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1. Introduction 

As the feasibility of building large networks of autonomous processors increases, 
so does the interest in distributed algorithms suited for large configurations of 
parallel processes. An elemental problem, whose solution is likely to be used as a 
building block in more complex algorithms, is that of finding the maximum of a 
distributed set of integers. 

Several recent papers [1-4, 6, 7, 9-12] investigate the following version of the 
problem. A number of asynchronous processes are connected by communication 
channels to form a ring in which each process can send messages to its immediate 
neighbor in the clockwise direction (the configuration is called a unidirectional 
ring). Every process has a unique (integer) label, which is initially known only to 
the process itself; no process knows the size of the ring. The configuration has no 
central controller and no real-time clock, and the processes can communicate only 
by messages sent through the communication channels. The messages are subjected 
to variable and independent delays, but every message is eventually delivered. With 
these assumptions, the aforementioned papers propose distributed algorithms to 
find the maximum label in the ring. 

A preliminary version of this paper was presented at the 14th Annual ACM Symposium on Theory of 
Computing. (Pachl, J., Korach, E., and Rotem, D. A technique for proving lower bounds for distributed 
maximum-finding algorithms. In Proceedings of the 14th Annual ACM Symposium on the Theory of 
Computmg (San Francisco, May 5-7), ACM, New York, 1982, pp. 378-382.) 
Authors' present addresses: J. Pachl and D. Rotem, Department of Computer Science, University of 
Waterloo, Waterloo, Ontario, N2L 3G 1, Canada; E. Korach, IBM Scientific Research Center, Haifa, 
Israel 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for &rect commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, reqmres a fee and/or specific permission. 
© 1984 ACM 0004-5411/84/1000-0905 $00.75 

Journal of ~.c A',~socmUon for Computing Machm¢~, Vo| 31, No 4, October 1984, pp 905-918. 



906 J. PACHL, E. KORACH, AND D. ROTEM 

The performance measure used to evaluate the algorithms is the total number 
of messages sent when all processes begin execution simultaneously. In this paper 
we prove a lower bound for the number of messages sent by any maximum-finding 
algorithm in unidirectional rings, and also lower bounds for the number of messages 
when the processes can send messages in both directions along the ring (the so- 
called bidirectional rmg) or when the ring size is known in advance. All our bounds 
are of the form ~2(n log n), where n is the size of the ring. The first lower bound of 
this form is due to Burns [1]; in Section 6 we explain how our results relate to his. 

We estimate the worst case and the average number of messages. Both measures 
are computed in the papers previously mentioned, as well as in [5], for particular 
algorithms. Since we are concerned with lower bounds over all algorithms, we have 
to define the two quantities more precisely. The following definition agrees with 
the previous usage. 

When a maximum-finding algorithm is executed in a ring of labeled processes, 
the total number of transmitted messages depends on two factors: communication 
delays and the assignment of labels. We say that the ring is labeled by the sequence 
(si s2 . . .  sn) if there are n processes in the ring, their labels are si, s 2 , . . . ,  sn, and 
the communication channels connect sn with Sl, sl with s2, • . . ,  and s~_~ with s, (if 
the ring is unidirectional, the channels lead from sn to sl, from s~ to s2, etc.). We 
also say that the ring is labeled by the set {sj, s2 . . . .  , s,}. 

Let I -- {s~, s 2 , . . . ,  s~} be a set of integers (labels), and let A be a maximum- 
finding algorithm. To get the worst case number of messages sent by A in the rings 
labeled by L we first find, for each permutation s 0f L the communication delays 
that result in the largest number of messages being sent in the ring labeled by s; 
then we take the maximum over all permutations s of L To get the average number 
of messages sent by A in the rings labeled by/ ,  we again begin by finding the worst 
communication delays for each permutation s of 1; then we average the message 
counts over all permutations s of I (assuming that all the n! permutations are 
equally probable). Thus we average over all label assignments, but not over 
communication delays (there does not seem to be a canonical probability distri- 
bution on the delays). 

Throughout the paper we assume that (i) all processes in the ring begin execution 
simultaneously, (ii) the communication channels are first-in, first-out (FIFO) 
queues, and (iii) maximum-finding algorithms are message driven. The next three 
paragraphs explain what the assumptions mean and why they do not limit the 
generality of our results. 

We assume that all processes in the ring begin execution simultaneously, because 
that leads to the largest number of messages. (In general terms, the problem is to 
guarantee progress of the distributed computation in at least one location without 
effecting the progress in too many locations; this is easier when the computation 
begins in fewer locations. The task of breaking symmetry,  in the terminology of 
[7], is most difficult when the configuration is completely symmetrical.) Moreover, 
since this paper is about lower bounds (i.e., minima taken over all algorithms), the 
assumption can only make our results more general: We estimate from below the 
minimum over the class of all the algorithms that work correctly when all processes 
begin simultaneously and, therefore, also from below the minimum over the 
(smaller) class of all the algorithms that work correctly without the assumption. 

