
quite general and hardware independent; the solution 
we propose can be easily implemented in most com- 
puter networks. In particular, it has been implemented 
by us on the MERIT  Computer  Network [1, 3, 6]. 

The M E R I T  Computer  Network, jointly funded by 
the three participating universities, is intended to con- 
nect the computers of many of the state's universities 
and colleges. At present it has three nodes which are 
located about 70 miles from each other: Michigan State 
University, The University of Michigan, and Wayne 
State University. 

A typical (ARPANET-l ike)  [4, 5] computer net- 
work is a collection of host computers connected by a 
communication subnet. The communication subnet is a 
collection of minicomputers (the nodes of the network) 
interconnected by bidirectional electronic links (usually 
telephone lines). Each minicomputer is either con- 
nected to one or more host computers or is itself an 
entry point to the network. The purpose of such a 
network is to connect the host computers so that a user 
of any one of these host computers or one of the entry 
points has access to all the host computers on the 
network. M E R I T  is such a network. 

The communication minicomputers are essentially 
invisible to the user; the reason for having all that extra 
hardware is to reduce the host software costs. Without 
them it would be necessary to interface every host 
computer with every other host computer,  and to install 
telecommunications support in every host. With them, 
it is only necessary to interface each host with the 
minicomputer, and the (identical) minicomputers with 
each other. 

Finally, both A P P A N E T  and M E R I T  are distrib- 
uted networks. This means that all nodes are equal and 
there is no node that is a central controller. 

Our solution (to the as yet undescribed problem) is 
designed for a distributed network with equal nodes, 
but could also be implemented on a centralized net- 
work. It should also be noted that it is a matter of 
indifference to the discussions which follow whether 
the nodes are minicomputers or the hosts themselves. 
Such networks, in which the hosts are directly con- 
nected to the communication lines, do exist. Typically, 
all hosts on such a network are very much alike (e.g. all 
members of a particular computer series). 

On the other hand, our solution will not work for a 
network in which the links are unidirectional. Thus a 
ring network in which the messages can only move 
clockwise does not fall within the scope of this article. 

We conclude this introduction by introducing some 
terms that we will need. A node is a (mini)computer. A 

link X Y  is a bidirectional physical connection between 
the two nodes X and Y. Node X is a neighbor of node Y 
if (i) both X and Y are operational (up), (ii) the link X Y  
exists and is operational. A route between two nodes X 
and Y is a connected sequence of operational links and 
nodes, starting with some link X P  and ending with 
some link Q Y .  Thus in Figure 1, A B C E ,  A B C D C E  are 
routes, but A B D ,  A E C  are not. A user is a process or 
job in some host; a record is the unit of user-generated 
information that the network conveys from host X to 
host Y. A message is a network-generated piece of 
information that travels from some node X to some 
node Y.  

The Problem 

In a network of any size at all, it quickly becomes 
quite impractical to have a direct connection between 
every two nodes. Thus in order for the network to route 
records between nodes A and B, it may be necessary to 
route these records via nodes C, D,  and E. This implies 
that: 

(1) Node A (the sender node) must know enough 
about the network topology to determine that in order 
to get the record to node B it should send it to node C. 

(2) Node C (the intermediate node) must recognize 
that the record is not destined for itself, but for some 
other node. Node C must also know enough about the 
network topology to determine that in order to get the 
record to node B it should send it on to node D, its 
neighbor. 

(3) When the network topology changes, 1 some 
scheme must exist whereby these changes are made 
known to all nodes in the network. The occurrence of 
topology changes should be invisible to the users of the 
network; for example, a person at node A communicat- 
ing with the computer at node B should be totally 
unaffected by changes (which occur while he is "on")  in 
the route between nodes A and B, as long as such a 
route continues to exist. Clearly, if all routes between 
A and B are down, the user's connection should be 
automatically closed and the user should be informed 
of what happened. 

A. The Netchange Message Protocol 
The necessary information about the topology of 

the network is stored in (routing) tables. The nodes in 
the network inform each other about topology changes 
by sending each other special messages called NET- 
C H A N G E  messages. Thus there are routines that send 
and receive N E T C H A N G E  messages and make the 
appropriate changes in the routing tables. 

The actual process of record relaying (or record 
switching) is a conceptually trivial one; the sender and 

A "topology" change is defined to be any one of the following 
events, or any combination thereof: (1) A link going down (i.e. 
ceasing to function), (2) a link coming up, (3) a node crashing or 
restarting (by this is meant the node minicomputer, not the host). 
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intermediate nodes merely consult their routing tables 
to determine which neighboring node to send the rec- 
ord to. The interesting part  is the scheme used to make 
network topology changes known to all nodes in the 
network (hereafter called the N E T C H A N G E  Protocol). 

Thus the problem is to design a correct topology 
information maintenance protocol.  Our  solution is a 
topology information maintenance protocol called the 
N E T C H A N G E  protocol.  The remainder  of this article 
will describe the N E T C H A N G E  Protocol that we have 
implemented and prove its correctness. 

