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A general, modular technique for designing efficient leader finding algorithms in distributed, asyn- 
chronous networks is developed. This technique reduces the problem of efficient leader finding to a 
simpler problem of efficient serial traversing of the corresponding network. The message complexity 
of the resulting leader finding algorithms is bounded by [f(n) + n)(log,k + 1) (or (f(m) + n)(log,k 
+ l)], where n is the number of nodes in the network [m is the number of edges in the network], k is 
the number of nodes that start the algorithm, and f (n) [ f(m)] is the message complexity of traversing 
the nodes [edges] of the network. The time complexity of these algorithms may be as large as their 
message complexity. This technique does not require that the FIFO discipline is obeyed by the links. 
The local memory needed for each node, besides the memory needed for the traversal algorithm, is 
logarithmic in the maximal identity of a node in the network. This result achieves in a unified way 
the best known upper bounds on the message complexity of leader finding algorithms for circular, 
complete, and general networks. It is also shown to be applicable to other classes of networks, and in 
some cases the message complexity of the resulting algorithms is better by a constant factor than 
that of previously known algorithms. 

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Ar- 
chitecture and Design; F.2.2 [Analysis of Algorithms and Program Complexity]: Nonnumerical 
Algorithms and Problems 

General Terms: Algorithms, Design 
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1. INTRODUCTION 

The problem of efficiently electing a leader in distributed networks has been 
studied in many papers [l, 2, 4, 6, 7-10, 12-14, 16-18, 19, 21, 23, 271. Some of 
the more efficient algorithms in this list are quite sophisticated and specially 
designed for specific classes of networks. In this paper a general, modular 
technique for designing efficient leader finding algorithms in such networks is 
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developed. This technique greatly simplifies the design of distributed leader 
finding algorithms, without increasing the order of their message complexity. 
Moreover, the message complexity of several algorithms obtained by this tech- 
nique is shown to be better than that of specially designed algorithms. Unfortu- 
nately, the time complexity of the resulting algorithms may be as large as their 
message complexity. It remains an interesting open problem whether a similar 
general technique that achieves the same message complexity with a better time 
complexity can be found. 

The model under investigation is a network of n processors with distinct totally 
ordered identities identity(l), identity(2), . . . , identity(n), and m communication 
links connecting pairs of the processors. No processor knows any other proces- 
sor’s identity. Each of the communication links can be either bidirectional or 
unidirectional, and each processor knows the links connected to itself and their 
directions, but not the identities of its neighbors. The processors communicate 
by sending messages along the permitted directions of the communication links. 
The processors are identical in the sense that all the processors that are working 
on some common task execute the same algorithm. Such an algorithm may 
include operations of (1) sending a message to a neighbor, (2) receiving a message 
from a neighbor, and (3) processing information in the processor’s local memory. 

We assume that the messages on each link arrive in a finite time, with no 
error, and are kept until processed. Unlike some algorithms for finding a leader 
(e.g., [4, 7, 9]), our algorithm does not assume that the FIFO discipline is obeyed 
by the links. Note that existing communication protocols do not necessarily 
guarantee the FIFO discipline (see [25, ch. 41). For networks that obey the FIFO 
discipline, the algorithms can be simplified, and the length of the message can 
be slightly reduced. We also assume that all the processors are initially asleep 
and that any nonempty set of processors may be awakened spontaneously and 
start the algorithm; a processor that is not a starter remains asleep until a 
message reaches it. 

A communication network can be viewed as a mixed graph G = (V, E) (i.e., E 
might contain both directed and undirected edges) with 1 V ] = n and ] E 1 = m. 
We refer to algorithms for a given network as algorithms acting on the underlying 
graph, and we use the terms “graph” and “network” to denote the same entity. 

When no processor knows the value of n, a spanning tree (and hence a leader) 
is found in [ll, 121 in O(n log n + m) messages for a general undirected graph 
(the algorithm in [12] actually finds a minimum weight spanning tree). When n 
is known to every processor, a leader in such a network is found in [lo], in an 
expected number of messages which is O(nlogn) (independent of m), and the 
worst case is O(nm). In [21] a spanning tree construction algorithm is presented 
for the case where each node knows its neighbors, and messages are permitted to 
be very long. It is claimed there that the message complexity of that algorithm is 
3n log n + O(n) (independent of m) for the average case. The worst case message 
complexity of that algorithm is said to be O(n’). 

R (n log n) lower bounds and O(n log n) upper bounds on the number of mes- 
sages required for distributively finding a leader in a circular network of proces- 
sors (directed and undirected) and in a complete undirected network are known; 
see 12, 4, 6, 13, 17, 22, 23, 271 for the circular networks and [l, 8, 14, 161 for the 
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complete undirected network. An algorithm that can find a leader in general 
strongly connected unidirectional networks in O(nm) messages is given in [24]. 
Another such algorithm (using fewer bits per message, to the total of O(nm) bits) 
is developed in [7]. Most of these algorithms also construct spanning trees on 
which messages can be routed from the leader to all nodes, and from all nodes to 
the leader. 

In this paper we present a general, modular technique for constructing leader 
finding algorithms for any class of graphs. This technique yields algorithms 
which are competitive, or even better (in the message complexity) than known 
algorithms, designed for special classes of networks. This technique solves the 
problem in two stages: 

Stage 1. Construction of a traversal algorithm (to be defined). 

Stage 2. Construction of a leader finding algorithm, which uses the algorithm 
of stage 1 as a distributed subroutine. (The exact relation between 
the leader finding algorithm and its distributed subroutine are ex- 
plained in the sequel.) 

