
References
1. Baskett, F., and Muntz, R.R. Queueing network models with
different classes of customers. Proc. Sixth Annual IEEE Int. Conf.,
San Francisco, Sept. 1972, pp. 205-209.
2. Bernstein, A.J., and Sharp, J.C. A policy-driven scheduler for a
time-sharing system. Comm. ACM 14, 2 (Feb. 1971), 74-78.
3. Chua, Y.S., and Bernstein, A.J. Analysis of a feedback
scheduler. SIAM J. Comptg. 3, 3 (Sept. 1974), 159-176.
4. Coffman, E.G. and Kleinrock, L. Computer scheduling methods
and their countermeasures. Proc. AFIPS 1968 SJCC, Vol. 32,
AFIPS Press, Montvale, N.J., pp. 11-21.
5. Coffman, E.G., Elphick, M.J., and Shoshani, A. System
deadlocks. Computing Surveys 3, 2 (June 1971), 67-78.
6. Coffman, E.G., and Kleinrock, L. Feedback queueing models
for time-shared systems. J. ACM 1 5 , 4 (Oct. 1968), 549-576.
7. Coffman, E.G. Analysis of two time-sharing algorithms designed
for limited swapping. J. ACM 15, 3 (July 1968), 341-353.
8. Denning, P.J. The working set model for program behavior.
Comm. ACM 11, 5 (May 1968), 323-333.
9. Feller, W. An Introduction to Probability Theory and Its
Applications, Vol. I. Wiley, New York, Third Ed., Rev. Printing,
1970.
10. Greenberger, M. The priority problem and computer time
sharing. Manage. Sci. 12, 11 (July 1966), 888-906.
11. Kleinrock, L. A continuum of time-sharing scheduling
algorithms. Proc. AFIPS 1970 SJCC, Vol. 36, AFIPS Press,
Montvale, N.J., pp. 453-458.
12. Kleinrock, L. Time-shared systems: A theoretical treatment. J.
ACM 14, 2 (April 1967), 242-261.
13. Kleinrock, L. A del~_y dependent queue discipline. Nay. Res.
Log. Quart. 1 1 , 4 (1964), 329-341.
14. Kleinrock, L., Muntz, R.R., and Hsu, J. Tight bounds on the
average response time for time-shared computer systems.
Information Processing 71, North-Holland Pub. Co., Amsterdam,
pp. 124-133.
15. Lynch, H.W., and Page, J.B. The OS/VS2 release 2 system
resources manager. IBM Systems J. 13 ,4 (1974), 274-291.
16. McKinney, J.M. A survey of analytical time-sharing models.
Computing Surveys 1 , 2 (June 1969), 105-116.
17. Ruschitzka, M. System resource management in a time sharing
environment. Ph.D. Th., Dept. of EECS, U. of California, Berkeley,
Nov. 1973.
18. Schrage, L.E. The queue M/G/1 with feedback to lower priority
queues. Manage. Sci. 13, 7 (1967), 466-474.

C o m p u t e r

S y s t e m s

C . B e l l , D . S i e w i o r e k ,

a n d S . H . F u l l e r , E d i t o r s

A Correctness Proof of a
Topology Information
Maintenance Protocol for a
Distributed Computer
Network

William D. Tajibnapis
MERIT Computer Network

In order for the nodes of a distributed computer
network to communicate, each node must have infor-
mation about the network's topology. Since nodes and
links sometimes crash, a scheme is needed to update
this information. One of the major constraints on such
a topology information scheme is that it may not in-
volve a central controller. The Topology Information
Protocol that was implemented on the MERIT Com-
puter Network is presented and explained; this proto-
col is quite general and could be implemented on any
computer network. It is based on Baran's "Hot Potato
Heuristic Routing Doctrine." A correctness proof of
this Topology Information Protocol is also presented.

Key Words and Phrases: distributed computer net-
work, correctness proofs, computer networks, distrib-
uted control, network topology, routing problem in
networks, distributed operating system, store and for-
ward packet switching, store and forward message
switching, traffic control

CR Categories: 3 .81 , 4 .32

477

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

Author's present address: Soo Line Railroad, Soo Line Building,
Minneapolis, MN 55440.

Communications July 1977
of Volume 20
the ACM Number 7

Introduction

In this paper we present a problem that the design-
ers of a distributed computer network must solve. We
then describe a solution to that problem and proof of
its correctness. We would like to point out that our
descriptions of both the problem and its solution are
quite general and hardware independent; the solution
we propose can be easily implemented in most com-
puter networks. In particular, it has been implemented
by us on the MERIT Computer Network [1, 3, 6].

The M E R I T Computer Network, jointly funded by
the three participating universities, is intended to con-
nect the computers of many of the state's universities
and colleges. At present it has three nodes which are
located about 70 miles from each other: Michigan State
University, The University of Michigan, and Wayne
State University.

A typical (ARPANET-l ike) [4, 5] computer net-
work is a collection of host computers connected by a
communication subnet. The communication subnet is a
collection of minicomputers (the nodes of the network)
interconnected by bidirectional electronic links (usually
telephone lines). Each minicomputer is either con-
nected to one or more host computers or is itself an
entry point to the network. The purpose of such a
network is to connect the host computers so that a user
of any one of these host computers or one of the entry
points has access to all the host computers on the
network. M E R I T is such a network.

The communication minicomputers are essentially
invisible to the user; the reason for having all that extra
hardware is to reduce the host software costs. Without
them it would be necessary to interface every host
computer with every other host computer, and to install
telecommunications support in every host. With them,
it is only necessary to interface each host with the
minicomputer, and the (identical) minicomputers with
each other.

Finally, both A P P A N E T and M E R I T are distrib-
uted networks. This means that all nodes are equal and
there is no node that is a central controller.