Incidentally, we would like to make clear at the 
outset that our N E T C H A N G E  Protocol will work for a 
network of arbitrary size, not just for our three-node 
network.  It is based on Baran 's  "Hot -Po ta to  Heuristic 
Routing Doctr ine"  [2]. 

We mentioned in the previous section that the "nec- 
essary information about  the topology of the network is 
stored in the routing tables."  What precisely is this 
necessary information? 

In order to correctly relay (or send) a record, a node 
need not know the complete,  exact topology of the 
network. All it needs to know is what direction to send 
the record, i.e. what link it should transmit the record 
on. Another  way of saying the same thing is that it 
should know the identity of the first node along the 
route between itself and the destination node. If there 
is more than one route,  it needs to know the relative 
lengths of these routes. In our protocol the node knows 
the absolute length of these routes.  Length is measured 
in terms of "hops" :  thus a route with two intermediate 
nodes in it is three hops along. 

For example,  consider node A in the network of 
Figure 1. The shortest distance from A to E via node B 
(one of A ' s  neighbors) is 3, since there are three links in 
that route: AB,  BC, CE. The shortest distance from 
nodeA to E v i a A ' s  other neighbor,  D,  is 2, since there 
are two links in that route: AD,  DE. Thus, in accord- 

Fig. 1. 
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ance with the previous paragraph,  all A needs to know 
about E is that via B it is three hops away, and via D it 
is two hops away. Similarly, a l i a  needs to know about  
C is that it is two hops away via B, and two hops away 
via D. Similarly for nodes B and D. 

The above-ment ioned information can be stored in 
tabular form, as shown in Figure l (b) .  Such a table, 
called the Distance Table,  has a column for every 
neighbor of the node in question, and a row for every 
node in the network.  Each node has such a distance 
table, and it should be clear that each node 's  distance 
table will be different from those of the other nodes. 
Figure l (b)  shows the Distance Table for node A ; entry 
(E, A B) contains a 3 since the distance from A to E via 
B is three hops. Similarly, entry (E, AD)  contains a 2 
since the distance from node A to node E via D is two 
hops. Figure l (b )  also shows the Distance Table for 
node D; note that it has three columns, since node D 
has three neighbors. 

Both for expository ease and for programming rea- 
sons we now introduce a second table: the Route  Ta- 
ble. It will be needed later on in our proofs,  and it is 
structured to take advantage of the fact that most often 
the information needed is the shortest route to a partic- 
ular node. The Route Table has an entry for every node 
in the network.  The entry for node X contains the 
shortest distance to node X, and the name of the first 
node on the route along which the shortest distance 
obtains. Thus the Route  Table in node A (see Figure 
l (b) )  has " 2 , D "  in the entry for node E ,  since the 
shortest route from A to E is AD, DE. It should be 
clear that the Route Table can easily be constructed 
from the information in the Distance Table; and once 
again, the Route Table in each node is different from 
those in the other nodes. 

When the topology of the network changes, the 
Distance and Routing tables in some (or perhaps all) of 
the nodes have to be updated.  This update information 
is disseminated by means of the N E T C H A N G E  mes- 
sages. The general idea behind the N E T C H A N G E  
messages runs something like the following. 

When a node discovers that one of its neighbors is 
no longer a neighbor (either because the link between 
them went down or because the neighbor crashed),  or 
conversely when it discovers that it has a new neighbor,  
the node updates its Distance and Route Tables,  and 
then sends the updates to all its neighbors. In the case 
of a new neighbor,  it also sends a copy of the Route 
Table to that new neighbor (more of which later). 
These updates and the copy of the routing table are the 
N E T C H A N G E  messages. These neighbors will in turn 
use the information in these N E T C H A N G E  messages 
to update their Distance and Route Tables.  If this 
causes any entries of the Route Table to change, i.e. if 
the update changed the shortest distance to some node, 
then the neighbor in question will send these changes 
(or updates) to all its neighbors in the form of NET-  
C H A N G E  messages. The process continues until all 
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Fig. 2. 
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Node C: A neighbor of node B. 
Node Y: Some node other than B or C. 
NN: The number of nodes in the network. (Nodes that 

happen to be down are included in this count.) This is 
a number that is known to all nodes. 

Distance Table: The entries 2 of this table will be re- 
ferred to as (y, bc). The actual contents of an entry 
(which is one number,  the distance from B to Y via 
neighbor C) will be referred to as D~.b,. 

Route Table: Each entry 2 consists of a shortest distance 
and the ID of the neighbor along which that shortest 
distance obtains. The entry for node P will be re- 
ferred to as Sp, N v. 

There are three events that can occur to node B: (1) an 
adjacent link BC comes up, or a neighbor node C 
comes up; (2) and adjacent link BC goes down, or a 
neighbor node C goes down; (3) a N E T C H A N G E  
message [CY, D] is received (from node C). 