In fact, we present a single, general algorithm for the second stage, which is 
independent of the specific features of the algorithm of the first stage. Thus, the 
problem of leader finding algorithms in any class of graphs is reduced to the 
problem of traversal algorithms for the same class, which in general is much 
simpler. The origins of the ideas used here can be found in [ll], in which a 
traversal algorithm and the idea of tracing appear as a part of a leader finding 
algorithm in general undirected networks. The technique used there appears to 
be applicable to undirected graphs only. Following our paper, the idea of modular 
construction of distributed algorithms was recently used also in [3]. 

The message complexity of the resulting algorithm is at most (f(n) + rz)(log,k 
+ 1) [or (f(m) + n)(log& + l)], where the convex function f(n) [f(m)] is an 
upper bound on the complexity of certain, simple executions of the traversal 
algorithm, and k is the number of nodes that spontaneously start the algorithm. 
The messages of the resulting algorithms and the local memory used at each 
node are of a length which is logarithmic in the maximal identity of a processor 
(this does not include the memory and the length of the messages used by the 
assumed traversal algorithms, which are usually small). It is also shown that a 
leader in a network can use any traversal algorithm to construct a spanning tree 
of routes from all nodes to itself, and a spanning tree of routes from itself to all 
nodes (clearly, in an undirected network, any spanning tree can be used for both 
purposes). 

The algorithms constructed by this technique are shown to unify and generalize 
the results on leader finding algorithms mentioned above in a nontrivial sense. 
For instance, they provide simple constructions of O(nlogn) distributed algo- 
rithms for finding leaders in circular and complete networks, and in other classes 
of networks of more complex structure, for which no such algorithms were 
designed before. The message complexity achieved by this technique for complete 
graphs is better in a constant factor than the previous results. A simple gener- 
alization of this technique achieves a 2m + 3nlog k + O(rt) leader finding 
algorithm for general undirected networks; the message complexity of that 
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algorithm is better than that of the algorithms in [12, 153. Our results for general 
networks are applicable also for different models such as the one appearing in 
[21] (and in fact improve their result). 

This technique enables the simple construction of an efficient leader finding 
algorithm in directed Euler networks. Another algorithm for this task was 
obtained independently in [9] (the communication complexity of the algorithm 
presented here is smaller by a constant factor than that of [9]). 

The time complexity of the algorithms constructed by our technique is, in 
some cases, as large as their message complexity, which is inferior to that of 
existing algorithms for similar tasks. For example, there are linear time leader 
election algorithms for complete and circular networks [ 1,231. This disadvantage 
seems to be a price we must pay for assuming networks of arbitrary type (i.e., 
each link can be directed or undirected) and for using the carrier traversal 
algorithm as a “bIack box.” An interesting question is whether there is a different 
general technique for constructing leader finding algorithms with better time 
complexity. 

The rest of the paper is organized as follows: In Section 2 some basic definitions 
used in this paper are given. In Section 3 the modular technique for leader finding 
is presented and proved, and in Section 4 various applications of this technique 
are given. 

2. PRELIMINARIES 

In this section we give the definitions needed for our results and introduce some 
of the basic tools we use. 

Let A be a distributed algorithm acting on a graph G = (V, E). An execution 
of A consists of events, each being either sending a message, receiving a message, 
or doing some local computations. We assume message-driven algorithms, in 
which a node may send a message only in response to awakening or to the arrival 
of a message. A distributed algorithm A is global on a class I of graphs if for 
every graph G = (V, E) in I’, and for every execution of A on G, every node v in 
V either receives a message or sends a message during this execution. 

A rooted execution of an algorithm A is an execution in which exactly one node 
was awakened spontaneously. An algorithm A is serial if in every rooted execution 
of A, at any given moment, at most one message is sent in the network, and the 
next message is always sent by the last node that received a message. An 
equivalent way to describe a serial algorithm is the following: A node gets a 
permission to transmit a single message in a rooted execution of such an algorithm 
either on its spontaneous awakening or by receiving a message from another 
node. This permission (viewed as a token) is taken away from the node when it 
transmits a message. Another use of a token to generate serial executions of 
distributed algorithms is given in [26]. 

The following type of distributed algorithm is the main tool for our results. 

Definition. A traversal algorithm is a distributed algorithm which is both 
serial and global. 

The message complexity mA,G of an algorithm A acting on a graph G is the 
maximal number of messages sent in any executions of A on G. 
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Let I be a family of graphs, A an algorithm acting on graphs in I’, and f (x, y) 
a function of two variables. Then A is said to be of a message complexity f (n, m) 
if for each graph G = (V, E) in I, m&G I f(n, m) (n = 1 VI, m = 1 E I). 

Let B be a distributed algorithm acting on some graph G. The carrier algorithm 
induced by B, denoted B’, is the algorithm obtained from B by having each 
message M sent by B be replaced by a message (M, w ), where w is an arbitrary 
string received from an outside source (i.e., an upper layer algorithm located at 
the same node). w will be denoted as the attachment carried with M by B. The 
attachments have no effect on the execution of B. 

Let A and B be two distributed algorithms acting on the same graph G. We 
say that A uses B as a carrier (and A is the master of B) if A at each node may 
invoke B” (at the same node), and whenever B” at a given node receives a message, 
it first transfers its attachment to A (at the same node), and then waits for 
instructions from A. More specifically, the master algorithm A at node i can 
perform the following operations on the carrier algorithm B’ at the same node: 

Operation 1. Initiating B”. The effect of such an initiation on B” is the same as 
that of a spontaneous awakening. 