Our solution (to the as yet undescribed problem) is
designed for a distributed network with equal nodes,
but could also be implemented on a centralized net-
work. It should also be noted that it is a matter of
indifference to the discussions which follow whether
the nodes are minicomputers or the hosts themselves.
Such networks, in which the hosts are directly con-
nected to the communication lines, do exist. Typically,
all hosts on such a network are very much alike (e.g. all
members of a particular computer series).

On the other hand, our solution will not work for a
network in which the links are unidirectional. Thus a
ring network in which the messages can only move
clockwise does not fall within the scope of this article.

We conclude this introduction by introducing some
terms that we will need. A node is a (mini)computer. A

link X Y is a bidirectional physical connection between
the two nodes X and Y. Node X is a neighbor of node Y
if (i) both X and Y are operational (up), (ii) the link X Y
exists and is operational. A route between two nodes X
and Y is a connected sequence of operational links and
nodes, starting with some link X P and ending with
some link Q Y . Thus in Figure 1, A B C E , A B C D C E are
routes, but A B D , A E C are not. A user is a process or
job in some host; a record is the unit of user-generated
information that the network conveys from host X to
host Y. A message is a network-generated piece of
information that travels from some node X to some
node Y.

The Problem

In a network of any size at all, it quickly becomes
quite impractical to have a direct connection between
every two nodes. Thus in order for the network to route
records between nodes A and B, it may be necessary to
route these records via nodes C, D, and E. This implies
that:

(1) Node A (the sender node) must know enough
about the network topology to determine that in order
to get the record to node B it should send it to node C.

(2) Node C (the intermediate node) must recognize
that the record is not destined for itself, but for some
other node. Node C must also know enough about the
network topology to determine that in order to get the
record to node B it should send it on to node D, its
neighbor.

(3) When the network topology changes, 1 some
scheme must exist whereby these changes are made
known to all nodes in the network. The occurrence of
topology changes should be invisible to the users of the
network; for example, a person at node A communicat-
ing with the computer at node B should be totally
unaffected by changes (which occur while he is "on") in
the route between nodes A and B, as long as such a
route continues to exist. Clearly, if all routes between
A and B are down, the user's connection should be
automatically closed and the user should be informed
of what happened.

A. The Netchange Message Protocol
The necessary information about the topology of

the network is stored in (routing) tables. The nodes in
the network inform each other about topology changes
by sending each other special messages called NET-
C H A N G E messages. Thus there are routines that send
and receive N E T C H A N G E messages and make the
appropriate changes in the routing tables.

The actual process of record relaying (or record
switching) is a conceptually trivial one; the sender and

A "topology" change is defined to be any one of the following
events, or any combination thereof: (1) A link going down (i.e.
ceasing to function), (2) a link coming up, (3) a node crashing or
restarting (by this is meant the node minicomputer, not the host).

478 Communications July 1977
of Volume 20
the ACM Number 7

intermediate nodes merely consult their routing tables
to determine which neighboring node to send the rec-
ord to. The interesting part is the scheme used to make
network topology changes known to all nodes in the
network (hereafter called the N E T C H A N G E Protocol).

Thus the problem is to design a correct topology
information maintenance protocol. Our solution is a
topology information maintenance protocol called the
N E T C H A N G E protocol. The remainder of this article
will describe the N E T C H A N G E Protocol that we have
implemented and prove its correctness.

Incidentally, we would like to make clear at the
outset that our N E T C H A N G E Protocol will work for a
network of arbitrary size, not just for our three-node
network. It is based on Baran 's "Hot -Po ta to Heuristic
Routing Doctr ine" [2].

We mentioned in the previous section that the "nec-
essary information about the topology of the network is
stored in the routing tables." What precisely is this
necessary information?

In order to correctly relay (or send) a record, a node
need not know the complete, exact topology of the
network. All it needs to know is what direction to send
the record, i.e. what link it should transmit the record
on. Another way of saying the same thing is that it
should know the identity of the first node along the
route between itself and the destination node. If there
is more than one route, it needs to know the relative
lengths of these routes. In our protocol the node knows
the absolute length of these routes. Length is measured
in terms of "hops" : thus a route with two intermediate
nodes in it is three hops along.

For example, consider node A in the network of
Figure 1. The shortest distance from A to E via node B
(one of A ' s neighbors) is 3, since there are three links in
that route: AB, BC, CE. The shortest distance from
nodeA to E v i a A ' s other neighbor, D, is 2, since there
are two links in that route: AD, DE. Thus, in accord-

Fig. 1.
B C

v v

A D

(A)

NODE D

DISTANCE TABLE ROUTE TABLE

DA DC DE

1 3 3 I,A
2 2 3 2.A
3 1 2 1.C

3 2 1 1.E

NODE A

DISTANCE TABLE ROUTE TABLE

AB AD

i 3 I.B
2 2 2.B
3 1 1.D
5 2 2.D

(B)

ance with the previous paragraph, all A needs to know
about E is that via B it is three hops away, and via D it
is two hops away. Similarly, a l i a needs to know about
C is that it is two hops away via B, and two hops away
via D. Similarly for nodes B and D.

The above-ment ioned information can be stored in
tabular form, as shown in Figure l (b) . Such a table,
called the Distance Table, has a column for every
neighbor of the node in question, and a row for every
node in the network. Each node has such a distance
table, and it should be clear that each node 's distance
table will be different from those of the other nodes.
Figure l (b) shows the Distance Table for node A ; entry
(E, A B) contains a 3 since the distance from A to E via
B is three hops. Similarly, entry (E, AD) contains a 2
since the distance from node A to node E via D is two
hops. Figure l (b) also shows the Distance Table for
node D; note that it has three columns, since node D
has three neighbors.