Note that a node going down is treated as if all the 
links to that node were going down (in practice, these 
two events often cannot be distinguished). 

The following three algorithms describe what a 
node does when one of the three possible events occur. 

DISTANCE TABLE ROUTE TABIF 

DA DC DE 
A 13 (~ )  1,A 
: ' : :  : :  

E SENDS [~,2] TO D & C 

nodes' tables have been correctly updated. 
Now it is quite possible that while the above process 

is going on, another link goes down or comes up, or 
another node crashes or comes up. This will cause 
another stream of N E T C H A N G E  messages, which will 
mingle with the first stream. We will prove (later on) 
that this causes no problems. 

Before going into this in more detail, we would like 
to point out a basic fact about the N E T C H A N G E  
process. The Distance Table of each node consists of 
nothing more than a collection of the information in the 
Route Tables of all the neighbors of that node. NET- 
C H A N G E  messages merely ensure that a node is in- 
formed of changes in its neighbors'  Route Tables; 
N E T C H A N G E  messages are only sent from one neigh- 
bor to another. We would also like to point out that no 
assumptions are made about the relative processing 
speeds of the nodes, or transmission rates of the links. 

The N E T C H A N G E  Protocol: Detailed Specifica- 
tion. A N E T C H A N G E  message "TID OID,  SD" has 
the following meaning: The (new) shortest distance 
from the sender of the message TID (This node's ID)  
to some other node OID (Other  node's ID)  is SD 
(Shortest Distance). 

The following notation is used in the explanation: 

Node B: The node that is carrying out the algorithm. 

Algorithm 1 (A link comes up) 

When node B discovers that link bc has come up (or that node C 
has come up) it does the following: 

1. Entry (c, bc) of the Distance Table is set to 1. 
2. Because this action will always change the shortest distance from 

B to C from some d > 1 to I ,  entry (c) of the Route Table is set to 
1 ,c .  

3. The N E T C H A N G E  message [bc, 1] is sent to all neighbors of B. 
4. Let the entries of B's Route Table be numbered p,  q, r, . . . ,  t. 

Then B sends the N E T C H A N G E  messages [bp, So], [bq, Sq], 
[br, St] . . . . .  [bt, St] to node C. 

Figure 2 gives an example of nodes executing Algo- 
rithm 1. Note that the number NN (5 in this example) is 
used to indicate the lack of a path, since the longest 
route without loops in a network of NN nodes can be 
no longer than NN - 1 links. Thus when a link is down, 
the corresponding columns in the Distance Tables of 
the two adjacent nodes are filled with NNs. 

Algorithm 2 (A link goes down) 

When node B discovers that link B C  has gone down (or that 
node C has crashed) it does the following: 

1. All entries in column bc of B's Distance Table are set to N N .  
Then for each rowp of the Distance Table (and Route Table) the 
following is done: 

2. Let the columns of the Distance Table be bf,  bg, . . . ,  bc,  . . .  ,. 
bk .  The minimum of Dr, bs, Do, bu, . . .  , Dr. ~c, . . . ,  Dv.bk is 
computed. (This minimum may have changed because Do,be was 
changed to N N . )  Let this minimum be Dv,b ~. 

3. If Dv.bg = Sv (the Route Table entry for row p )  set Nv = G. 
Otherwise set So equal to Dv,bu , set Nv equal to G and send the 
N E T C H A N G E  message [bp, So] (where Sv is the new value) to 
all neighbors. 

2 The entries of the Distance Table are initialized to N N .  The 
entries of the Route Table are initialized to " A , N N "  where A is an 
arbitrary node ID. (See the Appendix about the details of network 
initialization.) 

480 Communications July 1977 
of Volume 20 
the ACM Number 7 



Algorithm 3 (A N E T C H A N G E  message [CY, D] is received) 

If Y = B, the message is accepted by node B, but then is simply 
ignored. If Y ~ B, the following steps are taken: 

1. D,.bc is set equal to Min (D + 1,NN).  
2. Compute the minimum of D~.~f, . . . ,  Du,b~; . . . .  Dy,bk. Let it be 

O~,bg. 
3. If Du,bu = S set N = G. Otherwise, set S u equal to Du.ou and set 

N u = G and send the N E T C H A N G E  message [by, Su] to all 
neighbors. 

Figure 3 gives an example of nodes executing Algo- 
rithm 3 and parts of Algorithm 1. 

The activity in a network when a link goes down is 
exactly analogous to what happens when a link comes 
up, as long as the loss of that link doesn ' t  cause a node 
to become isolated. So we will not present a separate 
example for that case. We will, however,  present an 
example of the case of a link going down and isolating a 
node. 

For this example,  we will consider what happens to 
the network of Figure 2 (without link DE) when link 

Fig. 3. 
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CE goes down (see Figure 4). The going down of this 
link will only affect distances between E and some 
other node, and not distances between two nodes X 
and Y, where neither X nor Y are E .  Thus in order to 
simplify matters,  in Figure 4 we will only show row E of 
the various Distance Tables and Route  Tables.  