Operation 2. Appending an attachment w to a message M to be sent by B”. 
Operation 3. Deleting an attachment w from a message M received by B”. 
Operation 4. Instructing B” to continue its execution. 
Operation 5. Destroying a message to be sent by B”. (In the case that B is a 

traversal algorithm with a single initiator, this means an abortion 
of B’.) 

Operation 6. Repeating the last sending executed by B”, after replacing the 
attachment of the corresponding message by a new one. In this 
case we say that the new attachment is chasing the previous one. 

All carrier algorithms in this paper are induced by traversal algorithms, and 
we use “traversal algorithm” instead of “carrier algorithm induced by the traversal 
algorithm.” Moreover, each execution of such an algorithm will be a rooted 
execution (which may be aborted, as described in operation 5 above). Note that 
this does not exclude the possibility that a carrier algorithm is invoked simulta- 
neously in several nodes-each invocation will be considered a distinct rooted 
execution of the carrier algorithm. For this purpose all such invocations must be 
made distinguishable, for example, by including distinct names in their attach- 
ments. Readers who are familiar with operating systems may view the master- 
carriers mechanism described above as a generalization of some single-computer 
operating system mechanisms (e.g., in UNIX) in which a single father-process 
may create and monitor several son-processes, some of which may use the same 
code simultaneously. It also may be viewed as a generalization to the common 
practice in communication networks, where higher layer protocols rely on an 
environment consisting of lower layer protocols (see, e.g., [25]). 

3. THE GENERAL ALGORITHM FOR FINDING A LEADER 

In this section we present a general technique for a modular construction of 
efficient leader finding algorithms. The section is divided into four subsections. 
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In the first we present a leader finding theorem; in the second we present the 
technique to construct the algorithms stated in that theorem; in the third we 
prove the correctness and the complexity of these algorithms; and in the last we 
show how traversal algorithms can be used to efficiently construct spanning trees 
of certain types. 

3.1 Leader Finding Theorem 

First let us define the traversability property and the edge traversability property 
for any class of graphs. Then we present a theorem which connects these 
properties with the complexity of leader finding algorithms for this class. 

Definition. Let r be a class of graphs and f(x) a real-valued function. Then 
r is f traversable (f edge traversable) if there exists a traversal algorithm B 
such that in any rooted execution of B on any graph G E r, and for any 
positive integer X, after sending 1 f(n) J messages, B must have visited at least 
min(x + 1, n) distinct nodes [min(x + 1, ml distinct edges]. That is: at least 
min(x + 1, n) distinct nodes [min]x + 1, m) distinct edges] were involved in the 
sending/receiving of these L f (x) J messages. 

It follows from [7, 201 that every class of graphs is 0(x3) traversable 
[0(x2) edge traversable]. Moreover, it can be shown that for every 1 5 LY s 3 
[l 5 o( i 21 there is a class of graphs which is O(X~) traversable [edge traversable] 
but not O(P) traversable [edge traversable]. 

LEADER FINDING THEOREM. Let a class of graphs r be f traversable [f edge 
traversable], where f is a convex function (i.e., for all x and y it holds that f (x) + 
f(y) 5 f (x + y)). Then there exists a distributed leader finding algorithm whose 
message complexity on any graph G = (V, E) E r is at most (n + f (n))(Zog,n + 1) 
if G is f traversable, and (n + f (m))(log,n + 1) if G is f edge traversable. 

Note that, trivially, the converse of the above theorem does not hold (e.g., for 
classes of graphs for which the message complexity of leader finding algorithm 
is less than O(nlogn), such as stars). 

The proof of the leader finding theorem will be given in the sequel by presenting 
a leader finding algorithm that uses a carrier B’ based on a given traversal 
algorithm B and proving the properties of the combined algorithm. We prove the 
theorem only for the traversability property. The proof for the edge traversability 
property is similar. 

3.2 Presentation of the Algorithm 

We outline here the general leader finding algorithm, which uses a given traversal 
algorithm B’ as a carrier. This algorithm is designed for networks in which 
messages sent along a link do not necessarily obey the FIFO discipline; it will be 
noted later that if the FIFO discipline is obeyed, then the algorithm can be 
simplified, and the length of the messages sent by it can be reduced. 

Initially all nodes are asleep and are at phase = -1. Assume that one node a is 
awakened and starts the algorithm. Node a raises its phase to 0 and initiates a 
rooted execution of B’, with an attachment w that contains a’s phase, a’s identity, 
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and a hop-counter h which is initially zero (i.e., w = (p, a, h), and initially p = 0 
and h = 0). The pair (0, a) of the phase and the identity is viewed as a token in 
annexing mode, and the hop-counter counts the number of times this token is 
sent. (The hop-counter, and other related variables which are defined later, are 
needed only when the FIFO discipline is not assumed. They are used to detect 
when a chasing message bypasses the message it chases.) This token traverses 
the graph, annexing each node of lower phase it passes to its domain. We say 
that a node a belongs to (the domain of) token (b, p) if (b, p) is the last token 
that annexed a. The annexing is done by having the annexed node store the 
phase and identity of the token. The value of the hop-counter is increased by 
one each time the token is sent (using operations 3 and 4), and each node annexed 
by this token records the maximal value of the hop-counter it had seen, in a local 
variable MaxHop. If a is the only node that was awakened spontaneously, then 
eventually the token (0, a) will complete the traversal of the graph at some node 
d, having annexed all the nodes it passed. At this moment d declares itself as a 
leader and initiates another execution of B” to announce its leadership. 