Both for expository ease and for programming rea-
sons we now introduce a second table: the Route Ta-
ble. It will be needed later on in our proofs, and it is
structured to take advantage of the fact that most often
the information needed is the shortest route to a partic-
ular node. The Route Table has an entry for every node
in the network. The entry for node X contains the
shortest distance to node X, and the name of the first
node on the route along which the shortest distance
obtains. Thus the Route Table in node A (see Figure
l (b)) has " 2 , D " in the entry for node E , since the
shortest route from A to E is AD, DE. It should be
clear that the Route Table can easily be constructed
from the information in the Distance Table; and once
again, the Route Table in each node is different from
those in the other nodes.

When the topology of the network changes, the
Distance and Routing tables in some (or perhaps all) of
the nodes have to be updated. This update information
is disseminated by means of the N E T C H A N G E mes-
sages. The general idea behind the N E T C H A N G E
messages runs something like the following.

When a node discovers that one of its neighbors is
no longer a neighbor (either because the link between
them went down or because the neighbor crashed), or
conversely when it discovers that it has a new neighbor,
the node updates its Distance and Route Tables, and
then sends the updates to all its neighbors. In the case
of a new neighbor, it also sends a copy of the Route
Table to that new neighbor (more of which later).
These updates and the copy of the routing table are the
N E T C H A N G E messages. These neighbors will in turn
use the information in these N E T C H A N G E messages
to update their Distance and Route Tables. If this
causes any entries of the Route Table to change, i.e. if
the update changed the shortest distance to some node,
then the neighbor in question will send these changes
(or updates) to all its neighbors in the form of NET-
C H A N G E messages. The process continues until all

4 7 9 Communications July 1977
of Volume 20
the ACM Number 7

Fig. 2.

/
A

c

2>
D

THIS DIAGRAM ONLY SHOWS THE
EACTON TW N 0 S

NODE D

DIS~CET~

DA DC DE
A 1 3 5
B 2 2 5
C 3 1 5
D - - -
E 4 2 @

NODE E

ROUTE TABLE DISTANCE TABLEIROUTF TABIF

2,A B 2 5 I 2,C
l .c 4 - ES__. ~C 21 5 I l .c

- - o_i @ @

~ SEilDS THE I&I~CHAIIGE I'ESSAGE
ED,1] TO D

DISTANCE TABLE

DA DC DE
A 1 3 ~
B 2 2
C 3 1
D - - -

E 4 2 1

ROUTE TAB[F DISTANCE TABI E

EC ED

2,A OF B
1,C EXCHANGE__,. C 1
- - MES~AGEsF D 2 1
1,E E - -

ROUTE TABI F

2,B
1,C
1,D

Node C: A neighbor of node B.
Node Y: Some node other than B or C.
NN: The number of nodes in the network. (Nodes that

happen to be down are included in this count.) This is
a number that is known to all nodes.

Distance Table: The entries 2 of this table will be re-
ferred to as (y, bc). The actual contents of an entry
(which is one number, the distance from B to Y via
neighbor C) will be referred to as D~.b,.

Route Table: Each entry 2 consists of a shortest distance
and the ID of the neighbor along which that shortest
distance obtains. The entry for node P will be re-
ferred to as Sp, N v.

There are three events that can occur to node B: (1) an
adjacent link BC comes up, or a neighbor node C
comes up; (2) and adjacent link BC goes down, or a
neighbor node C goes down; (3) a N E T C H A N G E
message [CY, D] is received (from node C).

Note that a node going down is treated as if all the
links to that node were going down (in practice, these
two events often cannot be distinguished).

The following three algorithms describe what a
node does when one of the three possible events occur.

DISTANCE TABLE ROUTE TABIF

DA DC DE
A 13 (~) 1,A
: ' : : : :

E SENDS [~,2] TO D & C

nodes' tables have been correctly updated.
Now it is quite possible that while the above process

is going on, another link goes down or comes up, or
another node crashes or comes up. This will cause
another stream of N E T C H A N G E messages, which will
mingle with the first stream. We will prove (later on)
that this causes no problems.

Before going into this in more detail, we would like
to point out a basic fact about the N E T C H A N G E
process. The Distance Table of each node consists of
nothing more than a collection of the information in the
Route Tables of all the neighbors of that node. NET-
C H A N G E messages merely ensure that a node is in-
formed of changes in its neighbors' Route Tables;
N E T C H A N G E messages are only sent from one neigh-
bor to another. We would also like to point out that no
assumptions are made about the relative processing
speeds of the nodes, or transmission rates of the links.

The N E T C H A N G E Protocol: Detailed Specifica-
tion. A N E T C H A N G E message "TID OID, SD" has
the following meaning: The (new) shortest distance
from the sender of the message TID (This node's ID)
to some other node OID (Other node's ID) is SD
(Shortest Distance).

The following notation is used in the explanation:

Node B: The node that is carrying out the algorithm.

Algorithm 1 (A link comes up)

When node B discovers that link bc has come up (or that node C
has come up) it does the following:

1. Entry (c, bc) of the Distance Table is set to 1.
2. Because this action will always change the shortest distance from

B to C from some d > 1 to I , entry (c) of the Route Table is set to
1 ,c .

3. The N E T C H A N G E message [bc, 1] is sent to all neighbors of B.
4. Let the entries of B's Route Table be numbered p, q, r, . . . , t.

Then B sends the N E T C H A N G E messages [bp, So], [bq, Sq],
[br, St] [bt, St] to node C.

Figure 2 gives an example of nodes executing Algo-
rithm 1. Note that the number NN (5 in this example) is
used to indicate the lack of a path, since the longest
route without loops in a network of NN nodes can be
no longer than NN - 1 links. Thus when a link is down,
the corresponding columns in the Distance Tables of
the two adjacent nodes are filled with NNs.