We assume that the communication channels are FIFO queues; that is, in each 
channel the messages are delivered in the same order as sent. Again, since we are 
interested in lower bounds, the assumption does not limit our results. 
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The last assumption, that the algorithms are message driven, is perhaps the most 
contentious of the three. In Section 2 it, together with assumption (ii), will allow 
us to eliminate nondeterminism. An algorithm is message driven if it processes 
each message before receiving the next one. On the implementation level, this 
means that the algorithm can be implemented using the blocking receive primitive 
[13, p. 481 ]; that is, the process can only receive the next message if it suspends its 
execution until the message arrives. Thus the process cannot receive conditionally 
(the conditional receive operation is "receive the next message if there is one, 
otherwise continue computation"). It should be noted that the maximum-finding 
algorithms in the papers quoted above are all message driven. Moreover, we wish 
to argue that neither the worst case nor the average number of messages, as defined 
above, would decrease if we allowed algorithms that were not message driven. 

Our argument is that for every general algorithm A (which can execute the 
conditional-receive operation) there is a message-driven algorithm B such that, for 
every execution of B in a labeled ring, there is, in the same ring, an execution of A 
using at least as many messages as the execution of B. We assume that A sends 
finitely many messages (for A that sends infinitely many messages, any B will do). 
The algorithm B mimics A except for the conditional-receive operation, which B 
cannot use and which it simulates as follows: When A executes conditional-receive 
and eventually sends a message even if it receives none, B simply omits the 
operation. When A executes conditional-receive and does not send any message 
before it receives one, B executes blocking-receive and postpones all computation 
until after the next message arrives. (We note in passing that the correspondence 
from A to B is not effectively computable, because the problem of whether A is 
going to send a message before receiving one is undecidable; see the discussion of 
quiescent instantaneous descriptions in [1].) Now, for any execution of B, the 
transmission delays for A can be arranged so that no message is received by the 
conditional-receive operations in A omitted in B. This concludes our argument; 
we have shown that assumption (iii) does not limit the generality of our results. 

The paper is organized as follows: In Section 2 we describe maximum-finding 
algorithms in unidirectional rings in terms of sequences of labels. The description 
leads to a simple combinatorial problem, which is solved in Section 3; the solution 
gives the exact lower bound for the average number of messages in unidirectional 
rings. In Sections 4 and 5 we derive recursive inequalities for the worst case and 
the average number of messages in bidirectional rings and in rings of known size, 
and solve the inequalities to get lower bounds of the form ft(nlogn). 

We write log for logarithm to the base 2, and In for logarithm to the base e; Hn 
is the nth harmonic number [8, p. 73]. 

2. Traces and Exhaustive Sets 

In this section and the next we deal with maximum-finding algorithms in unidi- 
rectional rings. In these two sections we use the following termination criterion for 
our algorithms: A maximum-finding algorithm is one that sends finitely many 
messages and then claims, in at least one process in the configuration, the value of 
the maximum label. 

First we formalize the intuitive idea of the information content of a message. 
When an algorithm executes in a unidirectional ring of processes, we associate a 
(finite) sequence of labels with every message. The sequence is called the trace of 
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the message; it is defined recursively as follows: The trace is a sequence (st) of 
length 1 iffthe message sender has label st and has previously received no message. 
The trace is a sequence (s~ . . .  Sk) of length k > 1 iff the sender has label Sk and the 
last message previously received in the node has trace (st . . .  Sk-O. 

A message with trace (st . . .  sk) potentially carries the information that k 
consecutive nodes in the ring are labeled by st, • •. ,  Sk, with Sk being the sender's 
label. At the same time, the message can contain no information about the labels 
outside of the segment labeled by (st . . .  sk). In this sense the content of the 
message is an encoded form of the trace. 

We describe every algorithm executing in unidirectional rings by the set of  the 
traces of the messages that can be sent by the algorithm. Such a general description 
omits many implementation details, but it is explicit enough to allow us to count 
messages. 

In the sequel, the concatenation of  two sequences s and t of integers is denoted 
st. When s and t are two sequences, we say that t is a subsequence of s if s = rtu 
for some sequences r and u; we say that t is a prefix of s if s = tu for some u, and 
that t is a suffix of s if s = ut for some u. Two sequences of integers are disjoint if 
no integer belongs to both. When s is a sequence, we denote by len(s) its length, 
and by C(s) the set of cyclic permutations of s. Clearly I C(s) I = len(s) whenever 
the elements of s are pairwise distinct. 

Let Z be the set of  integers. We denote by D the set of  all finite nonempty 
sequences of  distinct integers: 

D = {(st . . .  Sk) I k >_ 1, s, ~ Z for 1 _< i _  k, and s, # s~ for i #j}. 