Assume now that exactly two nodes, a and b, are spontaneously awakened. 
Then each node initiates a rooted execution of B”, as before. In the case that 
token (0, a) reaches a node c that was already annexed by token (0, b), it stops 
the traversing and acts as follows: 

(1) If (0, b) > (0, a) lexicographically (i.e., b > a), then token (0, a) stays at c 
and becomes a candidate. 

(2) Otherwise, token (0, a) becomes a chasing token, and it chases token (0, b) 
(using operation 6). The attachment of a chasing token contains the identity 
of the chased token, (0, b). In addition, it contains a variable LastMaxHop, 
which is the value of the variable MaxHop of the last node it passed. This 
chasing token marks every node it visits during this chase by “chased (0)“, 
meaning that a chasing token has already passed this node at phase 0. 

Since node a was annexed by token (0, a) and node b by (0, b), no token will 
annex all the nodes of the graph. Without loss of generality, assume that b > a. 
Then token (0, b) eventually reaches a node which either was annexed by token 
(0, a), or where (0, a) stays as a candidate. In the former case, (0, b) will start 
chasing (0, a). Token (0, a), on the other hand, will not chase token (0, b), since 
b > a. Instead, if token (0, a) reaches a node c that is either marked “chased (0)” 
or annexed by token (0, b), token (0, a) will wait as a candidate at c until it is 
reached by the other token, which may be either in the annexing mode or in the 
chasing mode. 

If the FIFO discipline is not obeyed, then the chasing token may bypass the 
chased token (0, a) on some edge. Thus the chasing token arrives at node d at 
the other end of this edge before (0, a) does. In this case one of the following 
must hold: 

(1) Either d does not belong to the domain of (0, a) and it does not contain a 
candidate, or 

(2) d belongs to the domain of (0, a) and the value of MaxHop in node d is 
smaller than the value of LastMaxHop of the chasing token. 
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Upon recognizing that one of these cases has happened, the chasing token stays 
at d as a candidate, and it is guaranteed that the bypassed token (0, a) will 
eventually arrive at d. 

In any case, one token will become a candidate at some node, and another 
token will meet it at that node. At this moment both tokens are destroyed, and 
a new token, at a phase higher by one, is created. The identity of this new token 
is the identity of the node in which it was created, d. Now we are left with only 
one token, which, as in the first case, is going to start traversing the graph. This 
token ignores lower phase tokens and will not reach any node visited by another 
token at a phase greater than or equal to its own. Thus this token will complete 
a full traversal of the graph at some node v. At this time u is elected as the leader. 

In the general case, each token (p, a) is in one of three modes: 

(i) Annexing mode. A token in this mode is trying to annex all the nodes in 
the network to its domain. For this, the token is using B” to traverse the 
network, and it annexes the nodes it passes during the traversal. 

(ii) Chasing mode. A token in this mode is chasing some token (p, b) (b # a) 
in the annexing mode, attempting to reach it and then to create a token in 
a higher phase. 

(iii) Candidate mode. A token in this mode has a phase p and is waiting to be 
met by a chasing or annexing token in the same phase. 

Whenever an annexing or chasing token reaches (or is created at) a node c, 
the following rules are applied, according to the mode of the token. 

Annexing Mode. Whenever a token (p, a) in the annexing mode reaches (or 
is created at) a node c, which belongs to a token (9, b), the following rules are 
applied. 

(al) The annexing is continued if: (1) the corresponding execution of B” is not 
terminated, and (2) one of the following holds: 4 < p or else (p, a) = (q, b) 
and node c is not marked “chased(p)“. If this condition is satisfied, node c 
performs the following: (i) It joins the domain of (p, a) (if it is not yet 
there), (ii) it increases the value of the hop-counter of the token by one, 
and sends it forward (using operations 2-4), and (iii) it records the value of 
the updated hop-counter in the local variable MaxHop. 

(a2) If the traversal is completed successfully (by annexing all nodes) then c is 
the elected leader. In all other cases token (p, a) is destroyed (using 
operation 5), and one of the following applies: 

(a3) If p < q, then token (p, a) is destroyed, and no more steps are taken. 

(a4) If c contains a candidate token in phase p, then both (p, a) and the candidate 
token are destroyed, and a new token (p + 1, c) in the annexing mode is 
created. This new token starts the annexing process, beginning from the 
node c where it was created. Its hop-counter is initialized to zero. 

(a5) If p = q, and either node c is marked “chased(p)” or b > a, then token 
(p, a) enters the candidate mode, and waits at c. 

(a6) Otherwise (i.e., p = q, b < a, and node c is not marked “chased(p)“), token 
(p, a) is destroyed, and a token in the chasing mode, which is chasing 
(p, b), is created. 
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Chasing Mode. Whenever a token in this mode, which is chasing a token 
(p, a), reaches (or is created at) a node c which belongs to a token (4, b), the 
following rules are applied. 

(cl) The chasing is continued if (1): (p, a) = (4, b), (2) the value of the variable 
LastMaxHop carried with the chasing token is smaller than the value of the 
variable MaxHop stored at the node c, and (3) node c is neither marked 
“chased(p)“, nor does it contain a token at phase p in the candidate mode. 
If these conditions are satisfied, node c performs the following: (i) it marks 
itself by “chased(p)“, (ii) it sets the value of LastMaxHop of the chasing 
token to the value of MaxHop of itself, and (iii) it continues the chasing 
(using operation 6 on the message containing the chased token). In all other 
cases, the chasing is stopped, and one of the following applies. 