Algorithm 2 (A link goes down)

When node B discovers that link B C has gone down (or that
node C has crashed) it does the following:

1. All entries in column bc of B's Distance Table are set to N N .
Then for each rowp of the Distance Table (and Route Table) the
following is done:

2. Let the columns of the Distance Table be bf, bg, . . . , bc, . . . ,.
bk . The minimum of Dr, bs, Do, bu, . . . , Dr. ~c, . . . , Dv.bk is
computed. (This minimum may have changed because Do,be was
changed to N N .) Let this minimum be Dv,b ~.

3. If Dv.bg = Sv (the Route Table entry for row p) set Nv = G.
Otherwise set So equal to Dv,bu , set Nv equal to G and send the
N E T C H A N G E message [bp, So] (where Sv is the new value) to
all neighbors.

2 The entries of the Distance Table are initialized to N N . The
entries of the Route Table are initialized to " A , N N " where A is an
arbitrary node ID. (See the Appendix about the details of network
initialization.)

480 Communications July 1977
of Volume 20
the ACM Number 7

Algorithm 3 (A N E T C H A N G E message [CY, D] is received)

If Y = B, the message is accepted by node B, but then is simply
ignored. If Y ~ B, the following steps are taken:

1. D,.bc is set equal to Min (D + 1,NN).
2. Compute the minimum of D~.~f, . . . , Du,b~; Dy,bk. Let it be

O~,bg.
3. If Du,bu = S set N = G. Otherwise, set S u equal to Du.ou and set

N u = G and send the N E T C H A N G E message [by, Su] to all
neighbors.

Figure 3 gives an example of nodes executing Algo-
rithm 3 and parts of Algorithm 1.

The activity in a network when a link goes down is
exactly analogous to what happens when a link comes
up, as long as the loss of that link doesn ' t cause a node
to become isolated. So we will not present a separate
example for that case. We will, however, present an
example of the case of a link going down and isolating a
node.

For this example, we will consider what happens to
the network of Figure 2 (without link DE) when link

Fig. 3.

/ 2>
5

THIS DIAGRAM ONLY SHOWS THE
INTERACTION BETWEEN NODES A,
B, C , & D.

NODE D'S TABLES CHANGE AS SHOWN IN FIG. 2 . IT SEI~3S THE NETCHANGE
MESSAGE [DE,l] TO A & C:

flOD

DISTANCE TABLE

AB AD
A
B 1 3
C 2 2
D 3 1
E 3 3

DISTANCE TABLE

AB AD
A
B 1 3
C 2 2
D 3 1
E 3 (~)

DISTANCE TABI E
BA BC

A 1 3
B
C 3 1
D 2 2
E 4 2

A NOD[

ROUTETABIF DISBNCETABLE

CB CD CE
- - TABLES A 2 2 4
1,B PRIOR TO B 1 3 3
2,B " - CHANGE ~C - - -
1,D D 3 1 3
3,B E 3 3 1

A & C RECEIVE [DE,1] FROM D.

ROUTE TABI F

1,B
2,B
1,D

NOW NODE A SENDS [AE,2] TO B &

NODE B

BI E I RC)UTE TABI F

DISTANCE TABLE
BC

A 1 3
B
C 3 1
D 2 2
E @ 2

DISTA[IEE

CB CD
A 2 2
B 1 3
C - - -

D 3 1 3
E 3(~) i

TABLE

CE
4
3

D:

DISTANCE
DA DC

1,A A 1 3
-- B 2 2
1,C C 3 1
2,C i] - -
2,C E 4 2

B & D RECEIVE [AE,2] FROM A

RCIUTE TABt F DISTANCE TABLE
DA DC DE

1,A A 1 3 3
-- B 2 2 3
1,C C 3 1 2
2,C D - - -
2,C E@2 1

C

ROIITE TABI F

2,B
1,B

1,D
1,E

ROUTE TABI F

2,B
I,B

1,D
1,E

NODE D

TABLE I ROUTE TABI E
DE
3 1,A
3 2,A
2 I,C

i i.E

'ROHTE TABLE

1,A
2,A
1,C

1,E

CE goes down (see Figure 4). The going down of this
link will only affect distances between E and some
other node, and not distances between two nodes X
and Y, where neither X nor Y are E . Thus in order to
simplify matters, in Figure 4 we will only show row E of
the various Distance Tables and Route Tables.

Clearly, node E immediately finds out that it is
isolated, and since it no longer can communicate with
any other nodes, its activities are of no further concern
t o u s .

The first row of Figure 4 shows the tables of nodes
A, B, C and D prior to CE's going down. When link CE
goes down, node C takes cognizance of the event by
putting 5's in column CE of its Distance Table. This
changes C's shortest distance to E from 1 to 3, so the
Route Table entry for E changes from 1, E to 3, B (see
the second row of Figure 4). Then C sends the NET-
C H A N G E message "CE, 3" to its neighbors B and
O . 3 . 4

Thus even though C knows that link CE went down,
it does not yet know that node E is now unreachable.
This is because C does not know the complete topology
of the network, and for all it knows B might be con-
nected to E. What happens now is that nodes A , B, C,
and D send each other N E T C H A N G E messages which
cause their Route Table entries for node E to climb up
to 5 ,X. The reader will recall that since there are five
nodes in the network, a distance of 5 is interpreted to
mean that the node in question is inaccessible.

This example concludes our description of the
N E T C H A N G E Protocol. In the next part of this arti-
cle, we will study the correctness of this protocol.

B. Correctness Proof of the N E T C H A N G E Protocol

1. Decomposition of the network. We now intro-
duce a somewhat different model of the network that
will be used in some of our proofs. This new, decom-
posed model, is more general than the model described
in the previous section; however, by imposing some
restrictions that do not affect our proofs, we can make
the decomposed model and the old model exactly
equivalent.