Clearly, node E immediately finds out that it is 
isolated, and since it no longer can communicate  with 
any other nodes, its activities are of no further concern 
t o  u s .  

The first row of Figure 4 shows the tables of nodes 
A, B, C and D prior to CE's going down. When link CE 
goes down, node C takes cognizance of the event by 
putting 5's in column CE of its Distance Table.  This 
changes C's shortest distance to E from 1 to 3, so the 
Route  Table entry for E changes from 1, E to 3, B (see 
the second row of Figure 4). Then C sends the NET-  
C H A N G E  message "CE, 3" to its neighbors B and 
O . 3 . 4  

Thus even though C knows that link CE went down, 
it does not yet know that node E is now unreachable.  
This is because C does not know the complete topology 
of the network,  and for all it knows B might be con- 
nected to E.  What  happens now is that nodes A ,  B, C, 
and D send each other N E T C H A N G E  messages which 
cause their Route  Table entries for node E to climb up 
to 5 ,X.  The reader  will recall that since there are five 
nodes in the network,  a distance of 5 is interpreted to 
mean that the node in question is inaccessible. 

This example concludes our description of the 
N E T C H A N G E  Protocol.  In the next part  of this arti- 
cle, we will study the correctness of this protocol.  

B. Correctness Proof of  the N E T C H A N G E  Protocol 

1. Decomposition of the network. We now intro- 
duce a somewhat  different model of the network that 
will be used in some of our proofs. This new, decom- 
posed model,  is more general than the model described 
in the previous section; however,  by imposing some 
restrictions that do not affect our proofs,  we can make 
the decomposed model and the old model exactly 
equivalent. 

This new model was inspired by an interesting prop- 
erty of Algorithm 3. When this algorithm receives a 
N E T C H A N G E  message with O I D  = y (OlD stands 

3 Normally a node adds 1 to a distance in a N E T C H A N G E  
message it receives before putting it in its Distance Table. But if the 
distance in the message is 5, the 5 is put directly in the Distance 
Table. This is because 5 stands for infinity or inaccessibility. 

4 It is essential for the correct working of the N E T C H A N G E  
Protocol that no N E T C H A N G E  messages are lost due to transmis- 
sion errors or noise on the lines (links). This can be ensured by having 
the N E T C H A N G E  messages acknowledged. (The acknowledgment 
protocol is used between neighbor nodes to correct transmission 
errors and prevent lost messages. Typically, the procedure is for the 
sender to resend the message at regular intervals until it receives an 
acknowledgment from the receiver. For an extensive discussion of 
this protocol, see Chapter 5 of [7]). On the other hand, it is all right 
for a N E T C H A N G E  message to get lost because the link on which it 
is traveling goes down. 
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for "Othe r  Node ' s  I D " ) ,  it only changes row y of the 
Distance Table,  and possibly entry y of the Route  
Table. Similarly, if it sends out N E T C H A N G E  mes- 
sages, these messages will all have O I D  = y.  

Since we are not concerned with the order in which 
N E T C H A N G E  messages are processed or sent by a 
node,  it seemed to us that Algori thm 3 could be re- 
placed by N N  parallel algorithms, each of which is 
responsible for one row of the Distance Table and one 
entry of the Route  Table.  

Fur thermore ,  Algori thms 1 and 2 can be similarly 
altered. Since the three algorithms together  constitute 
one process, the three decomposed algorithms together  
constitute N N  parallel processes (in one nodeS). A 
description of these decomposed algorithms follows .6 

Algorithm 1 (in node b for level y(y ~ b): a link comes up) 

When link bc or node c comes up, do the following (c is some 
neighbor of  b). 

1. If C = Y: Set Dr, b u equal to 1 
Set Su = 1, Nu =-y 
Send the N E T C H A N G E  message [bu, 1] to all neigh- 
bors 

2. I f  C 4 ~ Y ,  send the N E T C H A N G E  message [bu, Su] to node C 
only. 

Algorithm 2 (in node b for level y(y 4 b): A link goes down) 

When link bc goes down,  or node c crashes,  do the following (c is 
some neighbor of b): 

1. Set Du.bc equal to N N .  
2. Let the columns of the Distance Table be bf,  bg, . . . ,  bc,  . . . ,  

bk.  The min imum of Du,bv, Du,bo, • • . ,  Dy,b¢, Dv,bk is computed .  
Let this min imum be Du.b~. (This min imum is computed  because 
it may have changed as a result of  step 1.) 

3. If Du,bo = S u set N u equal to g.  Otherwise,  set Su equal to Du.b o 
and set N u equal to g; and send the N E T C H A N G E  message [by, 
Su,oo] to all neighbors.  

Algorithm 3 (in node b for levely (y 4 = b). A N E T C H A N G E  message 
is received) 

At  level y only N E T C H A N G E  messages  of the form c y , D  are 
received. 