(~2) If p < q, then the chasing token is destroyed, and no other steps are taken. 
(~3) If c contains a candidate token at phase p, then both the candidate and the 

chasing tokens are destroyed, and a new token (p + 1, c) is created, as in 
W. 

(~4) Otherwise (i.e., either (1) (p, a) = (q, b), and either node c is marked 
“chased(p)” or the value of MaxHop at node c is not larger than the value 
LastMaxHop at the chasing token, or (2) (p, a) # (q, b), and p L q): the 
chasing token enters the candidate mode, and waits at c. 

After a leader is elected, one more execution of B’ to announce its leadership 
to ail other nodes might be needed. 

3.3 Complexity and Correctness Proofs 

LEMMA 1. The number of distinct tokens at phase p created in an execution of 
the algorithm is at most k. 2-p, where k is the number of nodes that start the 
algorithm spontaneously. 

PROOF. Lemma 1 is proved by the facts that any annexing token at phase 
p > 0 is created by destroying two tokens at phase p - 1 (rules (a4) and (c3)), 
and that a chasing token at phase p is created by destroying an annexing token 
of the same phase. 0 

LEMMA 2. In every execution of the algorithm, at most one node is declared as 
a leader. 

PROOF. Let (p, a) be the first token that declares some node c as a leader. 
Then (p, a) is the first token that has completed a traversal, which implies, by 
(al), that (p, a) has not encountered any node that belonged to another token 
at phase 2 p. Moreover, no other token at phase 2 p will ever be created. Also 
by (al), no token (q, b) with q <p could complete the traversal. 0 

LEMMA 3. At any phase, the number of messages sent by the algorithm with a 
token in this phase is at most f (n) + n. 

PROOF. Assume that d tokens were created in phase p, and that the domain 
of the ith token, 1 5 i 5 d, contains ni nodes. Since no two domains in the same 
ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990. 



A Modular Technique for Designing Leader Finding Algorithms 93 

phase overlap, we have that 
d 

c nis n. 

i=l 

By the traversability property, the annexing token (p, i) occurred in at most 
f (ni) messages. Thus, we obtain by the convexity of f that the number M of 
messages with annexing tokens in a given phase satisfies 

M 5 5 f(ni) 5 f i ni I f(n). 
i=l ( ) i=l 

Since every node that sends a chasing token at a given phase p is marked 
“chased(p)“, and a node that is marked “chased(p)” does not send any chasing 
token at phase p (rule (cl)), the number of messages with chasing tokens at a 
given phase is bounded by n. The lemma follows. 0 

Note that the term n in the bound of the above lemma comes from the bound 
of at most n messages with chasing tokens at any given phase. It will be shown 
that in certain cases this bound can be reduced by simplifying the analysis of the 
chasing. 

LEMMA 4. The number of messages sent by the algorithm is at most (n + 
f(n)) . (log,k + l), where k is the number of nodes that start the algorithm 
spontaneously. 

PROOF. By Lemma 1, the number of phases is bounded by log,k + 1. By 
Lemma 3, at most n + f(n) messages are sent by the algorithm with tokens in 
any given phase. The lemma follows. 0 

LEMMA 5. If there is more than one token at a certain phase p, then a token 
at phase p + 1 is eventually created. 

PROOF. Assume the contrary. Then there is a phase p such that there are at 
least two annexing tokens at phase p, and no token at phase p + 1 is ever created. 
We show that this is impossible. 

Let (p, i) be a token in phase p with the maximum possible i. When (p, i) is 
created, it invokes an execution of B’ to traverse the graph. Since there are other 
annexing tokens at phase p, this execution cannot complete the annexing of all 
the nodes in the network and hence must be aborted upon reaching some node c 
(see rule (al)). By the maximality of i and of p, one of the following must have 
happened at the time (p, i) reached c: 

(1) c belonged to a token (p, j ) with j < i, and hence by rule (a6), a chasing 
token at phase p, which chased (p, j ), was created, or 

(2) c was already marked “chased(p)“. 

In both cases, a chasing token at phase p must have been created. Out of all 
annexing tokens in phase p which are chased, let (p, t ) be the one with the 
minimum possible t. 
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Out of all messages containing a chasing token which is chasing (p, t ), consider 
the one with the maximal value of LastMaxHop. Denote this message by C and 
the value of its LastMaxHop by Z(C). Note that C is unique, as by (cl) no node 
sends more than one token that chases (p, t); therefore, no two messages with 
the same value of LastMaxHop chase a message with the token (p, t ). 

Let A be the message chased by C, that is, the unique message with an annexing 
token (p, t) whose hop-counter h(A) equals Z(C). Let e be the edge that carried 
A (and hence also carried C), and let u be the node that received A (and hence 
also C). 

By the maximality of Z(C), the chasing token carried by C was not forwarded 
by v. In other words, node v, upon receiving message C, destroyed the chasing 
token carried by it, by executing one of the operations (c2)-(~4). If it executed 
(~2) or (c3), then a node of higher phase was created-a contradiction. We 
conclude that v destroyed C by executing operation (c4), by which a candidate 
token of phase p was created at u. By the maximality of p, this candidate node 
was never destroyed (a candidate token at phase p which stays at node Y is 
destroyed only when a token of higher phase is created at Y or annexes v). We 
consider two subcases: 

(1) Message C bypassed A on the edge e. Then A will eventually reach v, will 
find a candidate node of phase p in it, and by executing operation (a4) will 
create an annexing token of phase p + 1. A contradiction. 

