
Leader Election in Complete Networks

Gurdip Singh

Department of Computing and Information Sciences,

Kansas State University, Manhattan, KS 66506

singh@cis,ksu.edu

Abstract: This paper presents protocols for

leader election in complete networks. The proto-

cols are message optimal and their time complex-

ities are a significant improvement over currently

known protocols for this problem. For asyn-

chronous complete networks with sense of direc-

tion, we propose a protocol which requires O(N)

messages and O (logN) time. For asynchronous

complete net work wit bout sense of direction, we

show that Q(lV/ZogN) is a lower bound on the

time complexity of any message optimal elec-

tion protocol and we present a family of proto-

cols which requires O(Nk) messages and O(N/k)

time, logN < k < N. Our results also improve

the time complexity of several other related prob-

lems such as spanning tree construction, comput-

ing a global function, etc.

1 Introduction

In the leader election problem, there are N pro-

cessors in the network, each having a unique

identity. Initially all nodes are passive. An ar-

bitrary subset of nodes, called the base nodes,

wake up spent aneously and start the protocol.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otharwise, or to republish, requires a fee
and/or specific permission.

PoDC ‘92-81921E3.C.

@ 1992 ACM 0-89791 -496- 1/92/0008 /0179 . ..$1 .50

On the termination of the protocol, exactly one

node announces itself the leader, In this paper,

we consider the problem of electing a leader in

an asynchronous complete network. In a com-

plete network, each pair of nodes is connected by

a bidirectional link and we assume that a node

is initially unaware of the identity of any other

node.

Leader election is a fundamental problem in

distributed computing and has been studied in

various computation models, For complete net-

works in which a node is unable to distinguish

between its incident links, [KMZ84] showed that

fl(NlogN) messages are required for electing a

leader. However, [LMW86] showed that the

lower bound of $2(NlogN) messages does not

hold for complete networks with sense of direc-

tion and gave a protocol which requires O(N)

messages. A network has a sense of direc-

tion if there exists a directed Hamiltonion cycle

and each edge incident at any node i is labeled

with the distance of the node at the other end

along this Hamiltonion cycle. Figure 1 shows

a complete network cent aining six nodes with a

sense of direction. [AL SZ89] further showed that

O(logN) chords in a ring network are sufficient

to obtain a protocol with O(N) message com-

plexit y. These two extreme cases, one in which

a node is unable to distinguish between any two

incident edges and the other in which all edges

are labeled with a distinct number, show the im-

pact of knowledge of topological information on

179

the complexity of leader election.

The time complexity of the protocol in

[LMW86] is O(N). In this protocol, a node cap-

tures a majority of nodes before it declares itself

as the leader, We observe that in such networks,

a node does not have to capture a majority of

nodes in order to be elected the leader. We use

this idea to obt tin a simple protocol which re-

quires O(N) messages. However, due to conges-

tion on the links and a specific wake up pattern

of nodes, its time complexity is not O(~ogN). We

then modify this protocol to solve these problems

and obtain a protocol which requires O(N) mes-

sages and O (logN) time.

We also propose an improved protocol for

leader election in asynchronous complete net-

work without sense of direction (in the reqt of the

paper, unless other stated, we will use ‘complete

net work’ to mean ‘complete network wit bout

sense of direction’). [KMZ84] proposed a pro-

tocol for this problem which requires O(NlogN)

messages and O(NlogN) time. [AG85] gave a se-

ries of simple message optimal protocols for com-

plete net works, each with O(N) time complex-

it y. Furthermore, it was conjectured in [AG85]

that Q(N) is a lower bound on the time com-

plexity of any message optimal election protocol

for asynchronous complete net works. We prove

that Q(N/logN) is a lower bound on the time

complexity of any message optimal protocol for

this problem. This proves that introducing asyn-

chrony may result in a loss in speed by a fac-

tor of .N/(logiV)2. A similar result was shown

in [AFL83] where a particular asynchronous sys-

tem was shown to be slower by a factor of

logN than the corresponding synchronous sys-

tem. We also provide a message optimid pro-

tocol for asynchronous complete networks which

requires O (N/logN) time. The protocol involves

a new technique which allows us to distinguish

between nodes that wake up at different times

to participate in the protocol. The complexity

of the protocol depends on the number of base

nodes and we show that the time complexity

can be improved to O(logN + min(~, N/logN)),

where T is the number of base nodes. We also

present a protocol tolerant to ~ initial site fail-

ures which requires O (Nj + Nlog.N) messages

and O(N/logN) time, where f < N/2.

n

z The directed Hamiltonian cycle

Figure 1: A complete network with a sense of

direction

There are many problems

tree construction, computing

etc. which are equivalent to

such as spanning

a global function,

leader election in

terms of message and time complexities. Our

protocols, therefore, leads to improvement in the

time complexity of these problems as well.

This paper is organized as follows. In the next

section, we present our model of distributed com-

putation. In Section 3, we present a protocol for

leader election in a complete network with sense

of direction. In Section 4, we present a protocol

for leader election in a complete network with-

out sense of direction and we show a lower bound

on the time complexity of any message optimal

leader election protocol.