This new model was inspired by an interesting prop-
erty of Algorithm 3. When this algorithm receives a
N E T C H A N G E message with O I D = y (OlD stands

3 Normally a node adds 1 to a distance in a N E T C H A N G E
message it receives before putting it in its Distance Table. But if the
distance in the message is 5, the 5 is put directly in the Distance
Table. This is because 5 stands for infinity or inaccessibility.

4 It is essential for the correct working of the N E T C H A N G E
Protocol that no N E T C H A N G E messages are lost due to transmis-
sion errors or noise on the lines (links). This can be ensured by having
the N E T C H A N G E messages acknowledged. (The acknowledgment
protocol is used between neighbor nodes to correct transmission
errors and prevent lost messages. Typically, the procedure is for the
sender to resend the message at regular intervals until it receives an
acknowledgment from the receiver. For an extensive discussion of
this protocol, see Chapter 5 of [7]). On the other hand, it is all right
for a N E T C H A N G E message to get lost because the link on which it
is traveling goes down.

481 Communications July 1977
of Volume 20
the ACM Number 7

for "Othe r Node ' s I D ") , it only changes row y of the
Distance Table, and possibly entry y of the Route
Table. Similarly, if it sends out N E T C H A N G E mes-
sages, these messages will all have O I D = y.

Since we are not concerned with the order in which
N E T C H A N G E messages are processed or sent by a
node, it seemed to us that Algori thm 3 could be re-
placed by N N parallel algorithms, each of which is
responsible for one row of the Distance Table and one
entry of the Route Table.

Fur thermore , Algori thms 1 and 2 can be similarly
altered. Since the three algorithms together constitute
one process, the three decomposed algorithms together
constitute N N parallel processes (in one nodeS). A
description of these decomposed algorithms follows .6

Algorithm 1 (in node b for level y(y ~ b): a link comes up)

When link bc or node c comes up, do the following (c is some
neighbor of b).

1. If C = Y: Set Dr, b u equal to 1
Set Su = 1, Nu =-y
Send the N E T C H A N G E message [bu, 1] to all neigh-
bors

2. I f C 4 ~ Y , send the N E T C H A N G E message [bu, Su] to node C
only.

Algorithm 2 (in node b for level y(y 4 b): A link goes down)

When link bc goes down, or node c crashes, do the following (c is
some neighbor of b):

1. Set Du.bc equal to N N .
2. Let the columns of the Distance Table be bf, bg, . . . , bc, . . . ,

bk. The min imum of Du,bv, Du,bo, • • . , Dy,b¢, Dv,bk is computed .
Let this min imum be Du.b~. (This min imum is computed because
it may have changed as a result of step 1.)

3. If Du,bo = S u set N u equal to g. Otherwise, set Su equal to Du.b o
and set N u equal to g; and send the N E T C H A N G E message [by,
Su,oo] to all neighbors.

Algorithm 3 (in node b for levely (y 4 = b). A N E T C H A N G E message
is received)

At level y only N E T C H A N G E messages of the form c y , D are
received.

1. Dr.be is set equal to Min (D + 1, NN) .
2. Compute the min imum of D,,bs, D~,,bc, . . . , Dy,bk- Let it be

Du,t,~,.
3. If Dj,.ba = S~ set N~, equal to g. Otherwise, set S~ equal to Du,by

and set N u = g and send the N E T C H A N G E message [by, Su] to
all neighbors (where S~ is the new value).

Since the Route and Distance Tables inside node b do
not have an entry or row for node b, the process inside
node b for level b is particularly simple:

Algorithm 1 in node b for level b: null.
Algorithm 2 in node b for level b: null.
Algorithm 3 in node b for level b: receives NET-

C H A N G E messages of the form [cb,D],
then does nothing.

The reader should now note that a level y process

s In the interest of clarity, from this point on lower-case letters
will be used for node names .

Entries of the Distance and Route Table are still initialized to
NN.

Fig. 4.

B

_/
A

C

?
" "" " ~ E

D

NODE A NODE B

DISTANCE ROUTE DISTANCE, ROUTE
TABLE TABLE TABLE TABLE

AB AD BA BC
E 3)),B 4 2 2,C

LINK CE

E 3 3 3,B 4 2 2,C

NODE C NODE D

DISTANCE ROUTE DISTANCE ROUTE
TABLE TABLE I TABLE TABLE

CB CD CE DA DC DE
3 3 1 1,E tl 2 5 2.C

~ES DOWN

,o 2 s 2.c
c CEo3 To D

E3 3 3.B 4 @ ® 1 3 3 S 3,B , , @ s
B SENDS BE,4 TO A&C • D SENDS DE.4 TO A&C

:E® "1
A SENDS AE,5 TO B&D~ C SENDS CE.5 TO BeD

I .x ® o1®1 1 s,x 1®®2 I®
5 5 5,X 5 5 5,X 5 5 5 5,X 5 5 5 5,X

(consisting of the Algori thms 1, 2 and 3 for level y) not
only accesses exclusively row y of the Distance Table
and exclusively entry y of the Route Table , it also
exclusively receives and sends N E T C H A N G E messages
of the form Icy, D]. This means that a level y process
can only communicate , directly or indirectly, with other
level y processes. Put another way, a level y process
cannot influence the behavior of a level x process.

Thus we can think of the network as consisting of
N N levels (Figure 5). At level b are found the processes
for level b, the only N E T C H A N G E messages that
travel on level b are those of the form [yb, D]; similarly
on the other levels. Thus in Figure 5, node d at level b
represents the level b process in node d. Naturally, the
link ad at level a , and the link ad at level b, and the
links ad at levels c, d, and e all map into the one
physical link ad.

