
Lower Bounds for Distributed Maximum-Finding
Algorithms

J. PACHL, E. KORACH, AND D. ROTEM

Umverstty of Waterloo, Waterloo, Ontario, Canada

Abstract. Tills paper establishes several lower bounds of the form f~(nlogn) for the number of messages
needed to find the maximum label in a circular configuration of n labeled processes with no central
controller.

Categories and Subject Descriptors: D.4. l [Operating Systems]: Process Management--synchronization;
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems--
sequencmg and scheduling

General Terms: Algorithms, Theory

Add~Uonal Key Words and Phrases: Distributed algorithms, message complexity, communication nngs,
election algorithms, lower bounds

1. Introduction

As the feasibility of building large networks of autonomous processors increases,
so does the interest in distributed algorithms suited for large configurations of
parallel processes. An elemental problem, whose solution is likely to be used as a
building block in more complex algorithms, is that of finding the maximum of a
distributed set of integers.

Several recent papers [1-4, 6, 7, 9-12] investigate the following version of the
problem. A number of asynchronous processes are connected by communication
channels to form a ring in which each process can send messages to its immediate
neighbor in the clockwise direction (the configuration is called a unidirectional
ring). Every process has a unique (integer) label, which is initially known only to
the process itself; no process knows the size of the ring. The configuration has no
central controller and no real-time clock, and the processes can communicate only
by messages sent through the communication channels. The messages are subjected
to variable and independent delays, but every message is eventually delivered. With
these assumptions, the aforementioned papers propose distributed algorithms to
find the maximum label in the ring.

A preliminary version of this paper was presented at the 14th Annual ACM Symposium on Theory of
Computing. (Pachl, J., Korach, E., and Rotem, D. A technique for proving lower bounds for distributed
maximum-finding algorithms. In Proceedings of the 14th Annual ACM Symposium on the Theory of
Computmg (San Francisco, May 5-7), ACM, New York, 1982, pp. 378-382.)
Authors' present addresses: J. Pachl and D. Rotem, Department of Computer Science, University of
Waterloo, Waterloo, Ontario, N2L 3G 1, Canada; E. Korach, IBM Scientific Research Center, Haifa,
Israel
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for &rect commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, reqmres a fee and/or specific permission.
© 1984 ACM 0004-5411/84/1000-0905 $00.75

Journal of ~.c A',~socmUon for Computing Machm¢~, Vo| 31, No 4, October 1984, pp 905-918.

906 J. PACHL, E. KORACH, AND D. ROTEM

The performance measure used to evaluate the algorithms is the total number
of messages sent when all processes begin execution simultaneously. In this paper
we prove a lower bound for the number of messages sent by any maximum-finding
algorithm in unidirectional rings, and also lower bounds for the number of messages
when the processes can send messages in both directions along the ring (the so-
called bidirectional rmg) or when the ring size is known in advance. All our bounds
are of the form ~2(n log n), where n is the size of the ring. The first lower bound of
this form is due to Burns [1]; in Section 6 we explain how our results relate to his.

We estimate the worst case and the average number of messages. Both measures
are computed in the papers previously mentioned, as well as in [5], for particular
algorithms. Since we are concerned with lower bounds over all algorithms, we have
to define the two quantities more precisely. The following definition agrees with
the previous usage.

When a maximum-finding algorithm is executed in a ring of labeled processes,
the total number of transmitted messages depends on two factors: communication
delays and the assignment of labels. We say that the ring is labeled by the sequence
(si s2 . . . sn) if there are n processes in the ring, their labels are si, s 2 , . . . , sn, and
the communication channels connect sn with Sl, sl with s2, • . . , and s~_~ with s, (if
the ring is unidirectional, the channels lead from sn to sl, from s~ to s2, etc.). We
also say that the ring is labeled by the set {sj, s2 , s,}.

Let I -- {s~, s 2 , . . . , s~} be a set of integers (labels), and let A be a maximum-
finding algorithm. To get the worst case number of messages sent by A in the rings
labeled by L we first find, for each permutation s 0f L the communication delays
that result in the largest number of messages being sent in the ring labeled by s;
then we take the maximum over all permutations s of L To get the average number
of messages sent by A in the rings labeled by/ , we again begin by finding the worst
communication delays for each permutation s of 1; then we average the message
counts over all permutations s of I (assuming that all the n! permutations are
equally probable). Thus we average over all label assignments, but not over
communication delays (there does not seem to be a canonical probability distri-
bution on the delays).

Throughout the paper we assume that (i) all processes in the ring begin execution
simultaneously, (ii) the communication channels are first-in, first-out (FIFO)
queues, and (iii) maximum-finding algorithms are message driven. The next three
paragraphs explain what the assumptions mean and why they do not limit the
generality of our results.