180

2 Model

We model the communication network as a com-

plete graph (N, E), where N and E represent

the processors and communication links respec-

tively. We assume that each node has a unique

identity. Messages sent over a link arrive at their

destination within finite but unpredictable time

and in the order sent and are not lost. Each

message may carry O (logN) bits of information.

The message complexity of a protocol is the max-

imum number of messages sent during any pos-

sible execution of the protocol. The time com-

plexity of a protocol is the worst case execution

time assuming that each message takes at most

one time unit to reach its destination and com-

putation time is negligible. Furthermore, inter-

message delay on a link is at most one time unit.

All additions in the paper are assumed modulo

N.

3 Complete Networks with

sense of direction

For complete net works with sense of direction,

[LMW86] proposed a leader election protocol

which requires O(N) messages and O(N) time.

Let i[d] denote the node at distance d from i and

i[z..y] denote the set {i[z], i[z + 1],. ... i[y]}. In

[LMW86], if node i is able to capture nodes in

i[l. .N/2] then it can declare itself as the leader.

We observe that in the presence of a sense of

direction, a node does not have to capture a

majority of nodes. For example, if i captures

all nodes in {i[l..N/4], i[N/2], i[3iV/4]} then it

can declare itself as the leader. By capturing

i[N/2], for example, i ensures that no node in

i[N/4 + 1. .iV/2] will be able to become a leader

since a node in this set must capture i[N/2] to be-

come a leader. In particular, a node can declare

itself as the leader after capturing the nodes in

the set {i[l..k], i[2k], i[3k], i[N–k]}. We com-

bine this idea with those in [LMW86] to obtain

a new protocol, A, which is as follows:

Protocol d: This protocol proceeds in two

phases:

1%-st Phase: On waking up spent aneously, a base

node i tries to capture nodes in S~ = i[l..k] in a

sequential fashion. A passive node wakes up on

receiving a message of the protocol. A passive

node is not allowed to become a base node if it

wakes up on receiving the message of the proto-

col. A base node i uses its identity and level~,

which denotes the number of nodes which i has

captured so far, to contest with other nodes.

When a base node i wakes up, it sends a message

capture(i, leveli) to i[l]. When a node j receives

a captw-e(i, 1) messages, it behaves as follows:

●

●

If i

If j is not a base node or it has been captured

then it responds with an accept(0) message.

If j is a base node which has not yet

been captured, and (Ievelj, j) < (1, i) then

again, i captures j and j responds with

accept(levelj). Otherwise, j ignores the

message.

receives accept(l), it adds 1 + 1 to level~

(and therefore the set of captured nodes is ex-

tended to include the nodes captured by j). If

Ieveli < k then it continues its conquest by send-

ing a capture message to i[levezt + 1], Otherwise,

it enters the second phase.

Second Phase: On entering this phase, i sets

owneri to i and sends a message, owner(i), to

each node j in i[l. A]. On receiving this mes-

sage, j sets Owner-zinkj to denote the link from

j to i and ozune~j to i. Furthermore, it sends

an acknowledgement message to i. After re-

ceiving an acknowledgement from all nodes in

i[l,,k], i sends an elect(i) message to each node

in {i[2k], ..., i[N–k]}. On receiving elect(i), site

181

j behaves as follows: If (owne~i has not been set)

or (ownerj has been set and ownerj < i) then

it sets ownerj to i and sends an accept message

to i. Otherwise, it ignores the message. If i re-

ceives all accept responses then it declares itself

the leader.

In the first phase, each node is captured

at most once and each capturing requires one

capture message and one accept message. Hence,

the first phase will require O(N) messages, In

the second phase, there can be at most O(N/k)

candidates. Each candidate sends messages to

capture N/k nodes. Hence, the total number

of messages in the second phase is 0(N2/k2).

The message complexity of A is therefore O(N +

N2/k2). In particular, for k ~ m, the protocol

requires O(N) messages, We will now compute

the time complexity of A. The execution of the

second phase takes O(1) time. Furthermore, if a

node is successful in capturing another node then

it does in a constant amount of time. Hence,

the node which is elected the leader will finish

its first phase within O(k) time units of waking

up. However, the following situation can arise:

Assume that nodes have identities 1,..., N such

that i[l] = i + 1, Let 1 be the first node to

wake up. Aft er waking up spent aneously, node

i sends a capture message to node i + 1. i + 1

wakes up just before the message from i reaches

it and sends the message to capture i + 2 before

receiving the message from i. In this case, no

response will be sent to i since i has the same

level number as i+l but a smaller identity, If

this happens for all sites i, 1 ~ i ~ N, then only

node N will survive and capture all other nodes.