For s E D, E _C D and k _ 1, we denote by N(s, E )  the cardinality of  the set 

{t E EI t is a prefix of some r E C(s)}, 

and by Nk(S, E )  the cardinality of  

{t E El  t is a prefix of  some r E C(s) and len(t) = kl. 

Plainly Nk(s, E) = 0 for k > len(s). A set E C D is called exhaustive if it has these 
two properties: 

Prefix property. I f t u  E E and len(t) ___ 1, then t ~ E. 
Cyclic permutation property. If s ~ D, then C(s) tq E ~ 0 .  

Note that, in view of the latter property, every sequence of  length 1 is in E. 
Theorem 2.2 characterizes the set of the traces of  the messages transmitted by a 

maximum-finding algorithm. More precisely, the theorem deals with those traces 
that belong to D, that is, with those message chains that do not wrap all the way 
around the ring. In Theorem 2.2 it is essential that the configuration be a 
unidirectional ring and that the algorithms in question be message driven. 

The behavior of  a message-driven process depends only on the values and order 
of  incoming messages (not on their arrival times). Moreover, in a unidirectional 
ring every process receives messages from a single source and, since we assume that 
communication channels function as FIFO queues, the messages are received in a 
unique order (independent of communication delays). It follows that, for a given 
labeled unidirectional ring, all combinations of communication delays result in the 
same messages being sent. This proves the following preliminary result. 

LEMMA 2.1. Let s, t, u E D be such that both s and t contain u as a subsequence; 
let A be a maximum-f inding  algorithm. I f  A can be executed in the ring labeled by 
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s so that a message with trace u is sent, then every execution of  A in the ring labeled 
by t has a message with trace u. 

The following theorem relates maximum-finding algorithms to exhaustive sets 
of sequences. 

TrtEOREM 2.2. For every maximum-finding algorithm A, there exists an ex- 
haustive set E(A) C_ D such that A transmits at least N(s, E(A)) messages when 
executed in the unidirectional ring labeled by s. 

PROOV. Define E(A) to be the set of those s E D for which a message with trace 
s is sent when A is executed in the ring labeled by s. 

First we show that E(A) is exhaustive. The prefix property follows from the 
definition of  trace and from Lemma 2.1. To prove the cyclic permutation property, 
let s = (s~ . . .  sk) be any sequence in D and consider the ring labeled by s. At least 
one process must receive a message whose trace has length at least k (otherwise no 
process could ascertain the value of the maximum label); the trace has a prefix of 
length k, and the prefix is a cyclic permutation of s. Hence E f3 C(s) ~ f3. 

To show that at least N(s, E(A)) messages are sent in the ring labeled by s, it is 
enough to prove that at least one message with trace t is sent whenever t ~ E(A) is 
a prefix of a cyclic permutation of  s. But this follows from the definition of  E(A) 
and from Lemma 2.1. [] 

It can be shown that, conversely, for every effectively computable exhaustive set 
E _ D there is a maximum-finding algorithm A such that E --- E(A) and A transmits 
exactly N(s, E(A)) messages in the ring labeled by s, for each s E D. Since this fact 
is not needed in the present paper, it is not proved here. 

Example 2.3. The set 

{(s~ s2 . . .  Sk) lSl = max Sj} 
t <_.l~_k 

is exhaustive. In fact, it is the exhaustive set corresponding to the Chang and 
Roberts algorithm [2]. It is proved in [2] that the number of  messages sent by the 
algorithm in rings of size n is nil ,  on average and n(n + 1)/2 in the worst case. D 

Example 2.4. For every sequence s = (s~ s2 . . .  Sk) 6 D with len(s) > 2 define 

I(s)= {il2_~ i _ k -  l , s , > s , _ ~ a n d s i > s i ÷ d  

and 

A s  = (s,~ sa . . .  s~), 

where I(s) = {a,/3 . . . .  , w} and a < 13 < . . .  < o0. 
Thus As is the sequence of local maxima in s (excluding the first and the last 

element of s). For every s ~ D, define last(s) E D recursively by 

(i) if len(s) _< 2, then last(s) = s; 
(ii) if len(s) > 2, then last(s) = last(As). 

Thus last(s) is a sequence of length 0, 1, or 2. Define 

E = {s E D I len(last(t)) ~ 0 for every nonempty prefix t of  s]. 

The set E is exhaustive. It corresponds to the basic variant of the maximum-finding 
algorithm described in [3] and [12]. It can be shown that N(s, E) <- 2ktlog kl when 
len(s) = k. [] 
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3. A Lower Bound for Unidirectional Algorithms 

When I is a finite nonempty set of integers, let Perm(I) be the set of permutations 
of I; and when A is a (unidirectional) maximum-finding algorithm, let avea(I) 
denote the average number of messages transmitted by A in rings labeled by the 
sequences s E Perm(I). Similarly, let worstA(I) be the worst case number of 
messages. The following lemma is an immediate corollary of Theorem 2.2. 