1. Dr.be is set equal to Min (D + 1, NN) .  
2. Compute  the min imum of D,,bs, D~,,bc, . . .  , Dy,bk- Let it be 

Du,t,~,. 
3. If Dj,.ba = S~ set N~, equal to g.  Otherwise,  set S~ equal to Du,by 

and set N u = g and send the N E T C H A N G E  message [by, Su] to 
all neighbors (where S~ is the new value).  

Since the Route  and Distance Tables inside node b do 
not have an entry or row for node b,  the process inside 
node b for level b is particularly simple: 

Algorithm 1 in node b for level b: null. 
Algorithm 2 in node b for level b: null. 
Algorithm 3 in node b for level b: receives NET-  

C H A N G E  messages of the form [cb,D], 
then does nothing. 

The reader  should now note that a level y process 

s In the interest of  clarity, from this point on lower-case letters 
will be used for node names .  

Entries of  the Distance and Route  Table are still initialized to 
NN.  

Fig. 4. 
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(consisting of the Algori thms 1, 2 and 3 for level y ) not 
only accesses exclusively row y of the Distance Table 
and exclusively entry y of the Route  Table ,  it also 
exclusively receives and sends N E T C H A N G E  messages 
of the form Icy, D]. This means that a level y process 
can only communicate ,  directly or indirectly, with other  
level y processes. Put another  way, a level y process 
cannot influence the behavior  of a level x process. 

Thus we can think of the network as consisting of 
N N  levels (Figure 5). At level b are found the processes 
for level b,  the only N E T C H A N G E  messages that 
travel on level b are those of the form [yb, D ]; similarly 
on the other levels. Thus in Figure 5, node d at level b 
represents the level b process in node d. Naturally,  the 
link ad at level a ,  and the link ad at level b,  and the 
links ad at levels c, d, and e all map into the one 
physical link ad. 

When a topology change occurs, it will cause NET-  
C H A N G E  message activity on one,  all or some of the 
levels. In the example of Figures 2 and 3, link de 
coming up caused activity on all levels (because of the 
exchange of Route  Tables between nodes d and e ). In 
the example of Figure 4, link ce going down only 
caused activity on level e (all the processes in nodes c 
and e were activated, but only those on level e sent any 
N E T C H A N G E  messages) - that is why the only 
changes that took place in the various Route  and Dis- 
tance Tables were in row e. 

The reason for decomposing the network like this is 
that it enables us to focus our attention upon a single 
level. A proof  about  the activity on a particular level 
will apply to all levels, and thus will apply to the activity 
of the whole network.  In the remainder  of this article 
we shall do just that: analyze the activity on a particular 
level. 

At this point,  we should qualify one of our previous 

482 Communica t ions  July 1977 
of Volume 20 
the A C M  Number  7 



statements;  the s tatement  that a level x process cannot 
influence a level y process. There is one way in which 
such influence can occur; since all N E T C H A N G E  mes- 
sages, no matter  what level they are on, travel along the 
same physical links, a level x message could delay a 
level y message. As might be expected,  neither the 
N E T C H A N G E  protocol nor any of our proofs about it 
are timing dependent .  Hence the nature and extent of 
this indirect interaction can be ignored. 

We can make an even stronger statement.  Various 
not-so-minor details about the ' sof tware '  inside each 
node are left unspecified in the decomposed description 
of the N E T C H A N G E  protocol; for example,  nothing 
has been said about the number  of processors in each 
node and how they (or it) are assigned to the N N  
processes. However ,  the level of detail of our descrip- 
tion is sufficient for the proof  of correctness that we are 
going to present.  

This means that our correctness proof  will be valid 
for any implementat ion of the "decomposed"  NET-  
C H A N G E  protocol;  where by implementat ion is 
meant  the specification of the details described in the 
previous paragraph.  It should now be evident that the 
N E T C H A N G E  protocol,  as we described it in Section 
A, is in fact such an implementat ion.  Thus, in particu- 
lar, our correctness proof  will be valid for the NET-  
C H A N G E  protocol as described in Section A. 

2. The Proofs.  We have already introduced the 
convention that we will be using lower-case letters for 
node IDs,  instead of upper-case letters as in Section A. 
We now introduce a second convention: All NET-  
C H A N G E  messages will be referred to just as 
messages. 

We remind the reader that a N E T C H A N G E  mes- 
sage has three fields: 

TID:  This Node 's  ID (the sender node 's  ID)  
OID:  Other  Node 's  ID 
SD: Shortest Distance 

The meaning of the message is that the shortest dis- 
tance from node TID to node O I D  is now SD. 

We also remind the reader  that a link is identified 
by its adjacent nodes; e.g. ad is the link between nodes 
a and d. 

Definition. A message traveling along a link ad from 

Fig. 5. 
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a to d will be referred to as adj. 
Definition. Functional notation will be used to rep- 

resent part  of a message. Thus the SD part of adi is 
referred to as SD(adi). 