If the capture message for each node takes ex-

actly one time unit to arrive, node N will wake

up at time N – 1 and therefore the protocol will

require O(N) time units. However, if all nodes

wake up within O(k) time of each other then the

first phase will take O(k) time. We will now mod-

ify the protocol A to obtain A’ as follows: After

a node i wakes up (either spent aneously or on re-

ceiving a message), it sends a message to awaken

i[l] and i[k]. Hence, within O(k + N/k) time, all

nodes will wake up to participate in the protocol.

Therefore, the time complexity of the protocol is

O(k + N/k). In particular, fork = W, the time

complexity of A’ is O(fl).

We will now extend this idea to obtain a pro-

tocol which requires O(logN) time. Consider the

following protocol, l?, which is an asynchronous

version of the synchronous protocol in [AG85].

For simplicity, assume that N is of the form 2’.

In this protocol, a candidate node i tries to cap-

ture all other nodes in logN steps. In the first

step, i sends a message to capture i[N/2]. In the

@ step, i sends a message to capture 2Z–1 nodes

in the set i[N/2~], i[3N/21],. . . . i[(2~– l) N/2i]. If

i[N/2] is also a base node then it will send a mes-

sage to capture i in its first step. Hence, only

one of i and i[N/2] will proceed to step 2. Sim-

ilarly, only one of i, i[N/4], i[N/2] and i[3N/4]

will proceed to step 3 and so on. Although the

time complexity of this protocol is O(logN), its

message complexity is O(NlogN).

We will now combine ideas in A and f? to ob-

tain a protocol C which has O(N) message com-

plexit y and O(logN) time complexity. C pro-

ceeds in two phases. In the first phase, we use

A to first reduce the number of candidates to at

most N/logN. The second phase employs B to

elect the leader. Let k = N/2[~09~0~~1,

First Phase: In this phase, i tries to capture

i[k], i[2k], i[iV – k] in a sequential manner.

Observe that when i[zk] wakes up, it will try

to capture the same set of nodes in the order

i[zk+ k],..., i[zk + N – k]. Hence, in the first

phase, nodes in this set compete against each

other. The rules for capturing are the same as

in the first phase of A. Hence, for example, if

i[ak] has already captured i[(z + l)k] when i

captures i[xk], then i[zk] surrenders i[(z + l)k]

182

to i and therefore, i can extend its set of cap-

tured nodes to include this node also. Using

i as the reference node, the nodes can be par-

titioned into k sets, Ro,,.., Rk_l, where Rj =

{i[~+k], i[~+2k],..., i[~ + N–k]. After the first

phase, we have at most one alive candidate from

each of these sets.

Second Phase: On entering this phase, node i

sends messages to each node j in Ri to update

ownerj to i. In this phase, we have at most one

candidate in each set Rj, and we have to elect

a leader among them. Let i be the candidate in

I?o. In order to defeat other candidates, i tries

to capture the nodes in the set i[l.,k– 1] in Zogk

steps. This phase is an asynchronous version of

the synchronous protocol in [AG85]. In the first

step, i sends an elect(i, O) message to capture

i[k/2]. In the lth step, it sends 2Z-1 messages to

capture i[k/2Z], i[3k/2~],. . . . i[(21 – l)k/2[]. Ob-

serve that if there is an alive candidate in Rk@

then it will send a message to capture a node in

R. in its first step. Hence, only one node from

Ro and RklQ wi~ go to step 2. In step 2, since a

node sends messages to capture nodes at distance

k/4 and 3k/4, only one node from Ro, Rk/~, Rk/~

and R3k14 win survive. In general, after the Ph

step, there will be at most k/2[alive candidates

(note that k is O(N/logN)), In this phase, to

contest with other nodes, i uses its identity and

stepi, which indicates the number of steps which

i has executed so far. Consider the case in which

a node, i, in Rz sends a message to capture a

node, j, in RV. If j is passive then there is no

base node in RV which has captured all nodes in

RV and therefore, j sends an accept message to

i. If there is a candidate in Rv then the message

is forwarded to that node (owner-linkj will be

the edge leading to this node) and they compete

on the basis of (step, id). However, if i’s mes-

Sagereaches the candidate in RY and finds that

this node has already been captured then i must

first kti the owner of Ry’s candidate before it

can claim Rv’s candidate. For this purpose, the

message is forwarded to that node (thus, each

message can be forwarded at most twice). For

example, if i in Rkj2 sends a message to cap-

ture j in R3k14, and the base node in R3k14 has

already been captured by Rki4 in step 1 then i

must defeat the base node in Rk14 before claim-

ing Rskld.

The first phase requires O(logN) time since a

node competes only wit h O (/ogN) other nodes.

The second phase involves O(logN) steps, each

of which will take a constant amount of time.

Hence, the protocol requires O(logN) time. We

will now compute the message complexity of

C, The first phase requires O(N) messages

since a node is captured at most once. In the

second phase, there can be at most k candi-

dates. Furthermore, there can be at most k/21-l

nodes in step 1 (since a node in step 1 must

have captured 21-1 nodes and sets of nodes cap-

tured by different sites are disjoint). A node

in step Z sends 21–1 messages to capture nodes.