LEMMA 3.1. I f  I has n elements, then 

(a) areA(I) >_ l/n! Xs~Perm(I)N(s, E(A)); 
(b) worstA(I) >-- max~ee,~(O N(s, E(A)). 

THEOREM 3.2. For every unidirectional maximum-findmg algorithm A and for 
every I with n elements, we have 

aver(I) >_ nHn = n ~. 
k=l 

PROOF. We can rewrite (a) of Lemma 3.1 as 

1 
Y. ~ Nk(S, E(A)), aveA(I) ~ ~.I ~Pe~m(1) k=l 

n! 2 Nk(S, E(A)). 
ksl s~Perm(1) 

For fixed k and s ~ Perm(I) there are n prefixes t of  cyclic permutations of s 
such that Ien(t) = k. Since there are n! permutations in Perm(I), there are n! n 
instances of such prefixes t (for a fixed k); they can be gathered in groups of k, so 
ihat each group consists of all cyclic permutations of one sequence. By the cyclic 
permutation property, the set E(A) intersects each such group. Hence 

n! n 
Nk(s, E(A)) >_ 

s~Pcrm(1) k 

It follows that 

aveA(I) >__ nHn. 

THEOREM 3.3. I f  I has n elements, then 

min aveA(I) = nHn 
A 

where the minimum is taken over all maximum-finding algorithms d. 

PROOF. By Theorem 3.2 we have 

rain areA(I) __ nHn; 
A 

by [2] there is an algorithm A such that 

areA(I) = nHn. 

COROLLARY 3.4. I f I  has n elements, then 

0.69nlogn + O(n) <_ rain worstA(I) <_ 1.36nlogn + O(n) 
A 

where the minimum is taken over all maximum-finding algorithms A. 

[] 

[] 
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PROOF. By [8, p. 74] we have H, = In n + O(1); hence 

min worstA(I) -- rain aveA(I) __ ni l ,  >_ 0.69nlogn + O(n). 
A A 

The second inequality is proved in [3]. [] 
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4. Lower Bounds for Bidirectional Algorithms 

In the previous section we computed the exact lower bound for the average number 
of messages transmitted by maximum-finding algorithms in unidirectional rings. 
Now we turn to circular configurations in which processes can pass messages in 
both directions (the so-called bidirectional rings). Since in the bidirectional ring a 
process does not receive all its messages from a single source, the execution is 
influenced by transmission delays in an essential way. That is why bidirectional 
algorithms are more difficult to understand than unidirectional ories. 

In the sequel it will be technically convenient to use a slightly different termi. 
nation criterion. Namely~ in this section a maximum-finding algorithm is one that 
claims in every process the value of the maximum l~ibel. The two problems (the 
maximum-finding problem in the previous two sections and the one here) are 
equivalent modulo n messages (where n is the size of the ring) in the following 
sense: If at least one process knows the maximum label, then the knowledge can 
be spread to all other nodes at the cost of sending n additional messages. Since all 
our bounds in this section are of the form cn log n + O(n), the new termination 
criterion does not change the results. 

We shall again use the concept of the trace of a message. Informally, a message 
has the trace (sl . . .  Sk) if it carries the information (possibly encoded) that k 
consecutive nodes in the ring are labeled s~ . . . .  , sk, and if it contains no information 
about other labels. The concept can be defined formally in a manner similar to the 
definition for unidirectional rings in Section 2, but the informal definition is 
sufficient for our purposes. A simple but useful observation is that if  a message 
with the trace r ~ D is sent (by a particular algorithm) in a ring labeled by s = 
(s~ • • • sk) and if r is a subsequence of s, then a message with the trace r can be also 
sent (by the same algorithm) in the linear segment labeled by s (i.e., the ring labeled 
by s in which the bidirectional channel between sl and sk has been cut). 

We again denote by aveA(I) and worsta(I) the average and the worst case number 
of messages used by the algorithm A in the rings labeled by the sequences s E 
Perm(I). To estimate aveA(I) and worsta(I), that is, the number of messages sent 
in rmgs, we first estimate the number of messages received in linear segments. 
Every execution in a labeled segment can be simulated in the corresponding ring 
(labeled by the same sequence); therefore, the number of messages received in a 
segment is a lower bound for the number of messages received (and hence also for 
the number of messages sent) in the ring. 