Assumption. A node always knows who its neigh- 
bors are. This implies that whenever  "1"  appears  in 
either the Distance or Route Table,  it is always correct 
(see Algorithm 1). (This assumption has been implicit 
in our previous discussions, and is explicitly stated here 
for clarity.) 

It should be recalled that two nodes x and y are 
neighbors if: (i) both node x and y are up, (ii) link xy is 
operational.  

In practice, whenever a node comes up it at tempts 
to initiate a handshaking protocol on all its adjacent 
links. Similarly whenever a link comes up, the two 
nodes adjacent to it initiate this handshaking protocol.  
Part of the information exchanged during this protocol 
are the node IDs. Two nodes are neighbors, then, if 
this handshaking protocol is successfully completed.  

Our proof  of the correctness of the N E T C H A N G E  
protocol borrows a technique from automata  theory; 
we will prove that if the algorithm terminates,  it always 
terminates correctly; we then prove that it always ter- 
minates. Since the former  is easier to prove (in fact it 
does not explicitly make use of the 0ecomposed net- 
work model)  we present it first. 

TrIEOREM 1. I f  and when all message activity has 
ceased (no messages on queues, or in the process o f  
being transmitted), all entries in all the Distance Tables 
will be correct. 

Basically, Theorem 1 makes use of the fact that a 
Distance Table entry Ou,bc in node b is based on the 
entry Su in c 's  Route Table,  which in turn is equal to 
some Du,ca in c 's  Distance Table.  Thus if D,,bc is incor- 
rect, this leads to a sequence of incorrect entries in a 
sequence of nodes, eventually leading to a neighbor of 
node y.  But a neighbor of y cannot have incorrect 
entries pertaining to y. Thus there can be no incorrect 
entries in any Distance Table.  The complete,  formal 
proof  follows. 

PROOF.  

Case 1. The entry Du,b~ is equal to 1. 
By the above assumption this entry must be correct.  

Case 2. 1 < Du,o~ < NN.  
We will prove this by contradiction. Assume that the 
value of Du,bc is too small (the case where it is too large 
is quite similar). 

Since D~,b~ is initialized to NN,  and is set equal to 
N N  whenever link bc goes down (and/or node c goes 
down), both link bc and node c must be up (see Algo- 
rithm 2). 

Since D~,~c 4 : 1  and D~,~c 4: NN,  it must have 
received its current value as the result of a message that 
traveled along link bc (see Algorithm 3). Fur thermore ,  
the last message that traveled along link bc of the form 
[cy, D] must have had SD = Du,b~ -- 1 (see Algorithm 
3). 
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Since there are no further messages in the network 
(by assumption), this means that entry y in c 's Route 
Table has S~ = Du.~c - 1. (See Algorithm 3). 

We now shift our point of reference to node c. In its 
Route Table we find entry y :S , ,  N , .  Let Ny be d. We 
know that S,j = Dv,be --  1, and since D,,oc is too small, 
this means that Su is to small. But S, = Du,cct, by 
Algorithm 3. So now we have an entry D,,,ca in c's 
Distance Table that is too small. 

But by repeating the above argument it can be seen 
that this means that there is some entry Dy,ae = Dy,ca - 
1 in d 's  Distance Table which is too small. And by 
repeated application of the argument we finally reach 
some node k with an entry D,,km = 1 in its Distance 
Table, and this entry is too small. However,  this is 
impossible, since a node always knows who its neigh- 
bors are. 

Case 3. D,,bc = N N .  
We will also prove this by contradiction. Assume 

that D,,b~ is too large (it can't  be too small, since N N  is 
the maximum value it can attain). This means that link 
bc and node c are up; since if either one is down, N N  is 
the correct value for D,,bc (see Algorithm 2). Also, 
since Du,b~ is too large, there is a route y . . . . .  b, c of 
length less than or equal to N N  - 1. 

By using the argument of Case 2, it can be shown 
that the S part of the yth entry in c's Route Table must 
be either N N  or N N  - 1. However,  in either case it is 
incorrect. Therefore it cannot be N N  - 1, by the proof 
of Case 2. 

Therefore, it must be N N .  Therefore,  all the entries 
of row y of c's Distance Table must have the value N N  
(by Algorithm 3). But then, by repeating the above 
argument, all neighbors of c have S, = N N  in their 
Route Tables. But this implies that all nodes with a 
path to b, except for y,  have Sy = N N  in their Route 
Tables. However,  this is impossible, since the neigh- 
bor(s) ofy  will have S, = 1 in their Route Tables. [] 

COROLLARY 1.1. I f  and when all message activity 
has ceased, all entries in all the Route  Tables will be 
correct. 

This corollary follows directly from Theorem 1 and 
Algorithms 1, 2, and 3. 