Each of these messages generate a constant

number of messages. Since k = o(iv/logN),

the tot al number of messages generated in the

second phase is ~l<l<10g~(k/2~-l * 0(2~–1))

= &l<@V(WW&~ * 21-1)) * 0(2[---1)) <

O(logN * N/logiV) = O(N). Hence, the message

complexity of the protocol is O(N).

4 Complete Networks wit bout

sense of direction

In this section, we will present a family of algo-

rithms for leader election in complete networks

without sense of direction. Protocols belong-

ing to this family require O (Nk) messages and

O(N/k) time, where ZogN s k s N [Si91]. We

will first present two different algorithms, D and

183

&, for leader election. We will then combine fea-

tures of these algorithms to obtain the final pro-

tocol F.

Protoco/ D: In this algorithm, a base node at-

tempts to capture all other nodes in parallel. On

waking up spent aneously, a base node sends its

identity in an elect message on all incident edges.

When a node j receives an elect(i) message over

edge e, it behaves as follows: If j is a base node

and j > i then no response is sent over e; Other-

wise, j sends an accept message over e. A node

that receives an accept message on all incident

edges declares itself the leader. The time com-

plexit y of this protocol is 0(1). However, its

message complexity is O (N2) since the number

of base nodes may be O(N), each of which will

send O(N) messages.

Protocol S: $ is a modification of the protocol A

in [AG85]. The outline of protocol A in [AG85]

is as follows:

A base node tries to capture other nodes in

a sequential manner by sending capture mes-

sages on its incident edges one at a time. A

node that is successful in capturing all other

nodes is elected the leader, A base node i

sends its identity and a variable, leveii, in the

captu~e message to contest with other nodes

(leveli is the number of nodes which i has

captured so far). If a capture message from

i reaches a node j which has not yet been

captured, and (leveli, i) z (levelj, j) (lexico-

graphically) then i captures j, otherwise i is

killed. If j is a captured node, then i has

to kill j’s owner before claiming j. If i is

successful in capturing ~ then it increments

leveli and proceed with its conquest by send-

ing a capture message to another node.

The message complexity of A is O(NlogN).

Although the time complexity of A is O(N), it

does not possess the property that a node is able

to capture another node in a constant amount of

time. For example, a captured node j may re-

ceive capture messages from nodes il, i2, ..., i~

in the order given and forward each of these mes-

sages to its owner. In particular, if it forwards

O(N) messages and only the last forwarded mes-

sage is able to defeat 0W?2ETj then it may take

O(N) time to capture j (since the messages are

forwarded on the same link and inter-message de-

lay on the same link can be 1 time unit, the last

forwarded message may reach j after O(N) time

units). We modify A to obtain & in which there

is at most one forwarded message on a link at any

time. In &, a captured node j uses a boolean

variable f orwardj to keep track of whether

not it has forwarded a message to its owner.

~ receives a capture message and forwardj

true then it delays forwarding the message

or

If

is

to

its owner until it receives a response from its

owner, Each message forwarded to the owner is

responded by an accept or a reject message de-

pending on whether the forwarded message de-

feated the owner. If an accept message is received

then j sends an accept message to the node from

which it has received the largest (level, id) pair

so far. If a reject message is received, j forwards

the message with the largest (level, id) pair it

may have received in the meanwhile. Thus, in &,

if a node is able to capture another node then it

does so in a constant amount of time.

In D, if the number of candidates is restricted

to O(k) then it will require O(Nk) messages. In

protocol &, there can be at most k nodes at level

N/k [AG85]. We obtain a new protocol ~ in

which & is used to reduce the number of candi-

dates for protocol D by requiring a node to exe-

cute & until its level number reaches N/k and D

thereafter, where logN < k s N. The protocol

X is as follows:

On waking up spent aneously, a node starts

executing protocol &. When a node reaches

level N/k, it sends an elect message with

its identity on all incident edges. Let node

184

j receive an elect(i) message over e. If

(leveZj, mazidj) is less than (lV/k, i) then j

changes status to killed and sends an accept

message over e. A node which receives an

accept message on all incident edges declares

itself the leader.

Since the message complexity of & is

O(NlogN) and at most k nodes broadcast an

elect message, the message complexity of X is

O(Nk) (since k z logN). Since it takes a con-

st ant amount of time to capture a node, it will

take O(N/k) time for a node to reach level N/k

after it wakes up (if it reaches this level). After a

node reaches this level, it executes D which takes

O(1) time. Therefore, the node which is elected

the leader will take O(iV/k) time after waking up

spent aneously to declare itself the leader. Thus,

we have the following lemma:

Lemma 4.1 If all nodes wakeup within O(N/k)

time of each other, then F will terminate in

O(N/k) time.

However, a situation similar to the one in the

first-phase of protocol A for networks with sense

of direction (in which i + 1 wakes up just before

the message from i reaches it) can occur which

may lead to an execution in which the node which

is elected the leader wakes up O(N) time units

after the first node wakes up. Since nodes are

unable to distinguish between t he incident edges,

the solution used in the presence of sense of di-

rection will not work here. However, we also have

the following result: After a node i reaches level

k, only a node at level at least k can capture it.