(2) Not (l), that is, A arrived at v before C. Then, eventually, C will also arrive 
at Y. By the maximality of 1(C), C will not continue chasing the annexing 
token (p, t), carried by A. This implies that v did not forward this annexing 
token upon the receipt of A, which means that when u received A, the 
annexing token (p, t ) was destroyed. By the maximality of p and the 
minimality of t, this could happen only if upon receiving A, u executed 
operation (a5), and thus created a candidate token at phase p which stayed 
at u. By the same argument as in (1) above, when C arrives at u, it will find 
this candidate token there, and a token of phase p + 1 will be created- 
a contradiction. Cl 

PROOF OF THE LEADER FINDING THEOREM. Clearly, at the beginning of the 
algorithm there is at least one token. By Lemmas 4 and 5, the algorithm will 
eventually get to a situation where there is a unique token at some phase p, and 
no other token in this phase will ever be created. This token, which is an annexing 
token, will complete the traversing of the graph (completing B”), and then will 
create a leader declaring token, which by Lemma 2 is unique. The complexity of 
the algorithm follows by Lemma 4. Cl 

Note that most of the complication in the proof of Lemma 5 is due to the fact 
that we do not assume the FIFO discipline. Indeed, in the case that this discipline 
is guaranteed, the mechanism for counting and recording the number hops taken 
by annexing tokens (using the hop-counter and the variables MaxHop and 
LastMaxHop) is redundant. Consequently, the algorithm can be considerably 
simplified. 
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3.4 Construction of Spanning Trees 

In this section it is shown how the traversal algorithm B’ can be used after a 
leader is elected to construct directed spanning trees, containing paths to (from) 
the leader from (to) all other nodes. For this construction alone (and not for the 
leader election which may have preceded it), we assume that a rooted execution 
of B” always terminates at the node that initiated it. (This can always be achieved 
by at most doubling the message complexity of B’, when it is used not for leader 
election, but for spanning tree construction.) 

Let node c be the elected leader. Upon its election, c initiates a “leader 
declaring” execution of B”. Associate with each node, excluding c, the edge on 
which the node had sent the last message in this execution. Clearly, this set of 
edges, directed in the directions of these last messages, constitutes a spanning 
tree in which there is a directed path from every node to the leader. 

Note that in the description above, a node might not know when its partici- 
pation in the leader declaration execution of B” is completed, neither what edge 
leaving it belongs to the tree rooted at the leader. This problem is solved in the 
following way: 

(1) In the leader declaration execution of B”, attach to the token a hop-counter. 
Also, each node a records the value MaxHop of the hop-counter the token 
had the last time a sent it (as in the annexing mode of the leader finding 
algorithm). 

(2) After the leader declaration execution of B’ is terminated at node c, it 
initiates another execution of B” which is identical to the previous one. When 
the hop-counter of the token in this execution upon leaving a node a equals 
the value of MaxHop from the previous execution at a, it terminates its part 
in the algorithm and takes the edge that carried the last message to be the 
one directed to the leader. 

B” can also be used to construct a spanning tree of directed paths from the 
leader to all other nodes: In the undirected case the direction of the edges in the 
tree described above are reversed. In directed or mixed graphs this can be done 
in the following way: 

(1) Execute B’ from the leader, with an edge counter, that counts the distinct 
edges used by it. This assigns a unique name (number) to each edge used by 
B’. This name is known to both ends of the edge. 

(2) Each node records the name of the edge on which it received the first 
message. Clearly, the set of these edges constitutes a tree having the desired 
properties. 

(3) Another two executions of B” (using messages of length O(nlogn)) are used 
to accumulate the edges of the tree at the leader, and then to spread them to 
all nodes. 

The message complexity of both algorithms is O(f(n)) [O(f(m))]. However, 
in the latter algorithm attachments of O(n logn) bits might be needed. Alterna- 
tively, it is possible to modify this latter algorithm to work with O(nm + f(n)) 
[O(nm + f(m))] messages of O(logn) bits. 
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4. RESULTS OBTAINED BY USING THE GENERAL ALGORITHM FOR 
FINDING A LEADER 

In order to demonstrate the power of the leader finding theorem we now present 
traversing and edge-traversing algorithms for various classes of networks, and 
use them to obtain leader finding algorithms for these classes of networks. 

4.1 Finding a Leader Using O(x) Traversals 

Five examples of O(X) traversable classes of networks are presented below. 
Applications of the leader finding theorem on these classes yield algorithms for 
finding a leader in O(nlog n) messages. For two of these classes, circular and 
complete networks, there are known leader finding algorithms which use only 
O(n log n) messages. For the other three cases no such algorithms were published 
before. In the known two cases quite sophisticated special algorithms were 
designed [ 1, 2,4,8, 13, 14,16, 17, 231, whereas it is a trivial task to design suitable 
traversing algorithms for these classes of networks. 

(1) Circuits (Unidirectional and Bidirectional). Circuits are trivially x tra- 
versable (the initiator sends a message to one of its neighbors, and the mes- 
sage is forwarded around the circle until stopped by its initiator). Thus our 
leader finding algorithm will find a leader in any circle using no more than 
2n . (log,n + 1) messages. Note that the message length required by the traversal 
algorithm itself is only O(1) bits. 