We denote by ave,](/) and worst,](/) the average and the worst case number of 
messages received when the algorithm A is executed in the segments labeled by the 
sequences s ~ Perm(I). We define 

aver(I) = min ave,](/) 
A 

and 

worstS(I) = min worst,](/), 
A 
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where the minimum is taken over all (bidirectional) maximum-finding algorithms 
A. We prove recursive inequalities for aver(I) and worstS(I); that is why we deal 
with these quantities instead of  their unstarred counterparts. (A recursive construc- 
tion is also used by Burns Ill in his proof of  a worst case lower bound.) 

LEMMA 4. I. I f  I and I '  are two sets o f  the same cardinality, then ave'~(l) = 
ave'~(I') and worstS(I) = worst~(I'). 

PROOF. Both equalities follow from this simple observation: Since I and I '  
have the same number of elements, there is an order-preserving one-to-one function 
g from I onto I ' ,  and g can be extended to a one-to-one function from the set of  
integers onto itself. Now for every algorithm A there exists an algorithm B such 
that A needs the same number of messages in the ring labeled by (g(so) . . .  g(sn)) 
as B in the ring labeled by (So . . .  Sk). Namely, B mimics A, using the "code" g(sj) 
for every label s~. Hence ave*(/) - ave*(/') and worst*(/) = worst*(/'), and the 
result follows. [] 

THEOREM 4.2. I f  I and H are two disjoint sets having at least k elements each, 
then 

(a) worst~(I t.J H )  >- worstS(I) + worstS(H) + k/2; 
(b) ave~(I t9 H )  >- aver(l)  + aver(H) + k/4. 

PROOF. Let A be a maximum-finding algorithm. We consider two arbitrary 
sequences s - (sl . . .  s,) ~ Perm(I) and r = (rl . . .  rh) E Perm(H), and denote by 
Sx and ry their midpoints. That is, x = i/2 if i is even and x = (i + 1)/2 if i is odd, 
and y = h/2 if h is even and y - (h + 1)/2 if h is odd. 

We can start the execution of  A in the ring labeled sr by sending and receiving 
first as many messages as possible within the segments labeled s and r (such an 
execution takes place when the transmission delays on the channels between the 
two segments are very long). In fact, we can start with any execution of A in the 
segment labeled by s and any execution in the segment labeled by r, and extend 
them to an execution in the ring. We are going to show that every such execution 
that is complete (i.e., one in which every process claims the value of  the maximum 
label) contains sufficiently many message receptions in addition to those executed 
within the two segments. 

In every complete execution on the ring labeled sr, the process labeled sx must 
receive a message whose trace contains at least one label in r;, similarly, the process 
labeled ry must receive a message whose trace contains a label in s. Among all such 
messages, select one with the shortest trace; call the trace t. Then t is a subsequence 
of  either sr or rs. 

Now we are ready to prove inequality (a). First we find s E Perm(I) such that 
an execution of A in the segment labeled by s involves worst*(/) message receptions, 
and similarly r ~ Perm(H) with worst*(H) receptions. Then we select a message 
(with trace t) as in the previous paragraph. Assume that t is a subsequence of sr 
(the case in which t is a subsequence of  rs is treated symmetrically). We construct 
an execution of  A in the segment labeled by sr that involves at least worst*(/) + 
worst*(H) + k/2  message receptions. Namely, we execute worst*(/) message 
receptions in one segment, worst*(H) in the other, and make sure that the message 
with the trace t is received. Assume that the latter is received by the process labeled 
by sx (the case in which the receiver is labeled by r e is treated symmetrically); then 
trace t contains at least one label from the sequence r. Since there are 1(i - 1)/2J 
nodes between the node labeled by Sx and the nearest node in the segment labeled 
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by r, it follows that at least i/2 additional messages (including the one with trace t) 
are received. Since i > k, we have proved that 

k 
worst*(/13 H) > worst*(/) + worst*(H) + ~.  

The inequality (a) follows. 
To prove (b), let i and h be the cardinalities of I and H. By the assumption, i > 

k and h > k. The average ave*(/t.J H) may be expressed as follows: For every 
partition o f / t 3  H into two sets 1' and H '  whose cardinalities are i and h, find the 
average of the message counts over the segments labeled by sr and rs, s ~ Perm(I'), 
r E Perm(H'); then compute the average over all such partitions (every partition 
is equally probable). We have seen that either in the segment labeled by sr or in 
the one labeled by rs the algorithm receives at least k/2 additional messages. Thus 
on average (which involves both sr and rs) we get at least k/4 additional messages. 
Since, by Lemma 4.1, ave~(l) -- ave~(I') and aver(H) = ave~(H'), we obtain 

k 
ave*(/t3 H) >_ ave~(I) + ave~(n) + 

and (b) follows. [] 

In the proof of the next theorem we need the following lemma. 

LEMMA 4.3. Let c >_ 0 be a real constant and g a real function defined on 
{1, 2 . . . .  } such that g(n) >_ O for all n. I f  

for n ~_ 2, then 

g(n) ~_ ½c((n + 2)tlog nl + 4 - 2 Ll°~nm) 

for all n ~_ 1, and therefore 

g(n) >- ½cn log n + O(n). 