Hence, in every interval of c time units after a

node reaches level k, where c is a constant, either

the node with the highest level number (which is

greater than k) will increase its level number or

it will be killed by another node with level num-

ber at least k. Since there are at most N/k nodes

at level k, some node will reach level N/k within

2cN/k time. Thus, we have the following lemma:

Lemma 4.2 After a node reaches level k, .F ter-

minates within O(N/k) time.

In the following, we will design a protocol, ~, in

which we will ensure that in every interval of c

time units, either at least k nodes wake up or

some node reaches level at least k, Then from

Lemma 4.1 and Lemma 4.2, the protocol will re-

quire O (lV/k) time. For this purpose, we require

a base node to execute two initial phases on wak-

ing up spent aneously. If it successfully executes

these phases, it qualifies as a candidate for elec-

tion and proceeds by executing .F. Intuitively,

the time complexity of the leader election proto-

col depends on the ability to recognize the order

in which nodes wake up to participate in the pro-

tocol so that nodes that wake up later are pro-

hibited from becoming candidates. In the first

phase, a node tries to obtain permission from k

other nodes. If i requests permission from j after

j has finished executing its first phase, it denies

permission to i. In this case, i gets ordered after

j and is not allowed to participate as a candi-

date. However, as we will show later, this allows

a node which wakes up O (N/k) time units af-

ter the first node wakes up to obtain permission

frotn k other nodes and participate as a candi-

date. The first-phase is as follows:

On waking up spontaneously, node i selects k in-

cident edges and sends a first-phase(i) message

on each of these edges. On receiving this mes-

sage, sit e j behaves as follows:

●

●

If j is not a captured node then

if j has finished executing its first phase then

it sends a finish message over e.

A If j is passive then i becomes j‘s owner

and j marks e as owner-linkj. It sends an

accept message over e and changes its state

to captured.

* If j is in the first phase then j sends a

proceed message over e.

If j is captured then it checks whether its

owner has finished the first phase. For

185

this purpose, it sends a check message over

owner-linkj (if it has already sent a check

message, it waits for the reply to avoid con-

gestion). If the owner replies that it has fin-

ished the first phase, then it sends a finish

message to i and to any other node from

which it has received (or will receive in the

future) a first-phase message in the mean-

time. If the owner has not finished the first

phase then j sends a proceed message to i

and also to any other node from which it

may have received a message in the mean-

time.

After node i has received responses to all k

first-phase messages, it behaves as follows: It

exits the first phase. If it has received a finish

message then it does not enter the second phase

and changes status to killed. Otherwise, it en-

ters the second phase. It also updates its level

number to the number of accept messages re-

ceived in the first phase. In the second phase,

node i tries to reach level k. For this purpose, it

sends a capture(level;, i) message on each edge

on which it received a proceed message. The

rules for capturing are the same as in proto-

col $ with the following changes: Nodes which

have not started the second phase are regarded

as passive by these capture messages. A node

increases its level number only after receiving

an accept response to each capture message sent

in the second phase. After finishing the second

phase, a node executes F.

In ~, a base node finishes its first phase within

5 time units of waking up [Si92]. Furthermore,

there will be a node which enters the second

phase and a node which finishes the second phase

to participate in .F. Hence, the protocol will elect

a leader. Using the technique in [BKWZ87], we

also extend our protocol to obtain a protocol re-

silient to j initial site failures, where f < iV/27

which requires O(Nf + NlogN) messages and

O(N/logN) time.

Lemma 4.3 The time complexity of G is

O(N/k).

Proof A base node will finish its first phase

wit hin 5 time units of waking up. If node i wakes

up spent aneously at time t then for i to partici-

pate in the second phase, each of its first-phase

messages must go to a node which is in its first

phase (this node must have awakened sponta-

neously after time t– 5, otherwise it will have

finished its first phase by time t) or is passive

(this node will wake up by time t+ 1 as a result

of i’s message). Therefore, i is able to proceed

to the second phase only if at least k nodes other

than i wakeup in the interval [t– 5, t+ 1].

Consider an interval of 5 time units, say

[m, m +5] where m z O, during the execution

of the protocol. We have the following cases:

(1) At least k + 1 nodes wakeup in the interval

[m-5, m+6].

(2) Less than k+ 1 nodes wakeup in the interval

[m – 5, m + 6]. In this case, we will show that

some node will reach level at least k. AU nodes

that wake up before time m will finish their first

phase by time m +5. Any node which completes

its first phase in the interval [m+5, m+6] will not

be able to participate in Y as a candidate (since

it must have awakened in the interval [m, m + 6]

and less than k + 1 nodes wake up in the interval

[m-5, m+ 6]). If a node has not already reached

level k then let i be the node with the highest

identity among the nodes which are in the sec-

ond phase at time m + 5. Let a capture message

from i reach a node j which is not captured. We

have the following cases:

(a) If j has not started the second phase then it

will respond with an accept message.