We now go on to prove that ( N E T C H A N G E )  
message activity will cease after an arbitrary (but finite) 
series of topology changes. All of the theorems that 
follow pertain to message activity on a particular level 
(level y).  

Often a node b will send out the same NET- 
C H A N G E  message to all its neighbors. The notation 
bxi will be used to refer to this group of messages. ("x" 
will be used as a generic node number.)  

Messages are numbered on a per level basis. Thus, 
the discussion is about level y,  message adz + ~ is the first 
message to travel on link ad~ (from a to d), with OlD = 
y after message adz (which also had OID = y).  There 
may have been arbitrarily many messages between adi 
and ad~+~ with OID4= y. 

THEOREM 2. I f  a node b receives a message cb~ with 
SD(cbi) = d, then i f  a message bx~ is sent out  by b as a 
result o f  cbi either SD(bx i )  = d + 1 and~or SD(bxi) > 
SD(bxi_1). 

PROOF. When a node b receives a message cb~ with 
SD(cbi) = d, it changes the entry Dy,co of its Distance 
Table to d + 1. 
1. If this doesn't  change Min(D,,ba, Du,b . . . . .  , D,,bp) 

no new message is sent out. 
2. If it decreases this minimum, then d + 1 must be 

the new minimum. Then entry Su of the Route 
Table will be changed to d + 1, and a new message 
bx~ will be sent out with SD(bx 0 = d + 1. 

3. If it increases the minimum, then S~ will be made 
larger, and a message bx~ with SD equal to the new 
larger Sy will be sent out. But SD(bxi_l) is equal to 
the old value of Su. Therefore SD(bxz) > 
SD(bxz_l). Note that SD(bxz) could be equal to d 
+ 1, hence the and/or in the statement of the 
theorem. [] 

COROLLARY 2.1. I f  a message bx~ is sent out  by node  
b as result o f  receiving a message cb~, then: I f  SD(bxO < 
SD(b~_I) then SD(bx~)  = Sb(cb~) + 1. 

PROOF. Follows immediately from Theorem 2. 
THEOREM 3. Consider a ne twork  in which an arbi- 

trary series o f  topology changes occur between t ime 0 
and t; no changes occur after t ime t. The ne twork  
will generate only a finite n u m b e r  o f  messages with 
SD = 1. 

PROOF. We will prove the theorem for a particular 
level y.  It follows immediately that the theorem holds 
for all levels. 

By the assumption that a node always knows who its 
neighbors are, only neighbors of node y can send out 
messages with SD = 1 (remember that all messages on 
levely are of the form [xy, SD]). A node only sends out 
a message when its Route Table entry for y changes. 
The only way in which this entry can change to 1 is if 
the node in question becomes a neighbor o f y .  This can 
only happen if there is a topology change. Thus if there 
is only a finite series of topology changes, only a finite 
number of messages with SD = 1 can be sent out. [] 

THEOREM 4. Consider a ne twork  in which an arbi- 
trary but  finite series o f  topology changes occur between 
0 and t ime t; no changes occur after t ime t. Then, a finite 
t ime after t, all message activity will cease and all the 
entries in all the Distance and Route  Tables in all the 
nodes will be correct. 

PROOF. We will simply prove that the message ac- 
tivity will cease in a finite amount of time; the remain- 
der of the theorem follows from Theorem 1 and its 
corollary. The proof is done by contradiction and in- 
duction. 

Assume that the message activity never ceases. 
Then there must be at least one level, call i ty ,  in which 
an infinite number of messages is generated. Then 
there must be at least one node which generates infi- 
nitely many messages; call this node b. 
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Since SD can only t ake  on the va lues  1 t h rough  N N ,  

the re  exists a va lue  v; 1 <_ v <- N N  such tha t  the re  exist  
inf ini tely many  i such tha t  SD(bx i )  = v. 

It fol lows i m m e d i a t e l y  f rom T h e o r e m  3 tha t  v can-  
not  be  1. Can v be  2? Now a node  only  sends  a message  
as a resul t  of  a t opo logy  change  or  as a resul t  of  
receiv ing a message .  Since by a s sumpt ion  the n u m b e r  
of  t opo logy  changes  is f ini te ,  node  b must  be  rece iv ing  
inf ini tely many  messages  f rom at least  one  ne ighbor ,  
call it c. 

Then  by T h e o r e m  2, one  o r  bo th  of  the  fo l lowing 
must  be t rue  for  inf ini tely many  i: (a) S D ( b x i )  = 
S D ( c b i )  + 1, (b) S D ( b x i )  > S D ( b x , ) .  But  we are  
assuming SD(bx~) = v = 2. T h e r e f o r e  b must  e i the r  
receive  or  send inf ini te ly  many  messages  with SD = 1, 
which is imposs ib le .  T h e r e f o r e  v canno t  be  2. 