We assume that all processes in the ring begin execution simultaneously, because
that leads to the largest number of messages. (In general terms, the problem is to
guarantee progress of the distributed computation in at least one location without
effecting the progress in too many locations; this is easier when the computation
begins in fewer locations. The task of breaking symmetry, in the terminology of
[7], is most difficult when the configuration is completely symmetrical.) Moreover,
since this paper is about lower bounds (i.e., minima taken over all algorithms), the
assumption can only make our results more general: We estimate from below the
minimum over the class of all the algorithms that work correctly when all processes
begin simultaneously and, therefore, also from below the minimum over the
(smaller) class of all the algorithms that work correctly without the assumption.

We assume that the communication channels are FIFO queues; that is, in each
channel the messages are delivered in the same order as sent. Again, since we are
interested in lower bounds, the assumption does not limit our results.

Lower Bounds for Distributed Maximum-Finding Algorithms 907

The last assumption, that the algorithms are message driven, is perhaps the most
contentious of the three. In Section 2 it, together with assumption (ii), will allow
us to eliminate nondeterminism. An algorithm is message driven if it processes
each message before receiving the next one. On the implementation level, this
means that the algorithm can be implemented using the blocking receive primitive
[13, p. 481]; that is, the process can only receive the next message if it suspends its
execution until the message arrives. Thus the process cannot receive conditionally
(the conditional receive operation is "receive the next message if there is one,
otherwise continue computation"). It should be noted that the maximum-finding
algorithms in the papers quoted above are all message driven. Moreover, we wish
to argue that neither the worst case nor the average number of messages, as defined
above, would decrease if we allowed algorithms that were not message driven.

Our argument is that for every general algorithm A (which can execute the
conditional-receive operation) there is a message-driven algorithm B such that, for
every execution of B in a labeled ring, there is, in the same ring, an execution of A
using at least as many messages as the execution of B. We assume that A sends
finitely many messages (for A that sends infinitely many messages, any B will do).
The algorithm B mimics A except for the conditional-receive operation, which B
cannot use and which it simulates as follows: When A executes conditional-receive
and eventually sends a message even if it receives none, B simply omits the
operation. When A executes conditional-receive and does not send any message
before it receives one, B executes blocking-receive and postpones all computation
until after the next message arrives. (We note in passing that the correspondence
from A to B is not effectively computable, because the problem of whether A is
going to send a message before receiving one is undecidable; see the discussion of
quiescent instantaneous descriptions in [1].) Now, for any execution of B, the
transmission delays for A can be arranged so that no message is received by the
conditional-receive operations in A omitted in B. This concludes our argument;
we have shown that assumption (iii) does not limit the generality of our results.

The paper is organized as follows: In Section 2 we describe maximum-finding
algorithms in unidirectional rings in terms of sequences of labels. The description
leads to a simple combinatorial problem, which is solved in Section 3; the solution
gives the exact lower bound for the average number of messages in unidirectional
rings. In Sections 4 and 5 we derive recursive inequalities for the worst case and
the average number of messages in bidirectional rings and in rings of known size,
and solve the inequalities to get lower bounds of the form ft(nlogn).

We write log for logarithm to the base 2, and In for logarithm to the base e; Hn
is the nth harmonic number [8, p. 73].

2. Traces and Exhaustive Sets

In this section and the next we deal with maximum-finding algorithms in unidi-
rectional rings. In these two sections we use the following termination criterion for
our algorithms: A maximum-finding algorithm is one that sends finitely many
messages and then claims, in at least one process in the configuration, the value of
the maximum label.

First we formalize the intuitive idea of the information content of a message.
When an algorithm executes in a unidirectional ring of processes, we associate a
(finite) sequence of labels with every message. The sequence is called the trace of

908 J. PACHL, E. KORACH, AND D. ROTEM

the message; it is defined recursively as follows: The trace is a sequence (st) of
length 1 iffthe message sender has label st and has previously received no message.
The trace is a sequence (s~ . . . Sk) of length k > 1 iff the sender has label Sk and the
last message previously received in the node has trace (st . . . Sk-O.

A message with trace (st . . . sk) potentially carries the information that k
consecutive nodes in the ring are labeled by st, • •. , Sk, with Sk being the sender's
label. At the same time, the message can contain no information about the labels
outside of the segment labeled by (st . . . sk). In this sense the content of the
message is an encoded form of the trace.

We describe every algorithm executing in unidirectional rings by the set of the
traces of the messages that can be sent by the algorithm. Such a general description
omits many implementation details, but it is explicit enough to allow us to count
messages.

In the sequel, the concatenation of two sequences s and t of integers is denoted
st. When s and t are two sequences, we say that t is a subsequence of s if s = rtu
for some sequences r and u; we say that t is a prefix of s if s = tu for some u, and
that t is a suffix of s if s = ut for some u. Two sequences of integers are disjoint if
no integer belongs to both. When s is a sequence, we denote by len(s) its length,
and by C(s) the set of cyclic permutations of s. Clearly I C(s) I = len(s) whenever
the elements of s are pairwise distinct.

Let Z be the set of integers. We denote by D the set of all finite nonempty
sequences of distinct integers:

D = {(st . . . Sk) I k >_ 1, s, ~ Z for 1 _< i _ k, and s, # s~ for i #j}.