(2) Complete Undirected Graphs. The class of complete graphs is 2x travers- 
able. The initiator sends a message to one of its neighbors and waits for an 
acknowledgment. This operation is repeated until all the initiator’s neighbors are 
traversed. At first glance this traversing algorithm, together with the leader 
finding theorem yields an algorithm for finding a leader in complete undirected 
graphs in (n + 2. n)(log,n + 1) messages. However, a simple elaboration of 
the analysis yields a better bound. To see this recall the computation of the 
complexity of the leader finding algorithm: the term (n + f(n)) appears in 
(n + f (n))(logzn + 1) as in each phase f(n) messages may be used for traversal 
of tokens in annexing mode, and n for chasing. In this special case of complete 
undirected graphs one can easily verify that at most three messages are used for 
the chasing of a token. The message complexity for finding a leader thus becomes 
(2n. log,n) + O(n). (The O(n) term is for the chasing: up to 3n. 2-P messages 
in phase p.) This is better in a constant factor than the complexity in [8, 14, 161. 

Note. After the first version of this paper was completed, we have received a 
revised version of [8] in which two other algorithms were presented which also 
achieve the same message complexity ((2n . log n) + O(n)). 

(3) Complete Undirected Bipartite Graphs. A node initiating a traversing in 
a complete bipartite graph will send a message serially to all its neighbors, as in 
the case of a complete graph (i.e., at any given time there is at most one 
unacknowledged message). Next the initiator will ask its last visited neighbor, 
say b, to send serially messages to all b’s other neighbors. Clearly, now, the class 
of complete bipartite graphs is 2x: traversable, yielding a 3nlog n leader 
finding algorithm. However, the chasing of a token in this case is done by 
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at most 4 messages, and hence the complexity of leader finding is reduced to 
(2 . n a log n) + 0 (n) messages. 

(4) Undirected Graphs of Radius 1. These are graphs that contain a node 
which is a neighbor of all other nodes. A node i, initiating a traversing in a graph 
of radius 1, will also send a message serially to all its neighbors, as in the case of 
complete graphs. In this case, however, each acknowledgment will include the 
number of neighbors of the acknowledging neighbor. When this process ends, 
any acknowledgment containing the largest number of neighbors must have come 
from some node c which is a center. Node i thus sends a message to c, asking it 
to send serially messages to all c’s neighbors. Clearly, now, the class of graphs of 
radius 1 is 4x traversable, yielding an O(5nlog n) leader finding algorithm. 
However, since chasing is done in this case with at most four messages, the 
complexity is reduced to (4 . n . log n) + O(n) messages. 

(5) Complete K-Partite Graphs. These are graphs in which the nodes are 
partitioned into K 2 2 sets, and each node in any set U is connected to all nodes 
except those in U. Clearly, this set is 4x traversable by a method similar to the 
method described in (3) above. Also, the chasing is done in four messages. Hence 
a leader is found in 4nlogn + O(n) messages. This algorithm can be generalized 
to the class of graphs in which each node, together with any r of its neighbors 
(for some fixed r) form a dominating set (note that for K-partite graphs, r = 1). 
The message complexity for general r is 2(r + 1)nlogn + O(n). 

4.2 Finding a Leader Using O(x) Edge Traversal 

In this subsection we use the edge traversability property to derive an algorithm 
for finding a leader in directed Euler networks. The complexity of this algorithm 
is 0 (m log n) (and is smaller, by a constant factor, than that of an algorithm for 
the same task that was obtained independently in [9]). This is a generalization 
of the known results for directed circuits. 

We use a simple algorithm to traverse the edges of an Euler graph in 2m 
messages: Start from the initiating node and proceed traversing unused edges as 
long as possible. When arriving at a node with no untraversed outgoing edges, 
the traversal of a (not necessarily simple) circuit has been completed. Retraverse 
this circuit in the same order, until a node v with an outgoing unused edge is met, 
or until the second traversing is completed. In the former case, repeat the 
procedure in a recursive manner, starting from u. Incorporating this traversal 
algorithm in the general algorithm yields an (2m + n)logn leader finding 
algorithm in Eulerian directed graphs. For comparison, the message complexity 
of the algorithms of [7, 241, when applied to Euler directed graphs, use up to 
O(nm) messages. The message complexity of this algorithm is better, by a factor 
of 2, than that of an algorithm which was independently designed specially for 
the same task [9]. 

4.3 General Networks 

In this section we use our leader finding theorem while generalizing the notion 
of traversal. This yields results which improve upon the known results for general 
undirected networks in the standard model, as well as in a certain nonstandard 
model. 
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43.1 An Adaptive DFS Traversal. The leader finding algorithm discussed in 
this paper repeatedly uses a given traversal algorithm on a given network. In this 
subsection we modify the traversal so as to use information it obtains during 
early executions in order to improve its performance in later executions. 

If we use the depth first search algorithm (DFS) (see, e.g., [5, ch. 31) as a 
traversal in general graphs in our leader finding algorithm, we obtain a leader 
finding algorithm with a message complexity of O(mlogn), which is worse than 
the O(m + nlogn) complexity of the algorithm in [12]. We show below how to 
improve it to yield a leader finding algorithm whose message complexity is 
smaller than that of the algorithm of [12] by a constant factor and is still better 
in the order of the message complexity when k, the number of initiators of the 
algorithm, is small. For this sake, we modify the DFS traversal to include 
operations of edge deletions from the graph, as follows (a similar idea appeared 
also in [ll]): 

Consider an annexing token (p, a), which traverses an edge e from node c to 
node d and finds that node d already belongs to its domain. In this case e is a 
DFS back edge, and the next move of the token, according to the DFS traversal, 
is moving back on e from d to c. We modify the traversal so that while traversing 
back, the token marks e deleted in d (upon departure) and in c (upon arrival). 