When a topology change occurs, it will cause NET-
C H A N G E message activity on one, all or some of the
levels. In the example of Figures 2 and 3, link de
coming up caused activity on all levels (because of the
exchange of Route Tables between nodes d and e). In
the example of Figure 4, link ce going down only
caused activity on level e (all the processes in nodes c
and e were activated, but only those on level e sent any
N E T C H A N G E messages) - that is why the only
changes that took place in the various Route and Dis-
tance Tables were in row e.

The reason for decomposing the network like this is
that it enables us to focus our attention upon a single
level. A proof about the activity on a particular level
will apply to all levels, and thus will apply to the activity
of the whole network. In the remainder of this article
we shall do just that: analyze the activity on a particular
level.

At this point, we should qualify one of our previous

482 Communica t ions July 1977
of Volume 20
the A C M Number 7

statements; the s tatement that a level x process cannot
influence a level y process. There is one way in which
such influence can occur; since all N E T C H A N G E mes-
sages, no matter what level they are on, travel along the
same physical links, a level x message could delay a
level y message. As might be expected, neither the
N E T C H A N G E protocol nor any of our proofs about it
are timing dependent . Hence the nature and extent of
this indirect interaction can be ignored.

We can make an even stronger statement. Various
not-so-minor details about the ' sof tware ' inside each
node are left unspecified in the decomposed description
of the N E T C H A N G E protocol; for example, nothing
has been said about the number of processors in each
node and how they (or it) are assigned to the N N
processes. However , the level of detail of our descrip-
tion is sufficient for the proof of correctness that we are
going to present.

This means that our correctness proof will be valid
for any implementat ion of the "decomposed" NET-
C H A N G E protocol; where by implementat ion is
meant the specification of the details described in the
previous paragraph. It should now be evident that the
N E T C H A N G E protocol, as we described it in Section
A, is in fact such an implementat ion. Thus, in particu-
lar, our correctness proof will be valid for the NET-
C H A N G E protocol as described in Section A.

2. The Proofs. We have already introduced the
convention that we will be using lower-case letters for
node IDs, instead of upper-case letters as in Section A.
We now introduce a second convention: All NET-
C H A N G E messages will be referred to just as
messages.

We remind the reader that a N E T C H A N G E mes-
sage has three fields:

TID: This Node 's ID (the sender node 's ID)
OID: Other Node 's ID
SD: Shortest Distance

The meaning of the message is that the shortest dis-
tance from node TID to node O I D is now SD.

We also remind the reader that a link is identified
by its adjacent nodes; e.g. ad is the link between nodes
a and d.

Definition. A message traveling along a link ad from

Fig. 5.

.B _C _E

LEVEL A D I r I

LEVEL B ~ -r ~ ~.

LEVEL C r ~/ "r ~. I

LEVEL D ~ x z

U -

a to d will be referred to as adj.
Definition. Functional notation will be used to rep-

resent part of a message. Thus the SD part of adi is
referred to as SD(adi).

Assumption. A node always knows who its neigh-
bors are. This implies that whenever "1" appears in
either the Distance or Route Table, it is always correct
(see Algorithm 1). (This assumption has been implicit
in our previous discussions, and is explicitly stated here
for clarity.)

It should be recalled that two nodes x and y are
neighbors if: (i) both node x and y are up, (ii) link xy is
operational.

In practice, whenever a node comes up it at tempts
to initiate a handshaking protocol on all its adjacent
links. Similarly whenever a link comes up, the two
nodes adjacent to it initiate this handshaking protocol.
Part of the information exchanged during this protocol
are the node IDs. Two nodes are neighbors, then, if
this handshaking protocol is successfully completed.

Our proof of the correctness of the N E T C H A N G E
protocol borrows a technique from automata theory;
we will prove that if the algorithm terminates, it always
terminates correctly; we then prove that it always ter-
minates. Since the former is easier to prove (in fact it
does not explicitly make use of the 0ecomposed net-
work model) we present it first.

TrIEOREM 1. I f and when all message activity has
ceased (no messages on queues, or in the process o f
being transmitted), all entries in all the Distance Tables
will be correct.

Basically, Theorem 1 makes use of the fact that a
Distance Table entry Ou,bc in node b is based on the
entry Su in c 's Route Table, which in turn is equal to
some Du,ca in c 's Distance Table. Thus if D,,bc is incor-
rect, this leads to a sequence of incorrect entries in a
sequence of nodes, eventually leading to a neighbor of
node y. But a neighbor of y cannot have incorrect
entries pertaining to y. Thus there can be no incorrect
entries in any Distance Table. The complete, formal
proof follows.

PROOF.

Case 1. The entry Du,b~ is equal to 1.
By the above assumption this entry must be correct.

Case 2. 1 < Du,o~ < NN.
We will prove this by contradiction. Assume that the
value of Du,bc is too small (the case where it is too large
is quite similar).

Since D~,b~ is initialized to NN, and is set equal to
N N whenever link bc goes down (and/or node c goes
down), both link bc and node c must be up (see Algo-
rithm 2).

Since D~,~c 4 : 1 and D~,~c 4: NN, it must have
received its current value as the result of a message that
traveled along link bc (see Algorithm 3). Fur thermore ,
the last message that traveled along link bc of the form
[cy, D] must have had SD = Du,b~ -- 1 (see Algorithm
3).

483 C o m m u n i c a t i o n s July 1977
of V o l u m e 20
the A C M N u m b e r 7

Since there are no further messages in the network
(by assumption), this means that entry y in c 's Route
Table has S~ = Du.~c - 1. (See Algorithm 3).

We now shift our point of reference to node c. In its
Route Table we find entry y :S , , N , . Let Ny be d. We
know that S,j = Dv,be -- 1, and since D,,oc is too small,
this means that Su is to small. But S, = Du,cct, by
Algorithm 3. So now we have an entry D,,,ca in c's
Distance Table that is too small.