For s E D, E _C D and k _ 1, we denote by N(s, E) the cardinality of the set

{t E EI t is a prefix of some r E C(s)},

and by Nk(S, E) the cardinality of

{t E El t is a prefix of some r E C(s) and len(t) = kl.

Plainly Nk(s, E) = 0 for k > len(s). A set E C D is called exhaustive if it has these
two properties:

Prefix property. I f t u E E and len(t) ___ 1, then t ~ E.
Cyclic permutation property. If s ~ D, then C(s) tq E ~ 0 .

Note that, in view of the latter property, every sequence of length 1 is in E.
Theorem 2.2 characterizes the set of the traces of the messages transmitted by a

maximum-finding algorithm. More precisely, the theorem deals with those traces
that belong to D, that is, with those message chains that do not wrap all the way
around the ring. In Theorem 2.2 it is essential that the configuration be a
unidirectional ring and that the algorithms in question be message driven.

The behavior of a message-driven process depends only on the values and order
of incoming messages (not on their arrival times). Moreover, in a unidirectional
ring every process receives messages from a single source and, since we assume that
communication channels function as FIFO queues, the messages are received in a
unique order (independent of communication delays). It follows that, for a given
labeled unidirectional ring, all combinations of communication delays result in the
same messages being sent. This proves the following preliminary result.

LEMMA 2.1. Let s, t, u E D be such that both s and t contain u as a subsequence;
let A be a maximum-f inding algorithm. I f A can be executed in the ring labeled by

Lower Bounds for Distributed Maximum-Finding Algorithms 909

s so that a message with trace u is sent, then every execution of A in the ring labeled
by t has a message with trace u.

The following theorem relates maximum-finding algorithms to exhaustive sets
of sequences.

TrtEOREM 2.2. For every maximum-finding algorithm A, there exists an ex-
haustive set E(A) C_ D such that A transmits at least N(s, E(A)) messages when
executed in the unidirectional ring labeled by s.

PROOV. Define E(A) to be the set of those s E D for which a message with trace
s is sent when A is executed in the ring labeled by s.

First we show that E(A) is exhaustive. The prefix property follows from the
definition of trace and from Lemma 2.1. To prove the cyclic permutation property,
let s = (s~ . . . sk) be any sequence in D and consider the ring labeled by s. At least
one process must receive a message whose trace has length at least k (otherwise no
process could ascertain the value of the maximum label); the trace has a prefix of
length k, and the prefix is a cyclic permutation of s. Hence E f3 C(s) ~ f3.

To show that at least N(s, E(A)) messages are sent in the ring labeled by s, it is
enough to prove that at least one message with trace t is sent whenever t ~ E(A) is
a prefix of a cyclic permutation of s. But this follows from the definition of E(A)
and from Lemma 2.1. []

It can be shown that, conversely, for every effectively computable exhaustive set
E _ D there is a maximum-finding algorithm A such that E --- E(A) and A transmits
exactly N(s, E(A)) messages in the ring labeled by s, for each s E D. Since this fact
is not needed in the present paper, it is not proved here.

Example 2.3. The set

{(s~ s2 . . . Sk) lSl = max Sj}
t <_.l~_k

is exhaustive. In fact, it is the exhaustive set corresponding to the Chang and
Roberts algorithm [2]. It is proved in [2] that the number of messages sent by the
algorithm in rings of size n is nil , on average and n(n + 1)/2 in the worst case. D

Example 2.4. For every sequence s = (s~ s2 . . . Sk) 6 D with len(s) > 2 define

I(s)= {il2_~ i _ k - l , s , > s , _ ~ a n d s i > s i ÷ d

and

A s = (s,~ sa . . . s~),

where I(s) = {a,/3 , w} and a < 13 < . . . < o0.
Thus As is the sequence of local maxima in s (excluding the first and the last

element of s). For every s ~ D, define last(s) E D recursively by

(i) if len(s) _< 2, then last(s) = s;
(ii) if len(s) > 2, then last(s) = last(As).

Thus last(s) is a sequence of length 0, 1, or 2. Define

E = {s E D I len(last(t)) ~ 0 for every nonempty prefix t of s].

The set E is exhaustive. It corresponds to the basic variant of the maximum-finding
algorithm described in [3] and [12]. It can be shown that N(s, E) <- 2ktlog kl when
len(s) = k. []

910 J. PACHL, E. KORACH, AND D. ROTEM

3. A Lower Bound for Unidirectional Algorithms

When I is a finite nonempty set of integers, let Perm(I) be the set of permutations
of I; and when A is a (unidirectional) maximum-finding algorithm, let avea(I)
denote the average number of messages transmitted by A in rings labeled by the
sequences s E Perm(I). Similarly, let worstA(I) be the worst case number of
messages. The following lemma is an immediate corollary of Theorem 2.2.

LEMMA 3.1. I f I has n elements, then

(a) areA(I) >_ l/n! Xs~Perm(I)N(s, E(A));
(b) worstA(I) >-- max~ee,~(O N(s, E(A)).