PROOF. We use the equality 

The proof proceeds by induction on n: 

Baszs. For n = 1, the right-hand side is 0, and g(l) ~_ 0 by the assumption. 
Inductive step. Assume that the inequality holds for 1 _~ n < k, where k _~ 2. 

Then 

_~ ½c((k + 2)Hog k] + 4 - 2u~kJ+2), 

which shows that the inequality holds for n = k. rl  
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THEOREM 4.4. I f  I has n elements then 

(a) worst*(I) >_. ~ nlogn + O(n); 
(b) ave~(1) >_ ~ nlogn + O(n). 

PROOF. Use Theorem 4.2 and Lemma 4.3. El 

Theorem 4.4 gives lower bounds for the number of messages received in 
segments, and therefore also for the number of messages sent in rings. The result 
(a) is essentially due to Burns [1]. 

5. Algorithms that Know the Ring Size 

All our results so far have been derived under the assumption that the size of the 
ring is not known when the algorithm starts execution. Now we briefly consider 
another version of the problem. We assume that each process knows, when the 
execution starts, not only its own label but also the size of the ring (i.e., the number 
of the processes in the ring, but not the range of their labels). 

We know no fl(nlogn) lower bound for the average number of messages in the 
rings of known size. Moreover, the forthcoming lower bounds for the worst case 
number of messages are weaker than those in Corollary 3.4 and Theorem 4.4, in 
the following sense: Corollary 3.4 and Theorem 4.4 say that for every algorithm A 
and for every set I of n labels there exists a permutation s of I such that at least 
fl(n log n) messages are sent by A in the ring labeled by s. For the rings of known 
size n, we can only prove that there exist (infinitely many) sequences s of length n 
for which at least fl(n log n) messages are sent in the ring labeled by s. 

In fact, the stronger version (the one in Corollary 3.4 and Theorem 4.4) is not 
valid for the rings of known size. Indeed, there is an algorithm that works correctly 
in every ring of size n and requires only n messages to find the maximum in any 
ring labeled by a permutation of (1 2 . . .  n). 

We again start with unidirectional algorithms. When E C_ D and s ~ D, we 
denote by N*(s, E) the cardinality of the set 

{t ~ El t is a subsequence of s}. 

The obvious modification of the proof of Theorem 2.2 establishes the following 
result. 

THEOREM 5.1. For every algorithm that finds the maximum label in every 
unidtrectional ring o f  size n >- 2 there exists a set E = E(A) C. D such that 

(i) E has the prefix property; 
(it) i f  s ~ D and len(s) -- n, then C(s) N E # ¢3; 

(iii) i f  s ~ D and len(s) <. n, then A transmits at least N*(s, E) messages when 
executed in the segment labeled by s. 

To estimate N*(s, E(A)), we proceed as follows: For every E C D and k --- 1, 2, 
. . . .  we define W*e(k) to be the largest number w for which there exist infinitely 
many pairwise disjoint sequences s E D such that len(s) = k and w -- N*(s, E). We 
show that if E has the properties (i) and (ii) in Theorem 5.1, then W~(k) satisfies a 
recursive inequality, which implies 

W~(n) = ~(nlog n). 

LEMMA 5.2. Let n, k, and p be positive integers such that n is divisible by k and 
2k <_ n. Let E C_ D have the properties (i) and (ii) in Theorem 5.1. I f  F C_ D t s  an 
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infinite set o f  pairwise disjoint sequences such that len(s) = k for all s ~ F, then D 
contains infinitely many pairwise disjomt sequences o f  the form s (° s ~2) . . .  s <p), 
where s (') E F for i = 1, 2 . . . . .  p and each string s°-l)s °), j = 2, 3, . . . ,  p, has at 
least one suffix t ~ E with len(t) > k. 

PROOF. For p = 1 the statement is trivially true. Assume that it is true for some 
p _ 1. Thus there are infinitely many pairwise disjoint sequences of  the form s°)s (2) 
• • • s (p) that satisfy the conclusion of  Lemma 5.2; we take all their first components 
s (I) and concatenate them in groups of  n/k to form sequences of  length n. To each 
such sequence of  length n, we apply (ii) and (i) of Theorem 5. I, and get s (°), s °) E 
F such that for some s (2) • • • s (p) the sequence S ( I ) s  ( 2 )  • • • S (p) satisfies the conclusion 
of  Lemma 5.2 and moreover s(°)s (l) has at least one suffix t E E with len(t) > k. 
But that shows that the statement holds with p replaced by p + 1; hence it holds 
for all p. [] 

LEMMA 5.3. Let q, k, and n be positive integers such that q >_. 2, n is divisible 
by k and qk <_ n. I f  E C_ D has the properties (i) and (ii) in Theorem 5.1, then 

W*E(qk) >__ qW*E(k) + 2qk - 4k. 