But by repeating the above argument it can be seen
that this means that there is some entry Dy,ae = Dy,ca -
1 in d 's Distance Table which is too small. And by
repeated application of the argument we finally reach
some node k with an entry D,,km = 1 in its Distance
Table, and this entry is too small. However, this is
impossible, since a node always knows who its neigh-
bors are.

Case 3. D,,bc = N N .
We will also prove this by contradiction. Assume

that D,,b~ is too large (it can't be too small, since N N is
the maximum value it can attain). This means that link
bc and node c are up; since if either one is down, N N is
the correct value for D,,bc (see Algorithm 2). Also,
since Du,b~ is too large, there is a route y b, c of
length less than or equal to N N - 1.

By using the argument of Case 2, it can be shown
that the S part of the yth entry in c's Route Table must
be either N N or N N - 1. However, in either case it is
incorrect. Therefore it cannot be N N - 1, by the proof
of Case 2.

Therefore, it must be N N . Therefore, all the entries
of row y of c's Distance Table must have the value N N
(by Algorithm 3). But then, by repeating the above
argument, all neighbors of c have S, = N N in their
Route Tables. But this implies that all nodes with a
path to b, except for y, have Sy = N N in their Route
Tables. However, this is impossible, since the neigh-
bor(s) ofy will have S, = 1 in their Route Tables. []

COROLLARY 1.1. I f and when all message activity
has ceased, all entries in all the Route Tables will be
correct.

This corollary follows directly from Theorem 1 and
Algorithms 1, 2, and 3.

We now go on to prove that (N E T C H A N G E)
message activity will cease after an arbitrary (but finite)
series of topology changes. All of the theorems that
follow pertain to message activity on a particular level
(level y).

Often a node b will send out the same NET-
C H A N G E message to all its neighbors. The notation
bxi will be used to refer to this group of messages. ("x"
will be used as a generic node number.)

Messages are numbered on a per level basis. Thus,
the discussion is about level y, message adz + ~ is the first
message to travel on link ad~ (from a to d), with OlD =
y after message adz (which also had OID = y). There
may have been arbitrarily many messages between adi
and ad~+~ with OID4= y.

THEOREM 2. I f a node b receives a message cb~ with
SD(cbi) = d, then i f a message bx~ is sent out by b as a
result o f cbi either SD(bx i) = d + 1 and~or SD(bxi) >
SD(bxi_1).

PROOF. When a node b receives a message cb~ with
SD(cbi) = d, it changes the entry Dy,co of its Distance
Table to d + 1.
1. If this doesn't change Min(D,,ba, Du,b , D,,bp)

no new message is sent out.
2. If it decreases this minimum, then d + 1 must be

the new minimum. Then entry Su of the Route
Table will be changed to d + 1, and a new message
bx~ will be sent out with SD(bx 0 = d + 1.

3. If it increases the minimum, then S~ will be made
larger, and a message bx~ with SD equal to the new
larger Sy will be sent out. But SD(bxi_l) is equal to
the old value of Su. Therefore SD(bxz) >
SD(bxz_l). Note that SD(bxz) could be equal to d
+ 1, hence the and/or in the statement of the
theorem. []

COROLLARY 2.1. I f a message bx~ is sent out by node
b as result o f receiving a message cb~, then: I f SD(bxO <
SD(b~_I) then SD(bx~) = Sb(cb~) + 1.

PROOF. Follows immediately from Theorem 2.
THEOREM 3. Consider a ne twork in which an arbi-

trary series o f topology changes occur between t ime 0
and t; no changes occur after t ime t. The ne twork
will generate only a finite n u m b e r o f messages with
SD = 1.

PROOF. We will prove the theorem for a particular
level y. It follows immediately that the theorem holds
for all levels.

By the assumption that a node always knows who its
neighbors are, only neighbors of node y can send out
messages with SD = 1 (remember that all messages on
levely are of the form [xy, SD]). A node only sends out
a message when its Route Table entry for y changes.
The only way in which this entry can change to 1 is if
the node in question becomes a neighbor o f y . This can
only happen if there is a topology change. Thus if there
is only a finite series of topology changes, only a finite
number of messages with SD = 1 can be sent out. []

THEOREM 4. Consider a ne twork in which an arbi-
trary but finite series o f topology changes occur between
0 and t ime t; no changes occur after t ime t. Then, a finite
t ime after t, all message activity will cease and all the
entries in all the Distance and Route Tables in all the
nodes will be correct.

PROOF. We will simply prove that the message ac-
tivity will cease in a finite amount of time; the remain-
der of the theorem follows from Theorem 1 and its
corollary. The proof is done by contradiction and in-
duction.

Assume that the message activity never ceases.
Then there must be at least one level, call i ty , in which
an infinite number of messages is generated. Then
there must be at least one node which generates infi-
nitely many messages; call this node b.

4 8 4 C o m m u n i c a t i o n s July 1977
of V o l u m e 20
the A C M N u m b e r 7

Since SD can only t ake on the va lues 1 t h rough N N ,

the re exists a va lue v; 1 <_ v <- N N such tha t the re exist
inf ini tely many i such tha t SD(bx i) = v.

It fol lows i m m e d i a t e l y f rom T h e o r e m 3 tha t v can-
not be 1. Can v be 2? Now a node only sends a message
as a resul t of a t opo logy change or as a resul t of
receiv ing a message . Since by a s sumpt ion the n u m b e r
of t opo logy changes is f ini te , node b must be rece iv ing
inf ini tely many messages f rom at least one ne ighbor ,
call it c.

Then by T h e o r e m 2, one o r bo th of the fo l lowing
must be t rue for inf ini tely many i: (a) S D (b x i) =
S D (c b i) + 1, (b) S D (b x i) > S D (b x ,) . But we are
assuming SD(bx~) = v = 2. T h e r e f o r e b must e i the r
receive or send inf ini te ly many messages with SD = 1,
which is imposs ib le . T h e r e f o r e v canno t be 2.