THEOREM 3.2. For every unidirectional maximum-findmg algorithm A and for
every I with n elements, we have

aver(I) >_ nHn = n ~.
k=l

PROOF. We can rewrite (a) of Lemma 3.1 as

1
Y. ~ Nk(S, E(A)), aveA(I) ~ ~.I ~Pe~m(1) k=l

n! 2 Nk(S, E(A)).
ksl s~Perm(1)

For fixed k and s ~ Perm(I) there are n prefixes t of cyclic permutations of s
such that Ien(t) = k. Since there are n! permutations in Perm(I), there are n! n
instances of such prefixes t (for a fixed k); they can be gathered in groups of k, so
ihat each group consists of all cyclic permutations of one sequence. By the cyclic
permutation property, the set E(A) intersects each such group. Hence

n! n
Nk(s, E(A)) >_

s~Pcrm(1) k

It follows that

aveA(I) >__ nHn.

THEOREM 3.3. I f I has n elements, then

min aveA(I) = nHn
A

where the minimum is taken over all maximum-finding algorithms d.

PROOF. By Theorem 3.2 we have

rain areA(I) __ nHn;
A

by [2] there is an algorithm A such that

areA(I) = nHn.

COROLLARY 3.4. I f I has n elements, then

0.69nlogn + O(n) <_ rain worstA(I) <_ 1.36nlogn + O(n)
A

where the minimum is taken over all maximum-finding algorithms A.

[]

[]

Lower Bounds for Distributed Maximum-Finding Algorithms

PROOF. By [8, p. 74] we have H, = In n + O(1); hence

min worstA(I) -- rain aveA(I) __ ni l , >_ 0.69nlogn + O(n).
A A

The second inequality is proved in [3]. []

911

4. Lower Bounds for Bidirectional Algorithms

In the previous section we computed the exact lower bound for the average number
of messages transmitted by maximum-finding algorithms in unidirectional rings.
Now we turn to circular configurations in which processes can pass messages in
both directions (the so-called bidirectional rings). Since in the bidirectional ring a
process does not receive all its messages from a single source, the execution is
influenced by transmission delays in an essential way. That is why bidirectional
algorithms are more difficult to understand than unidirectional ories.

In the sequel it will be technically convenient to use a slightly different termi.
nation criterion. Namely~ in this section a maximum-finding algorithm is one that
claims in every process the value of the maximum l~ibel. The two problems (the
maximum-finding problem in the previous two sections and the one here) are
equivalent modulo n messages (where n is the size of the ring) in the following
sense: If at least one process knows the maximum label, then the knowledge can
be spread to all other nodes at the cost of sending n additional messages. Since all
our bounds in this section are of the form cn log n + O(n), the new termination
criterion does not change the results.

We shall again use the concept of the trace of a message. Informally, a message
has the trace (sl . . . Sk) if it carries the information (possibly encoded) that k
consecutive nodes in the ring are labeled s~ , sk, and if it contains no information
about other labels. The concept can be defined formally in a manner similar to the
definition for unidirectional rings in Section 2, but the informal definition is
sufficient for our purposes. A simple but useful observation is that if a message
with the trace r ~ D is sent (by a particular algorithm) in a ring labeled by s =
(s~ • • • sk) and if r is a subsequence of s, then a message with the trace r can be also
sent (by the same algorithm) in the linear segment labeled by s (i.e., the ring labeled
by s in which the bidirectional channel between sl and sk has been cut).

We again denote by aveA(I) and worsta(I) the average and the worst case number
of messages used by the algorithm A in the rings labeled by the sequences s E
Perm(I). To estimate aveA(I) and worsta(I), that is, the number of messages sent
in rmgs, we first estimate the number of messages received in linear segments.
Every execution in a labeled segment can be simulated in the corresponding ring
(labeled by the same sequence); therefore, the number of messages received in a
segment is a lower bound for the number of messages received (and hence also for
the number of messages sent) in the ring.

We denote by ave,](/) and worst,](/) the average and the worst case number of
messages received when the algorithm A is executed in the segments labeled by the
sequences s ~ Perm(I). We define

aver(I) = min ave,](/)
A

and

worstS(I) = min worst,](/),
A

912 J. PACHL, E. KORACH, AND D. ROTEM

where the minimum is taken over all (bidirectional) maximum-finding algorithms
A. We prove recursive inequalities for aver(I) and worstS(I); that is why we deal
with these quantities instead of their unstarred counterparts. (A recursive construc-
tion is also used by Burns Ill in his proof of a worst case lower bound.)

LEMMA 4. I. I f I and I ' are two sets o f the same cardinality, then ave'~(l) =
ave'~(I') and worstS(I) = worst~(I').

PROOF. Both equalities follow from this simple observation: Since I and I '
have the same number of elements, there is an order-preserving one-to-one function
g from I onto I ' , and g can be extended to a one-to-one function from the set of
integers onto itself. Now for every algorithm A there exists an algorithm B such
that A needs the same number of messages in the ring labeled by (g(so) . . . g(sn))
as B in the ring labeled by (So . . . Sk). Namely, B mimics A, using the "code" g(sj)
for every label s~. Hence ave*(/) - ave*(/') and worst*(/) = worst*(/'), and the
result follows. []

THEOREM 4.2. I f I and H are two disjoint sets having at least k elements each,
then

(a) worst~(I t.J H) >- worstS(I) + worstS(H) + k/2;
(b) ave~(I t9 H) >- aver(l) + aver(H) + k/4.