(b) If j has started the second phase then it must

be the case that j entered the second phase at

or before time m + 5 and therefore j < i (by as-

sumption). Hence, j will respond with an accept

message.

186

If j is a captured node then it will send for-

ward the message to its owner. If the ownerj

has not started second phase then it will send

an accept message. Otherwise, we will show that

ownerj must have entered the second phase be-

fore time m +5. Assume not. Since nodes that

wake up before time m enter the second phase

before time m + 5 and nodes that wake in the in-

terval [m, m+ 5] do not participate in the second

phase, OW7LeTj must have awakened after time

m + 5. In this case, the first-phase message from

OWTWTj will reach ~ after time m + 5. However,

by this time, i would already have sent its jirst-

phase message to j and therefore, ownerj cannot

capture j. Hence, ownerj must have finished the

second phase before time m + 5 in which case it

will send an accept message to i since Ownerj < i

by assumption. Thus, i will receive all accept

responses and therefore i will finish its second

phase.

Hence, in each interval of 11 time units (m – 5

to m + 6), either at least k nodes wake up or

some node will reach level k. Therefore, by

time llN/k, either all nodes will be awake or

some node will have reached level k. Then, from

Lemma 4.1 and Lemma 4.2, the protocol will ter-

minate in 0(.N/k) time units. •1

In [Si92], we show that the time complex-

ity of ~ depends of the number of candidate

nodes. By using the capturing pattern of the

synchronous protocol in [AG85], we have ob-

tained a message optimal protocol which requires

O(logN + min(r, N/logN)), where r is the num-

ber of candidate nodes.

5 A Lower Bound

We will now prove that Q(N/logN) is a lower

bound on the time complexity of any message

optimal protocol for leader election in complete

asynchronous net works. We will restrict our-

selves to comparison-based leader election algo-

rit hms. We prove the following theorem:

Theorem 5.1 Any comparison-based protocol

for leader election in a complete asynchronous

network which sends less than Nd messages will

require at least N/ 16d time.

Corollary 5.1 Any message optimal protocol

for leader election in a complete asynchronous

network, i.e., requiring O(NlogN) messages, will

require $l(N/logN) time.

Proof of Theorem 5.1: For simplicity, assume

that nodes have identities belonging to the set

{1 N} and let k = 2d. A one-to-one function

j from a set of processor identities to another set

of processor identities is order-preserving if i ~ j

implies f(i) ~ f(j). Two lists {q,. . . . Zm} and

{Yl, yn} are order-equivalent if (xi < ~j) @

(vi S gj). Following [FL87], we assume that

each processor’s local state consists of its iden-

tity, its initial state and the history of messages

it has received so far. Further, a node sends its

entire local state in each message. Intuitively,

a process state includes all events that can po-

tentially affect this state [Lam78] and the hap-

pens before ordering information between these

events. Let event(i, t) denote the set of events

which can potentially affect the state of i at time

t in an execution. We say that event(i, t) and

event(j, t’) are order-equivalent if there exists an

order-preserving function which maps event(i, t)

to event(~, t’) such that the happens-before re-

lation is preserved. If event(i, t) and event(j, t’)

are order-equivalent then we say that the state

of i at time t and state of j at time t’are order-

equivalent. A comparison-based protocol cannot

distinguish between order-equivalent states. Our

proof involves showing that we can keep pro-

cesses in order-equivalent states for a long period

of time.