S imi lar ly  it can be shown tha t  v canno t  be 3, 4 . . . .  
o r  N N .  T h e r e f o r e  the  a s sumpt ion  is false.  T h e r e f o r e  
the t h e o r e m  is t rue .  [] 

Conclusion 

We have desc r ibed  and p r o v e n  the cor rec tness  of  a 
p ro toco l  for  ma in ta in ing  up to da te  t opo logy  in forma-  
t ion in the  nodes  of  a ne twork .  Severa l  po in ts  r ema in  to 
be clar i f ied.  

A l t h o u g h  we have p roven  tha t  N E T C H A N G E  
message  act ivi ty  t akes  only  a f ini te  t ime ,  we have not  
shown any u p p e r  l imits  for  the  n u m b e r  of  messages  tha t  
are  g e n e r a t e d .  W e  have been  ab le  to der ive  such an 
u p p e r  l imit;  it is an exponen t i a l  funct ion  of  N N ,  a 
po lynomia l  funct ion  of  K ( the m a x i m u m  n u m b e r  of  
ne ighbors  that  a node  can have) ,  and  a l inear  funct ion  
of  T (the n u m b e r  of  t opo logy  changes) .  Space  pre-  
c ludes  us f rom presen t ing  the fo rmu la s  for  this u p p e r  
l imit  and  its de r iva t ion  h e r e / B a s i c a l l y  the  de r iva t ion  
rests  on the  fact  tha t ,  on any pa r t i cu l a r  level ,  a message  
with SD = Y can cause the  gene ra t i on  of  at  most  K 
messages  with SD = Y + 1 and at mos t  K messages  
w i t h S D  > Y + 1. 

W e  have  successful ly i m p l e m e n t e d  the N E T -  
C H A N G E  pro toco l  on the M E R I T  C o m p u t e r  Net -  
work .  

W e  conc lude  by  not ing  that  our  N E T C H A N G E  
pro toco l  is only  the  first s tep  in the  d e v e l o p m e n t  of  an 
effect ive message  rou t ing  scheme .  O t h e r  p r o b l e m s  tha t  
r ema in  are  f low con t ro l  and  conges t ion  cont ro l .  F low 
cont ro l  is necessa ry  to synchron ize  commu n ic a t i ng  
processes  in d i f fe ren t  nodes ;  one  of  its funct ions  is to 
p reven t  a rece iv ing  process  f rom be ing  f l ood e d  with 
messages .  Conges t ion  con t ro l  is necessa ry  to rou te  
messages  a r o u n d  conges ted  par t s  of  the  n e t w o r k ,  and  
to p reven t  conges t ion  w h e n e v e r  poss ib le .  W e  plan to 
pursue  resea rch  on these  subjec ts .  

7 The derivation of these formulas may be found in Chapter 8 of 
[7]. 
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Appendix: Some Comments on the Initialization of  the 
N E T C H A N G E  Protocol 

As m e n t i o n e d  in the  first no te  in Sect ion B,  when a 
node  comes  up ,  the en t r i es  of  its Dis tance  Tab le  a re  
in i t ia l ized to N N  (NN = the N u m b e r  of  N o d e s  in the  
N e t w o r k ) ,  and  the ent r ies  of  its R o u t e  Tab le  a re  ini t ial-  
ized to "a ,  N N , "  where  a is an a rb i t r a ry  node  1D. 

We have  shown in E x a m p l e  1 in Sect ion A how such 
a f reshly in i t ia l ized node  upda t e s  its tab les  when it jo ins  
the  n e t w o r k .  

Na tu ra l ly ,  the  la rger  ques t ion  ar ises  of  how the 
tab les  a re  u p d a t e d  when the ne tw ork  comes  up for  the  
" f i r s t "  t ime .  A s  it turns  out ,  eve ry th ing  h a p p e n s  qui te  
au toma t i ca l ly  as the  l inks and  nodes  come  up,  and  they  
can come  up in any o rde r .  (I t  should  be  n o t e d  that  a 
l ink is not  cons ide red  " u p "  unless  bo th  the  nodes  ad ja -  
cent  to it a re  also up;  this is because  the  only  re l iab le  
way of  checking  the  in tegr i ty  of  a l ink is to ca r ry  on a 
conversa t ion  with the  node  at  the  o the r  end  of  that  
l ink . )  

W h e n  a node  is in i t ia l ized ,  its tab les  indica te  that  it 
is connec t ed  to no one  in the  ne twork .  A s  the  l inks 
a d j a c e n t  to that  node  come  up (or  as it d i scovers  that  
these  l inks are  o p e r a t i o n a l ) ,  the  node  will  u p d a t e  its 
tab les  on the basis of  i n fo rma t ion  o b t a i n e d  f rom its 
new- found  ne ighbors .  These  n e i g h b o r  nodes  in turn 
upda t e  the i r  tab les  on the  basis  of  i n fo rma t ion  o b t a i n e d  
f rom the i r  new ne ighbors ,  and  so even tua l ly  all the 
tab les  in all the  nodes  are  cor rec t ly  u p d a t e d .  
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