PROOF. Let A be a maximum-finding algorithm. We consider two arbitrary
sequences s - (sl . . . s,) ~ Perm(I) and r = (rl . . . rh) E Perm(H), and denote by
Sx and ry their midpoints. That is, x = i/2 if i is even and x = (i + 1)/2 if i is odd,
and y = h/2 if h is even and y - (h + 1)/2 if h is odd.

We can start the execution of A in the ring labeled sr by sending and receiving
first as many messages as possible within the segments labeled s and r (such an
execution takes place when the transmission delays on the channels between the
two segments are very long). In fact, we can start with any execution of A in the
segment labeled by s and any execution in the segment labeled by r, and extend
them to an execution in the ring. We are going to show that every such execution
that is complete (i.e., one in which every process claims the value of the maximum
label) contains sufficiently many message receptions in addition to those executed
within the two segments.

In every complete execution on the ring labeled sr, the process labeled sx must
receive a message whose trace contains at least one label in r;, similarly, the process
labeled ry must receive a message whose trace contains a label in s. Among all such
messages, select one with the shortest trace; call the trace t. Then t is a subsequence
of either sr or rs.

Now we are ready to prove inequality (a). First we find s E Perm(I) such that
an execution of A in the segment labeled by s involves worst*(/) message receptions,
and similarly r ~ Perm(H) with worst*(H) receptions. Then we select a message
(with trace t) as in the previous paragraph. Assume that t is a subsequence of sr
(the case in which t is a subsequence of rs is treated symmetrically). We construct
an execution of A in the segment labeled by sr that involves at least worst*(/) +
worst*(H) + k/2 message receptions. Namely, we execute worst*(/) message
receptions in one segment, worst*(H) in the other, and make sure that the message
with the trace t is received. Assume that the latter is received by the process labeled
by sx (the case in which the receiver is labeled by r e is treated symmetrically); then
trace t contains at least one label from the sequence r. Since there are 1(i - 1)/2J
nodes between the node labeled by Sx and the nearest node in the segment labeled

Lower Bounds for Distributed Maximum-Finding Algorithms 913

by r, it follows that at least i/2 additional messages (including the one with trace t)
are received. Since i > k, we have proved that

k
worst*(/13 H) > worst*(/) + worst*(H) + ~.

The inequality (a) follows.
To prove (b), let i and h be the cardinalities of I and H. By the assumption, i >

k and h > k. The average ave*(/t.J H) may be expressed as follows: For every
partition o f / t 3 H into two sets 1' and H ' whose cardinalities are i and h, find the
average of the message counts over the segments labeled by sr and rs, s ~ Perm(I'),
r E Perm(H'); then compute the average over all such partitions (every partition
is equally probable). We have seen that either in the segment labeled by sr or in
the one labeled by rs the algorithm receives at least k/2 additional messages. Thus
on average (which involves both sr and rs) we get at least k/4 additional messages.
Since, by Lemma 4.1, ave~(l) -- ave~(I') and aver(H) = ave~(H'), we obtain

k
ave*(/t3 H) >_ ave~(I) + ave~(n) +

and (b) follows. []

In the proof of the next theorem we need the following lemma.

LEMMA 4.3. Let c >_ 0 be a real constant and g a real function defined on
{1, 2 } such that g(n) >_ O for all n. I f

for n ~_ 2, then

g(n) ~_ ½c((n + 2)tlog nl + 4 - 2 Ll°~nm)

for all n ~_ 1, and therefore

g(n) >- ½cn log n + O(n).

PROOF. We use the equality

The proof proceeds by induction on n:

Baszs. For n = 1, the right-hand side is 0, and g(l) ~_ 0 by the assumption.
Inductive step. Assume that the inequality holds for 1 _~ n < k, where k _~ 2.

Then

_~ ½c((k + 2)Hog k] + 4 - 2u~kJ+2),

which shows that the inequality holds for n = k. rl

914 J. PACHL, E, KORACH, AND D. ROTEM

THEOREM 4.4. I f I has n elements then

(a) worst*(I) >_. ~ nlogn + O(n);
(b) ave~(1) >_ ~ nlogn + O(n).

PROOF. Use Theorem 4.2 and Lemma 4.3. El

Theorem 4.4 gives lower bounds for the number of messages received in
segments, and therefore also for the number of messages sent in rings. The result
(a) is essentially due to Burns [1].

5. Algorithms that Know the Ring Size

All our results so far have been derived under the assumption that the size of the
ring is not known when the algorithm starts execution. Now we briefly consider
another version of the problem. We assume that each process knows, when the
execution starts, not only its own label but also the size of the ring (i.e., the number
of the processes in the ring, but not the range of their labels).