In the leader finding algorithm, the only tokens which take deleted edges into 
consideration are annexing tokens. Suppose that such a token (p, a) arrives at a 
node d from a node c over an edge e and finds that some edge f is marked deleted 
in d. If (p, a) does not cease to be an annexing token upon arriving to d, then it 
continues the traversal according to the following rules: 

(Case 1). e # f. The token ignores f. 
(Case 2). e = f. (This means that e was deleted by another token that traversed 

it.) The token returns immediately to c (and ignores f ). 

Consider a given execution of the algorithm and call an edge deleted if it was 
marked deleted during this execution. Let Gmndeleted be the subgraph of G that 
contains all the edges that are not deleted. . 

Claim. Gnondeieted is a connected graph. 

PROOF. Assume the contrary and let Econnecting be the set of deleted edges such 
that each edge in Econnecting connects two connected components of Gnondeleted. 
Among the edges in Econnectingy let e be one that was marked deleted by a token 
(p, a) with largest p, and let c and d be the ends of e. There is a path in G, 
between nodes c and d, which consists of the DFS tree edges of the traversal of 
token (p, a). Since c and d belong to different connected components of Gnondeleted, 
some edge f of this path was marked deleted, and there is no path in Gnondeieted 
between the end points off. Thus edge f belongs to Econnecting. However, f could 
be marked deleted only by a token in phase larger than p. A contradiction. 0 

Next we bound the message complexity of the algorithm. First note that the 
changes made in the traversal do not change the fact that a node never sends 
more than one token in the chasing mode at each phase, and hence the total 
number of messages with chasing tokens is bounded by nlogn. 
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It remains to bound the number of messages with annexing tokens. For this, 
we partition these messages to three kinds. Consider a message with an annexing 
token (p, a) sent along an edge e from c to d. Then this message is of one of the 
following types: 

(1) Last message: If upon arrival at d, (p, a) ceases to be an annexing token. 

(2) DFS tree message: If either (p, a) annexes node d (and hence add e to its 
DFS tree), or e was already in its DFS tree upon leaving c. 

(3) Other message. The possibilities are 

(3.1) (p, a) finds that e is a back edge, or 

(3.2) (p, a) marked e deleted at c, following a message of type (3.1) from d 
to c, or 

(3.3) (p, a) finds that e was marked deleted at d, or 

(3.4) (p, a) is sent back on e following a message of type (3.3) from d to c. 

Clearly, since there are at most 2n tokens (Lemma l), there are at most 2n 
messages of type (1). To bound the messages of type (3), we have the following 
observation. 

OBSERVATION. There are at most 2m messages of type (3). 

PROOF. Consider an edge e that was marked deleted during the algorithm. 
Then the following must be true. 

(1) Since in type (3) last messages are excluded, there is at most one message of 
type (3.2) or (3.4) on e, namely, the message with the token of the highest 
phase sent on e. 

(2) Similarly, among all messages of types (3.1) or (3.3) sent on e, there is at 
most one with a token (p, a), which is not second to last message of this 
token in the annexing mode, namely, the message followed by the message 
in (1) above; all other messages of this type are followed by messages from d 
back to c (Case 2), which cease to be annexing token upon arrival to c, since 
they find that a token with a higher phase had already annexed c. 

Consider all edges that were deleted during the algorithm. There are at most 
m - n + 1 such edges, and hence the number of messages of types (3.2) or (3.4) 
that were sent on them is at most m - n + 1. Also, there are at most m messages 
of types (3.1) and (3.3) with a maximal phase sent on them. All the remaining 
messages are second to last messages of the corresponding annexing tokens, and 
hence there are at most 2n such messages. Thus, the total number of messages 
of type (3) is at most 2m. 0 

To bound the number of messages of type (2), we define the complexity of the 
DFS traversal to be the number of messages of this type it sends (i.e., we give 
the messages of type (2) weight 1, and the other messages weight 0). Under this 
weighted complexity, the DFS is a 2n node traversal. It is easy to see that the 
leader finding theorem remains valid for this notion of weighted complexity and 
hence it yields an upper bound of 2nlogn + O(n) on the number of messages of 
type (2). Thus, the total complexity of the algorithm is 2m + 3nlogk + O(n). 
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This performance is better than the previous results [12] by a constant factor. 
This also implies a better order of worst-case performance when k (the number 
of initiators of the algorithm) is small. In contrast, the algorithm in [12] does 
not take advantage of small k (note, however, that in [12] a minimum weight 
spanning tree is constructed). 

4.3.2 Application in a Neighborhood-Knowledge Model. In [21] a model in 
which each node knows its neighbors, and messages are permitted to be abitrarily 
long, is considered (we call this model “neighborhood knowledge”). The annexing 
token in this case can carry the whole description of its DFS tree, thus avoiding 
the traversing of back edges. The complexity of this traversal is O(n), which 
yields, using our leader finding method, a 3n log n + O(n) leader finding algorithm. 
The algorithm of [al] is shown there to have this message complexity only in 
the average case, under certain specific assumptions. The worst case message 
complexity in [al] is said to be O(n’). 
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