PROOF. By the definition of  W*e(k), there is an infinite set F ~ D such that 
every two sequences in F are disjoint, and len(s) = k and N*(s, E) = W*L4k) for all 
s ~ F. Apply Lemma 5.2 with p = n/k  to get infinitely many disjoint sequences 
s (I) s <2) . . .  s (p) of  length n, satisfying the conclusion of  Lemma 5.2. By (i) and (ii) 
in Theorem 5.1, for each such sequence there is j ,  1 <_j <_ p, such that  

S O ) S O + I )  . . .  S(P)S (l) . . .  SO-O 

has at least one suffix t E E with len(t) > (p - l)k. Now let s be the prefix of  

SO)S O+l) . . .  s ( P ) s  (1) . . .  S O-l)  

of  length qk. To get a lower bound for N*(s, E), we sum N*(s (°, E)  for i - j ,  j + 
1 . . . .  , j  + q - 1 (mod p) and get qW*e(k); we add 

N*(s°)s <'+l), E) - N*(s ('), E) - N*(s °÷l), E) 

for i = j,  j + 1 , . . . ,  j + q - 2 (mod p), which gives at least (q - 2)k by Lemma 
5.2; and we add the number of  the prefixes of  t that have not been counted so far, 
which gives at least (q - 2)k. The grand total is qW*(k) + (2q - 4)k. 1"7 

LEMMA 5.4. For every positive mteger q there is a function f~(n) such that 

fq(n) = 2q - 4 qlogq nlogn + O(n), 

and W*e(n) >_ fq(n) whenever n is a power o f  q, n >_ 2, and E satisfies the properties 
(i) and (ii) in Theorem 5.1. 

PROOF. Let fq(n) be the solution of  the recursive system 

L ( 1 )  = l ,  

fq(qk) = qfq(k) + (2q - 4)k. 

(These equations define fo(n) only when n is a power of  q; the other values are 
irrelevant.) Then 

fq(n) = 2q - 4 nlogn + O(n). 
qlogq 
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In view of Lemma 5.3, it only remains to be shown that W*dl) _> 1. However, it 
is easy to see that at most n - 1 sequences of length 1 lie outside of  E. Indeed, if 
there were n distinct numbers st, . . . ,  sn such that (s,) 6 E for each i, then (ii) and 
(i) in Theorem 5.1, applied to s = (s~ . . .  s,), would lead to contradiction. [] 

The expression (2q - 4)/qlogq attains its maximum (o~,er positive integers q) for 
q = 5. The approximate value of 6/(51og5) is 0.51. Theorem 5.5 follows directly 
from Theorem 5.1 and Lemma 5.4 for q = 5. 

THEOREM 5.5. I f  n is a power of 5, then any algorithm that finds maximum in 
each unidirectional ring of size n sends at least 

0.5In log n + O(n) 

messages in infinitely many rings of size n. 

Next we turn to bidirectional algorithms. We again prove a lower bound ~2(nlog n) 
for the worst case number of messages, but with a smaller constant. The pattern of 
proof is similar to that in Section 4. We again take a maximum-finding algorithm 
to be one that claims the value of  the maximum label in every process, and we use 
the term trace in the same meaning as in Section 4. 

For every algorithm A we denote by R*(k) the largest number w for which there 
exist infinitely many pairwise disjoint sequences s E D such that len(s) --- k and at 
least w messages are received during some execution of  A in the segment labeled 
by s. 

LEMMA 5.6. Let k and n be positive integers such that n is divisible by k and 
2k <_ n. I f  A is a maximum-finding algorithm for the rings of size n, then 

k 
R *(2k) __ 2R*(k)  + 

PROOF. By the definition of R*(k), there is an infinite set F C__ D such that every 
two sequences in F are disjoint, len(s) = k for every s E F, and for every s ~ F the 
algorithm A can be executed in the segment labeled by s so that at least R*(k) 
messages are received. We concatenate the sequences in F in groups of n/k to form 
infinitely many pairwise disjoint sequences of length n. 