187

Let A be a protocol for leader election which

requires iVd messages. Let EZ be the set of exe-

cutions of A in which (1) all nodes wakeup spon-

taneously at the same time, (2) all messages take

c time to reach their destination, where c < 1/2

and (3) if a set of messages arrive at the same

time at a site then the messages are accepted

in the increasing order of sender identities. Let

Upi denote the ordered list of edges from i to

nodes i+ l,..,, i + k, arranged in the increas-

ing order of sites identities and Downi denote

the set of edges from i to nodes with identities

i—l, ..., i–k. Since a node cannot distinguish be-

t ween untraversed incident links, the adversary

has the freedom to choose any untraversed edge

whenever the node wants to send a message over

an untraversed edge. In particular, the adversary

acts as follows: Whenever a node i has to send

a message over a new edge, the adversary selects

the edges first from Upi. If all edges in Upi have

been used then it selects other unused edges. The

actions of the adversary try to impose a symme-

try on the nodes. We partition the nodes into

the following sets: {S1,. . . . siv~k~, where Si =

{k(i- 1)+1,... ,ki}. Let R= SzU... US~_l,

where m = N/k and 1? = S1 U S~. As long

as nodes in R remain in order-equivalent states,

each node i will only communicate with nodes

in Upi U Down;; otherwise each node in R will

send messages over at least k + 1 edges and the

number of messages will exceed Nd. This fact

and conditions (1)- (3) impose a symmetry on

nodes in R. Intuitively, nodes in R cannot break

symmetry without communicating with nodes in

R’. Each node i in R executes the same pro-

tocol and communicates with at most k nodes

with larger identities (belonging to Upi) and at

most k nodes with smaller identities (belonging

to Downi). However, nodes in R’ are asymmet-

ric with respect to these nodes. In any execution,

let nodes(i, t) denote the set of sites at which

events in event(i, t) occur. Then, for example,

at time 6, sites 1 and i, where i c R, may not be

in order-equivalent states since 1 may receive a

message from a node with a higher identity while

i only receives messages from nodes with lower

identities. However, at this time, event(i, e) and

event(j, e), where i, j c R, are order-equivdent,

Hence, any node i in R will only send messages

to nodes in Upi U Downi at time e. Observe that

nodes(i, ~) L Sy–l u S’v u SV+l, where i c S’v.

If 1 sends a message at time c to site i c S2

then it can force i and another site j c R to

be in order-inequivalent states at time 2.s. How-

ever, for each node i c S3 U . . . U S~_2, if

nodes(i, 26) ~ Sv_2 U . . . U SV+2 then nodes in

S3U.. .uSn-2 will be in order-equivalent states at

time 2C (in this case, no node would have received

a message at time 2e from a node in R’ which,

at time c, was in a state order-inequivalent with

respect to states of nodes in R). In general, we

prove the following: Let Alz = S.+l U. . . U Sn_Z

and depth(i, t) denote the longest chain of mes-

sages involving events in event(i, t),

Lemma 5.1 There exists an execution in Ex

such that at any time t and i E SY (1 J4Z, where

z ~ 7n/4j if depth(i, -t) < z and nodes(i, t) ~

SV-Z U 0. .U SY+Z, then for all j 6 MZ, event(i, t)

and event(’, t) are order-equivalent,

Proof Outline: We prove this by induction on z.

The result is immediate for x = O since processes

are initially in order-equivalent states. Assume

that the hypothesis holds for z ~ 1. Then there

exists an execution in Ex such that at any time t,

if depth(i, -t) ~ 1and nodes(i, t) ~ SU_ZU. . 4JSV+I

then for all j c Ml, event(i, t) and even-t(j, t)

are order-equivalent. Let t be the maximum

time in this execution at which depth(i, t) s 1

for i G A4z (i.e., any message sent after this

time increases the depth). Assume that at some

time t’in this execution, depth(i, t’) = 1 + 1 and

nodes(i, t’) S S9–1–1 U . . . U SU+l+l, where i c

Ml+l. Let j 6 Ikfl+l. Since i, j c Ml, event(i, t)

and event(j, t) are order-equivalent. Let p send

a message to i at time t which is in event(i, t’)

but not in event(i, t). Then depth(p, t) = I and

188

p 6 Ml (otherwise, we can show a contradiction

since i @ UpP u Downp). Let q = j – (i –p).

Then q E Ml. From the induction hypothesis,

event(p, t) and evewt(q, t) are order-equivalent.

Hence, q will also send a message to j. There-

fore, event(i, t’) and event(j, t’) will be order-

equivalent. o

Lemma 5.2 There exists an ezecution in Ez

such that at any time t and i E iklm14 n SY,

if nodes(i, t) ~ SY_~14 U . . . U Sv+m14 and

depth(i, t) s m/4 then i must have communz’-

cated only with nodes in Up~ and Down~.

Prooj! Assume not. Assume that i sends a

message to a node not in Up~ U Down;. Let

j G Mmjd. Then by Lemma 5.1, there exists

an execution in which event(i, t) and event(~, t)

are order-equivalent. Since i sends a message to

a node not in Upi U Downi, ~ will also send a

message to a node not in Upj U -DOwnj (since

order-equivalent stat es are indistinguishable to

a comparison-based protocol). Thus, each node

in Mmi4 will send at least k + 1 messages, Since

lM~/41 = N/2, the execution will involve at least

N(k + 1)/2 messages which is a contradiction. 0

We will make use of symmetry between nodes

in R to construct an execution in which nodes in

R’ wake up much later in the protocol to break

symmetry, Let ex be an execution of A. Let

the nodes be partitioned into three sets, PI, .P2

and l?3 such that 1’1 = {l,. ... pi}, 1’2 = {pl +

1,..., P2} and P3 = {P2 + 1,...,N}. Assume

that (1) nodes in PI and PS wake up at time t,

(2) no messages have been sent by nodes in P2

to nodes in PI and F’s up to time t and (3) all

messages sent at or after time t take c time units.

Let g(ez, 1’2) denote the execution in which all

nodes in 1’2 wake up 1 – c time earlier than in

ex but all links incident on nodes in P2 remain

idle in the interval [-t– (1 - c), t] i.e., transmission

of messages does not make progress during this

period. Due to the asynchronous nature of the

network, no node can distinguish between es and

g(ez, P2). This technique of increasing message

transmission time without violating the happens

before ordering is similar to the one in [AFL83].

Let M be the set of messages in ex sent at

time t from i to j, where i, j c P2 and j receives

no messages from nodes in PI U P2 at time t+ c.