We know no fl(nlogn) lower bound for the average number of messages in the
rings of known size. Moreover, the forthcoming lower bounds for the worst case
number of messages are weaker than those in Corollary 3.4 and Theorem 4.4, in
the following sense: Corollary 3.4 and Theorem 4.4 say that for every algorithm A
and for every set I of n labels there exists a permutation s of I such that at least
fl(n log n) messages are sent by A in the ring labeled by s. For the rings of known
size n, we can only prove that there exist (infinitely many) sequences s of length n
for which at least fl(n log n) messages are sent in the ring labeled by s.

In fact, the stronger version (the one in Corollary 3.4 and Theorem 4.4) is not
valid for the rings of known size. Indeed, there is an algorithm that works correctly
in every ring of size n and requires only n messages to find the maximum in any
ring labeled by a permutation of (1 2 . . . n).

We again start with unidirectional algorithms. When E C_ D and s ~ D, we
denote by N*(s, E) the cardinality of the set

{t ~ El t is a subsequence of s}.

The obvious modification of the proof of Theorem 2.2 establishes the following
result.

THEOREM 5.1. For every algorithm that finds the maximum label in every
unidtrectional ring o f size n >- 2 there exists a set E = E(A) C. D such that

(i) E has the prefix property;
(it) i f s ~ D and len(s) -- n, then C(s) N E # ¢3;

(iii) i f s ~ D and len(s) <. n, then A transmits at least N*(s, E) messages when
executed in the segment labeled by s.

To estimate N*(s, E(A)), we proceed as follows: For every E C D and k --- 1, 2,
. . . . we define W*e(k) to be the largest number w for which there exist infinitely
many pairwise disjoint sequences s E D such that len(s) = k and w -- N*(s, E). We
show that if E has the properties (i) and (ii) in Theorem 5.1, then W~(k) satisfies a
recursive inequality, which implies

W~(n) = ~(nlog n).

LEMMA 5.2. Let n, k, and p be positive integers such that n is divisible by k and
2k <_ n. Let E C_ D have the properties (i) and (ii) in Theorem 5.1. I f F C_ D t s an

Lower Bounds for Distributed Maximum-Finding Algorithms 915

infinite set o f pairwise disjoint sequences such that len(s) = k for all s ~ F, then D
contains infinitely many pairwise disjomt sequences o f the form s (° s ~2) . . . s <p),
where s (') E F for i = 1, 2 p and each string s°-l)s °), j = 2, 3, . . . , p, has at
least one suffix t ~ E with len(t) > k.

PROOF. For p = 1 the statement is trivially true. Assume that it is true for some
p _ 1. Thus there are infinitely many pairwise disjoint sequences of the form s°)s (2)
• • • s (p) that satisfy the conclusion of Lemma 5.2; we take all their first components
s (I) and concatenate them in groups of n/k to form sequences of length n. To each
such sequence of length n, we apply (ii) and (i) of Theorem 5. I, and get s (°), s °) E
F such that for some s (2) • • • s (p) the sequence S (I) s (2) • • • S (p) satisfies the conclusion
of Lemma 5.2 and moreover s(°)s (l) has at least one suffix t E E with len(t) > k.
But that shows that the statement holds with p replaced by p + 1; hence it holds
for all p. []

LEMMA 5.3. Let q, k, and n be positive integers such that q >_. 2, n is divisible
by k and qk <_ n. I f E C_ D has the properties (i) and (ii) in Theorem 5.1, then

W*E(qk) >__ qW*E(k) + 2qk - 4k.

PROOF. By the definition of W*e(k), there is an infinite set F ~ D such that
every two sequences in F are disjoint, and len(s) = k and N*(s, E) = W*L4k) for all
s ~ F. Apply Lemma 5.2 with p = n/k to get infinitely many disjoint sequences
s (I) s <2) . . . s (p) of length n, satisfying the conclusion of Lemma 5.2. By (i) and (ii)
in Theorem 5.1, for each such sequence there is j , 1 <_j <_ p, such that

S O) S O + I) . . . S(P)S (l) . . . SO-O

has at least one suffix t E E with len(t) > (p - l)k. Now let s be the prefix of

SO)S O+l) . . . s (P) s (1) . . . S O-l)

of length qk. To get a lower bound for N*(s, E), we sum N*(s (°, E) for i - j , j +
1 , j + q - 1 (mod p) and get qW*e(k); we add

N*(s°)s <'+l), E) - N*(s ('), E) - N*(s °÷l), E)

for i = j, j + 1 , . . . , j + q - 2 (mod p), which gives at least (q - 2)k by Lemma
5.2; and we add the number of the prefixes of t that have not been counted so far,
which gives at least (q - 2)k. The grand total is qW*(k) + (2q - 4)k. 1"7

LEMMA 5.4. For every positive mteger q there is a function f~(n) such that

fq(n) = 2q - 4 qlogq nlogn + O(n),

and W*e(n) >_ fq(n) whenever n is a power o f q, n >_ 2, and E satisfies the properties
(i) and (ii) in Theorem 5.1.

PROOF. Let fq(n) be the solution of the recursive system

L (1) = l ,

fq(qk) = qfq(k) + (2q - 4)k.