S imi lar ly it can be shown tha t v canno t be 3, 4
o r N N . T h e r e f o r e the a s sumpt ion is false. T h e r e f o r e
the t h e o r e m is t rue . []

Conclusion

We have desc r ibed and p r o v e n the cor rec tness of a
p ro toco l for ma in ta in ing up to da te t opo logy in forma-
t ion in the nodes of a ne twork . Severa l po in ts r ema in to
be clar i f ied.

A l t h o u g h we have p roven tha t N E T C H A N G E
message act ivi ty t akes only a f ini te t ime , we have not
shown any u p p e r l imits for the n u m b e r of messages tha t
are g e n e r a t e d . W e have been ab le to der ive such an
u p p e r l imit; it is an exponen t i a l funct ion of N N , a
po lynomia l funct ion of K (the m a x i m u m n u m b e r of
ne ighbors that a node can have) , and a l inear funct ion
of T (the n u m b e r of t opo logy changes) . Space pre-
c ludes us f rom presen t ing the fo rmu la s for this u p p e r
l imit and its de r iva t ion h e r e / B a s i c a l l y the de r iva t ion
rests on the fact tha t , on any pa r t i cu l a r level , a message
with SD = Y can cause the gene ra t i on of at most K
messages with SD = Y + 1 and at mos t K messages
w i t h S D > Y + 1.

W e have successful ly i m p l e m e n t e d the N E T -
C H A N G E pro toco l on the M E R I T C o m p u t e r Net -
work .

W e conc lude by not ing that our N E T C H A N G E
pro toco l is only the first s tep in the d e v e l o p m e n t of an
effect ive message rou t ing scheme . O t h e r p r o b l e m s tha t
r ema in are f low con t ro l and conges t ion cont ro l . F low
cont ro l is necessa ry to synchron ize commu n ic a t i ng
processes in d i f fe ren t nodes ; one of its funct ions is to
p reven t a rece iv ing process f rom be ing f l ood e d with
messages . Conges t ion con t ro l is necessa ry to rou te
messages a r o u n d conges ted par t s of the n e t w o r k , and
to p reven t conges t ion w h e n e v e r poss ib le . W e plan to
pursue resea rch on these subjec ts .

7 The derivation of these formulas may be found in Chapter 8 of
[7].

Acknowledgments . I wou ld l ike to t hank W a y n e
F i scher and Er ic A u p p e r l e for the i r he lpfu l insights
dur ing the course of this r e sea rch .

Appendix: Some Comments on the Initialization of the
N E T C H A N G E Protocol

As m e n t i o n e d in the first no te in Sect ion B, when a
node comes up , the en t r i es of its Dis tance Tab le a re
in i t ia l ized to N N (NN = the N u m b e r of N o d e s in the
N e t w o r k) , and the ent r ies of its R o u t e Tab le a re ini t ial-
ized to "a , N N , " where a is an a rb i t r a ry node 1D.

We have shown in E x a m p l e 1 in Sect ion A how such
a f reshly in i t ia l ized node upda t e s its tab les when it jo ins
the n e t w o r k .

Na tu ra l ly , the la rger ques t ion ar ises of how the
tab les a re u p d a t e d when the ne tw ork comes up for the
" f i r s t " t ime . A s it turns out , eve ry th ing h a p p e n s qui te
au toma t i ca l ly as the l inks and nodes come up, and they
can come up in any o rde r . (I t should be n o t e d that a
l ink is not cons ide red " u p " unless bo th the nodes ad ja -
cent to it a re also up; this is because the only re l iab le
way of checking the in tegr i ty of a l ink is to ca r ry on a
conversa t ion with the node at the o the r end of that
l ink .)

W h e n a node is in i t ia l ized , its tab les indica te that it
is connec t ed to no one in the ne twork . A s the l inks
a d j a c e n t to that node come up (or as it d i scovers that
these l inks are o p e r a t i o n a l) , the node will u p d a t e its
tab les on the basis of i n fo rma t ion o b t a i n e d f rom its
new- found ne ighbors . These n e i g h b o r nodes in turn
upda t e the i r tab les on the basis of i n fo rma t ion o b t a i n e d
f rom the i r new ne ighbors , and so even tua l ly all the
tab les in all the nodes are cor rec t ly u p d a t e d .

Received September 1974; revised May 1976

References
1. Aupperle, E.M. The MERIT network re-examined. Digest of
Papers, COMPCON 73, Feb. 1973, pp. 25-29.
2. Baran, P. On distributed communication networks. IEEE Trans.
Comm. Syst. CS-12 (March 1964), 109.
3. Cocanower, A.B., Fischer, W., Gerstenberger, W.S., and Read,
B.S. The communications computer operating system-the initial
design. No. PB203 552, Nat. Tech. Inform. Service, Springfield,
Va., Oct. 1970, p. 94.
4. Frank, H., Kahn, R.E., and Kleinrock, L. Computer
communication network design-experience with theory and
practice. Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press, Montvale,
N.J.; pp. 255-270 (Contains an extensive bibliography on computer
networks).
5. Heart, F.W., Kahn, R.E., Ornstein, S.M., Crowther, W.R., and
Walden, D.C. The interface message processor for the ARPA
computer networks. Proc. AFIPS 1970 SJCC, Vol. 36, AFIPS Press,
Montvale, N.J., pp. 551-567.
6. Herzog, B. Computer networks. Proc. Int. Comptg. Symp.,
Venice, Italy, April 1972, pp. 12-14.
7. Tajibnapis, W.D. Message-switching protocols in distributed
computer networks. Ph.D. Diss., Pub. MCN-0676-TR-22, MERIT
Computer Network, Ann Arbor, Mich., 1976.

485 Communications July 1977
of Volume 20
the ACM Number 7