Let r be one such sequence of  length n. In the ring labeled by r, we execute A so 
that at least R*(k) messages are received within each segment labeled by s ~ F. 
Now consider, for each subsequence s of r, s E F, the midpoint sx of s. (The rest 
of  the proof is similar to the proof of (a) of Theorem 4.2.) If our contemplated 
execution of A (in the ring labeled by r) is complete, then the process labeled by sx 
eventually receives a message whose trace contains a label not in s (otherwise, the 
process could not claim to know the maximum label). Among all such traces (of 
the messages received by the midpoint processes and containing at least one label 
from another segment), select the shortest one and call it t. From the minimality 
of t it follows that t is a subsequence of ss', for some s, s '  ~ F. Assume, without 
loss of generality, that t is the trace of a message received by the process labeled by 
the midpoint s~ of s; hence t contains at least one label in s ' .  The length of  the 
segment labeled by ss' is 2k, and A can be executed in the segment so that at least 
2R*(k) + k/2 messages are received--namely, R*(k) messages within the segment 
labeled by s, the same number within the one labeled by s ' ,  and k/2 messages that 
form a chain from s '  to s~. Since there are infinitely many sequences r, there are 
infinitely many sequences ss'. The proof is complete. Q 
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Since Theorem 5.5 follows from Lemma 5.3, so the next theorem follows from 
Lemma 5.6. 

THEOREM 5.7. I f  n is a power of 2, then every maximum-finding algorithm for 
the (bidirectional) rings of size n sends at least 

~nlogn + O(n) 

messages in infinttely many rings of size n. 

6. Concluding Remarks 

We have established lower bounds of the form ft(nlogn) for the average and worst 
case number of messages sent by distributed maximum-finding algorithms in 
unidirectional and bidirectional rings of unknown size, and for the worst case 
number of messages in the rings of known size. Theproblem of finding lower 
bounds for the average number of messages and for the rings of known size was 
raised in [3]. The bound (a) in our Theorem 4.4 is due to Burns [1], but he proved 
that there exists a sequence of length n satisfying the bound, whereas our proof 
shows that every set of  size n can be permuted to yield such a sequence (see the 
remarks at the beginning of Section 5). 

Since upper bounds of the form O(nlogn) are known [1-6, 9, 10, 12], our lower 
bounds are the best possible bounds up to constant factors. Nevertheless, it is of 
interest to determine the values of the constant factors. We now summarize the 
best estimates known to date. In this summary we assume that bidirectional rings 
are oriented. That is, although messages in the ring can be sent in both directions, 
one direction is agreed upon by all processes. The assumption is not used in our 
lower bounds, but it is essential for upper bounds: Every unidirectional algorithm 
works also in oriented bidirectional rings. (However, O(nlogn) messages suffice 
even for nonoriented bidirectional rings. The most recent algorithm [ 10] transmits 
1.89nlogn + O(n) messages in the worst case.) 

In unidirectional rings of unknown size, the average number of cnlogn + O(n) 
messages, where c = l/ loge --- 0.69 . . . ,  is both sufficient and necessary, by [2] 
and Theorem 3.2. In bidirectional rings the same number is obviously sufficient, 
and the average of~nlogn + O(n) messages is necessary by Theorem 4.4. 

In terms of the worst case number of messages in rings of unknown size, 
1.36nlogn + O(n) messages are sufficient in unidirectional (and hence also in 
bidirectional) rings [3]. By Theorems 3.2 and 4.4, 0.69nlogn + O(n) messages are 
necessary in unidirectional rings, and ~nlogn + O(n) in bidirectional ones. 

For bidirectional rings the gaps are wider, confirming the fact that the nondeter- 
minism inherent in bidirectional algorithms makes them more difficult to under- 
stand. 

For rings of known size, we have no upper bounds (i.e., algorithms) better than 
those for rings of unknown size, and no nonlinear lower bounds for the average 
number of messages. In Theorems 5.5 and 5.7 we establish lower bounds for the 
worst case number of messages in rings of known size, 0.51nlogn + O(n) for 
unidirectional rings and ~nlogn + O(n) for bidirectional ones. However, these 
functions are lower bounds in a weaker sense than those in Sections 3 and 4: They 
are only proved for certain values of n, and we are only able to assert the existence 
of label sequences with bad behavior. 

It should be noted that both our lower bounds for the average number of 
messages (Theorem 3.2 and (b) of Theorem 4.4) hold more generally, for the 
average expected number of messages sent by probabilistic maximum-finding 
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algorithms. (In a probabilistic algorithm, each process can proceed depending on 
the value of  a r andom variable; to prevent  implicit  communica t ion  between 
processes, we require that  the r andom  variables used by different processes be 
independent.  One  probabilistic max imum-f ind ing  algorithm is described and ana- 
lyzed in [9].) It is straightforward to extend the lower bound  in (b) o f  Theo rem 4.4 
to probabilistic algorithms; the p roof  of  the recursive inequality in (b) o f  Theo rem 
4.2 still works with "average expected" in place o f  "average."  To  extend the lower 
bound in Theorem 3.2, one needs a generalization of  the concept  o f  an exhaustive 
set; the idea will be developed elsewhere. 

It  remains  an open problem whether  the knowledge o f  the ring size or the 
capability of  sending messages in both  directions along the ring can be used to 
decrease the (average or worst case) n u m b e r  o f  messages. 
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