(These equations define fo(n) only when n is a power of q; the other values are
irrelevant.) Then

fq(n) = 2q - 4 nlogn + O(n).
qlogq

916 J. PACHL, E. KORACH, AND D. ROTEM

In view of Lemma 5.3, it only remains to be shown that W*dl) _> 1. However, it
is easy to see that at most n - 1 sequences of length 1 lie outside of E. Indeed, if
there were n distinct numbers st, . . . , sn such that (s,) 6 E for each i, then (ii) and
(i) in Theorem 5.1, applied to s = (s~ . . . s,), would lead to contradiction. []

The expression (2q - 4)/qlogq attains its maximum (o~,er positive integers q) for
q = 5. The approximate value of 6/(51og5) is 0.51. Theorem 5.5 follows directly
from Theorem 5.1 and Lemma 5.4 for q = 5.

THEOREM 5.5. I f n is a power of 5, then any algorithm that finds maximum in
each unidirectional ring of size n sends at least

0.5In log n + O(n)

messages in infinitely many rings of size n.

Next we turn to bidirectional algorithms. We again prove a lower bound ~2(nlog n)
for the worst case number of messages, but with a smaller constant. The pattern of
proof is similar to that in Section 4. We again take a maximum-finding algorithm
to be one that claims the value of the maximum label in every process, and we use
the term trace in the same meaning as in Section 4.

For every algorithm A we denote by R*(k) the largest number w for which there
exist infinitely many pairwise disjoint sequences s E D such that len(s) --- k and at
least w messages are received during some execution of A in the segment labeled
by s.

LEMMA 5.6. Let k and n be positive integers such that n is divisible by k and
2k <_ n. I f A is a maximum-finding algorithm for the rings of size n, then

k
R *(2k) __ 2R*(k) +

PROOF. By the definition of R*(k), there is an infinite set F C__ D such that every
two sequences in F are disjoint, len(s) = k for every s E F, and for every s ~ F the
algorithm A can be executed in the segment labeled by s so that at least R*(k)
messages are received. We concatenate the sequences in F in groups of n/k to form
infinitely many pairwise disjoint sequences of length n.

Let r be one such sequence of length n. In the ring labeled by r, we execute A so
that at least R*(k) messages are received within each segment labeled by s ~ F.
Now consider, for each subsequence s of r, s E F, the midpoint sx of s. (The rest
of the proof is similar to the proof of (a) of Theorem 4.2.) If our contemplated
execution of A (in the ring labeled by r) is complete, then the process labeled by sx
eventually receives a message whose trace contains a label not in s (otherwise, the
process could not claim to know the maximum label). Among all such traces (of
the messages received by the midpoint processes and containing at least one label
from another segment), select the shortest one and call it t. From the minimality
of t it follows that t is a subsequence of ss', for some s, s ' ~ F. Assume, without
loss of generality, that t is the trace of a message received by the process labeled by
the midpoint s~ of s; hence t contains at least one label in s ' . The length of the
segment labeled by ss' is 2k, and A can be executed in the segment so that at least
2R*(k) + k/2 messages are received--namely, R*(k) messages within the segment
labeled by s, the same number within the one labeled by s ' , and k/2 messages that
form a chain from s ' to s~. Since there are infinitely many sequences r, there are
infinitely many sequences ss'. The proof is complete. Q

Lower Bounds for Distributed Maximum-Finding Algorithms 917

Since Theorem 5.5 follows from Lemma 5.3, so the next theorem follows from
Lemma 5.6.

THEOREM 5.7. I f n is a power of 2, then every maximum-finding algorithm for
the (bidirectional) rings of size n sends at least

~nlogn + O(n)

messages in infinttely many rings of size n.

6. Concluding Remarks

We have established lower bounds of the form ft(nlogn) for the average and worst
case number of messages sent by distributed maximum-finding algorithms in
unidirectional and bidirectional rings of unknown size, and for the worst case
number of messages in the rings of known size. Theproblem of finding lower
bounds for the average number of messages and for the rings of known size was
raised in [3]. The bound (a) in our Theorem 4.4 is due to Burns [1], but he proved
that there exists a sequence of length n satisfying the bound, whereas our proof
shows that every set of size n can be permuted to yield such a sequence (see the
remarks at the beginning of Section 5).

Since upper bounds of the form O(nlogn) are known [1-6, 9, 10, 12], our lower
bounds are the best possible bounds up to constant factors. Nevertheless, it is of
interest to determine the values of the constant factors. We now summarize the
best estimates known to date. In this summary we assume that bidirectional rings
are oriented. That is, although messages in the ring can be sent in both directions,
one direction is agreed upon by all processes. The assumption is not used in our
lower bounds, but it is essential for upper bounds: Every unidirectional algorithm
works also in oriented bidirectional rings. (However, O(nlogn) messages suffice
even for nonoriented bidirectional rings. The most recent algorithm [10] transmits
1.89nlogn + O(n) messages in the worst case.)