Let h(ez, P2) denote the execution in which links

incident on nodes in P2 are not idle in the period

[t-(l-c), -t] but all messages sent in this interval

except those in Al take c + (1 – e) time. The

effect of this transformation is to increase the

delays on the links from c to 6 + 1 – c, which

cannot be distinguished from links remaining idle

for 1 – c time units. Hence, ez and h(ex, P2) are

indistinguishable to all nodes.

We will construct a set of executions in a se-

ries of steps which takes O(N/k) time. Let ex be

an execution in -Ez which satisfies Lemma 5.2.

Let A1=SI U... U Sm/2–~, B1 = S~/2 and

c1 = sm/2+1u . ..u Sm, where m = N/k. All

nodes wake up at time t = O and no messages

are sent before that time. Furthermore, all mes-

sages take c time units. Hence, ez and h(ez, B1)

are indistinguishable to all nodes. Let exl =

h(ez,l?l). Let A2 = S1 U . . . U S~12_z, .B2 =

s~iz-~ Usm U5’~/2+1 and CZ = S’m/2+2U” . .US’~.

In ezl, no messages are sent to nodes in A2 and

C2 before time l–e (since nodes in Sri/2 commu-

nicate only with nodes in Sni2_1 and S~12+1 un-

til nodes not in R’ wakeup (From Lemma 5.2)).

Further, all messages sent at or after time 1 – 6

take c time units. Therefore, ezl and h(ezl, B2)

are indistinguishable to all nodes. Since ezl

and ex are indistinguishable, ez and h(ekl, Bz)

are also indistinguishable to all nodes. Let ex2

= h(exl, B2). Continuing in this way, we can

construct an execution ex~14, where A~14 =

s~u... u ‘m/47 ‘m/4 = ‘m/4+1 u . . . u S3m14 and

Cm/4~1 = s3m/4u ., .uSm, which is indistinguish-

able from ez. The execution time of exm14 is at

189

least m/4(1 – c). Since m/4(1 –~) = N/4k(l –c)

= N/8d(l –c) ~ N/8d(l/2) = N/16d, we have

an execution which requires N/ 16d time. •1

6 Conclusion

In this paper, we have presented distributed algo-

rithms for leader election in complete networks.

For asynchronous networks with a sense of direc-

tion, we first presented a simple protocol which

requires O(N) messages and O(~) time. We

then improved the time complexity of this pro-

tocol to O(logN) time. An interesting question

is whether synchronized clocks can be used to

improve the time complexity of this protocol.

For completer asynchronous networks without

sense of direction, we also showed a lower bound

of Q(.iV/logN) on the time complexity of any

message optimal leader election protocol. We

presented a protocol which requires O(N/togN)

time and O (iVlogN) messages. In [A G85], a

lower bound of fl(log.N) on the time complexity

of any message optimal protocol for synchronous

complete net works was shown. This proves that

introducing asynchrony may result in a loss in

speed by a factor of N/(logN)2. In [Si92], we

study the problem of leader election in partially

synchronous networks and present lower bounds

for such networks.

References

[AFL83]

[AG85]

Arjomandi, E., Fischer, M., and

Lynch, N. Efficiency of synchronous

versus asynchronous distributed sys-

tems. Journal of the ACM, 30(3),

1983.

Afek, Y. and Gafni, E. Time and

message bounds for election in syn-

chronous and asynchronous complete

[ALSZ89]

[BKWZ87]

[FL87]

[KMZ84]

[Lam78]

[LMW86]

[Si91]

[Si92]

networks. In Proceedings of ACM

Sym. on Principles of Distributed

Computing, 1985.

Attiya, H., Leeuwen, J., Santoro, N.,

and Zaks, S. Efficient elections in

chordal ring net works. A lgorithmica,

4, 1989.

Bar-Yehuda, R., Kutten, S., Wolf-

stahl, Y., and Zaks, S. Making

distributed spanning tree algorithms

fault-resilient. In STAG’S, 1987.

Fredrickson, G. and Lynch, N. The

impact of synchronous communica-

tion on the problem of electing a

leader in a ring. In Proceedings of

ACM Sym. on Theory of Computing,

1987.

Korach, E., Moran, S., and Zaks,

S. Tight lower and upper bounds

for some distributed algorithms for

a complete network of processors. In

Proceedings of A CM Sym. on Princi-

ples of Distributed Computing, 1984.

Lamport, L. Time, clocks, and

the ordering of events in a dis-

tributed system. Communciation of

the ACM, 21(7), July 1978.

Loui, M., Matsushita, T., and West,

D. Election in complete networks

wit h a sense of direction. Info. Pro-

cessing Letters, 22, April 1986.

Singh, G. Efficient distributed algo-

rithms for leader election. In IEEE

International Conference on Dis-

tributed Computing Systems, 1991.

Singh, G. Upper and lower bounds

for leader election in complete net-

works. In Technical Report 92-8,

Kansas State University, 1992.

190