In unidirectional rings of unknown size, the average number of cnlogn + O(n)
messages, where c = l/ loge --- 0.69 . . . , is both sufficient and necessary, by [2]
and Theorem 3.2. In bidirectional rings the same number is obviously sufficient,
and the average of~nlogn + O(n) messages is necessary by Theorem 4.4.

In terms of the worst case number of messages in rings of unknown size,
1.36nlogn + O(n) messages are sufficient in unidirectional (and hence also in
bidirectional) rings [3]. By Theorems 3.2 and 4.4, 0.69nlogn + O(n) messages are
necessary in unidirectional rings, and ~nlogn + O(n) in bidirectional ones.

For bidirectional rings the gaps are wider, confirming the fact that the nondeter-
minism inherent in bidirectional algorithms makes them more difficult to under-
stand.

For rings of known size, we have no upper bounds (i.e., algorithms) better than
those for rings of unknown size, and no nonlinear lower bounds for the average
number of messages. In Theorems 5.5 and 5.7 we establish lower bounds for the
worst case number of messages in rings of known size, 0.51nlogn + O(n) for
unidirectional rings and ~nlogn + O(n) for bidirectional ones. However, these
functions are lower bounds in a weaker sense than those in Sections 3 and 4: They
are only proved for certain values of n, and we are only able to assert the existence
of label sequences with bad behavior.

It should be noted that both our lower bounds for the average number of
messages (Theorem 3.2 and (b) of Theorem 4.4) hold more generally, for the
average expected number of messages sent by probabilistic maximum-finding

918 J. PACHL, E. KORACH, AND D. ROTEM

algorithms. (In a probabilistic algorithm, each process can proceed depending on
the value of a r andom variable; to prevent implicit communica t ion between
processes, we require that the r andom variables used by different processes be
independent. One probabilistic max imum-f ind ing algorithm is described and ana-
lyzed in [9].) It is straightforward to extend the lower bound in (b) o f Theo rem 4.4
to probabilistic algorithms; the p roof of the recursive inequality in (b) o f Theo rem
4.2 still works with "average expected" in place o f "average." To extend the lower
bound in Theorem 3.2, one needs a generalization of the concept o f an exhaustive
set; the idea will be developed elsewhere.

It remains an open problem whether the knowledge o f the ring size or the
capability of sending messages in both directions along the ring can be used to
decrease the (average or worst case) n u m b e r o f messages.

REFERENCES

I. BURNS, J E, A formal model for message passing systems. Tech. Rep. No. 91, Computer Science
Dept., Indiana Univ., Bloomington, Ind., 1980.

2. CHANG, E., AND ROBERTS R. An improved algorithm for decentralized extrema-finding in circular
configurations of processes. Commun ACM 22, 5 (May 1979), 281-283.

3. DOLEV, D., KLAWE, M., AND RODEH, M. An O(nlogn) unidirectional distributed algorithm for
extrema finding in a circle. J Algorithms 3, 3 (Sept. 1982), 245-260.

4. FRANKLIN, W. R. On an improved algorithm for decentrahzed extrema finding in circular
configurations of processors. Commun ACM 25, 5 (May 1982), 336-337.

5. GALLAGER, R.G. Finding a leader in a network with O(E) + O(N log N) messages. M. I. T.
Internal Memorandum, Massachusetts Institute of Technology, Cambridge, Mass.

6. HIRSCHBERG, D S., AND SINCLAIR, J.B. Decentrahzed extrema-findlng in orcular configurations
of processors. Commun ACM23, 11 (Nov. 1980), 627-628.

7. ITAI, A., AND RODEH, M. Symmetry breaking m distributive networks. In Proceedmgs of the 22nd
Annual Symposium on Foundations of Computer Science. (Nashville, Tenn., Oct. 28-30). IEEE,
New York, 1981, pp 150-158.

8. KNUTH, D. E. The Art of Computer Programmmg Vol. 1, Fundamental Algorithms 2nd ed.
Addison-Wesley, Reading, Mass., 1973

9. KORACH, E., ROTEM, D., AND SANTORO, N A probabilisUc algomhm for decentralized extrema-
finding in a circular configuration of processors. Res. Rep. CS-81-19, Dept. of Computer Science,
Univ. of Waterloo, Waterloo, Ontario, Canada, 1981.

10. KORACH, E., ROTEM, D., AND SANTORO, N. Distributed elect~on in a circle without a global sense
of orientation. Int £ Comput Math To be published.

11. LE LANN, G. Distributed systems--Towards a formal approach. In Information Processmg 77, B.
Gllchrist, Ed. Elsevier North-Holland, New York, 1977, pp. 155-160.

12 PETERSON, G.L. An O(nlogn) unidirectional algorithm for the circular extrema problem. ACM
Trans Program Lang Syst 4, 4 (Oct. 1982), 758-762.

13. TANENBAUM, A.S. Computer Networks Prentice-Hall, New York, 1981.

RECEIVED MARCH 1983; REVISED MARCH 1984; ACCEPTED APRIL 1984

Journal of the Assooauon for Computmg Machinery, Vol 31, No 4, October 1984

