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Of all the decisions involved in computer-game AI, the most common
is probably pathfinding -- looking for a good route for moving an entity
from here to there. The entity can be a single person, a vehicle, or a
combat unit; the genre can be an action game, a simulator, a
role-playing game, or a strategy game. But any game in which the
computer is responsible for moving things around has to solve the
pathfinding problem. 

And this is not a trivial problem. Questions about pathfinding are
regularly seen in online game programming forums, and the entities
in several games move in less than intelligent paths. However,
although pathfinding is not trivial, there are some well-established,
solid algorithms that deserve to be known better in the game
community.

Several pathfinding algorithms are not very efficient, but studying
them serves us by introducing concepts incrementally. We can then
understand how different shortcomings are overcome. 

To demonstrate the workings of the algorithms visually, I have
developed a program in Delphi 2.0 called “PathDemo.” It is available
for readers to download. The article and demo assume that the
playing space is represented with square tiles. You can adapt the
concepts in the algorithms to other tilings, such as hexagons; ideas
for adapting them to continuous spaces are discussed at the end of
the article.

Pathfinding on the Move  

The typical problem in pathfinding is obstacle avoidance. The
simplest approach to the problem is to ignore the obstacles until one
bumps into them. The algorithm would look something like this:

while not at the goal
pick a direction to move toward the goal
if that direction is clear for movement
move there
else
pick another direction according to an avoidance strategy

This approach is simple because it makes few demands: all that
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needs to be known are the relative positions of the entity and its goal,
and whether the immediate vicinity is blocked. For many game
situations, this is good enough.

Different obstacle-avoidance strategies include:

Movement in a random direction.  If the obstacles are all small and
convex, the entity (shown as a green dot) can probably get around
them by moving a little bit away and trying again, until it reaches the
goal (shown as a red dot). Figure 1a shows this strategy at work. A
problem arises with this method if the obstacles are large or if they
are concave, as is seen in Figure 1b, the entity can get completely
stuck, or at least waste a lot of time before it stumbles onto a way
around. One way to avoid this: if a problem is too hard to deal with,
alter the game so it never comes up. That is, make sure there are
never any concave obstacles. 

Tracing around the obstacle.  Fortunately, there are other ways to
get around. If the obstacle is large, one can do the equivalent of
placing a hand against the wall and following the outline of the
obstacle until it is skirted. Figure 2a shows how well this can deal
with large obstacles. The problem with this technique comes in
deciding when to stop tracing. A typical heuristic may be: “Stop
tracing when you are heading in the direction you wanted to go when
you started tracing.” This would work in many situations, but Figure
2b shows how one may end up constantly circling around without
finding the way out.

Robust tracing.  A more robust heuristic comes from work on mobile
robots: “When blocked, calculate the equation of the line from your
current position to the goal. Trace until that line is again crossed.
Abort if you end up at the starting position again.” This method is
guaranteed to find a way around the obstacle if there is one, as is
seen in Figure 3a. (If the original point of blockage is between you
and the goal when you cross the line, be sure not to stop tracing, or
more circling will result.) Figure 3b shows the downside of this
approach: it will often take more time tracing the obstacle than is
needed, making it look pretty simple-mindedthough not as simple as
endless circling. A happy compromise would be to combine both
approaches: always use the simpler heuristic for stopping the tracing
first, but if circling is detected, switch to the robust heuristic.

Looking Before You Leap  

Although the obstacle-skirting techniques discussed above can often
do a passable or even adequate job, there are situations where the
only intelligent approach is to plan the entire route before the first
step is taken. In addition, these methods do little to handle the
problem of weighted regions, where the difficulty is not so much
avoiding obstacles as finding the cheapest path among several
choices where the terrain can vary in its cost. 

Fortunately, the fields of Graph Theory and conventional AI have
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several algorithms that can be used to handle both difficult obstacles
and weighted regions. In the literature, many of these algorithms are
presented in terms of changing between states, or traversing the
nodes of a graph. They are often used in solving a variety of
problems, including puzzles like the 15-puzzle or Rubik’s cube, where
a state is an arrangement of the tiles or cubes, and neighboring
states (or adjacent nodes) are visited by sliding one tile or rotating
one cube face. Applying these algorithms to pathfinding in geometric
space requires a simple adaptation: a state or a graph node stands
for the entity being in a particular tile, and moving to adjacent tiles
corresponds to moving to the neighboring states, or adjacent nodes.

Working from the simplest algorithms to the more robust, we have:

Breadth-first search.  Beginning at the start node, this algorithm first
examines all immediate neighboring nodes, then all nodes two steps
away, then three, and so on, until a goal node is found. Typically,
each node’s unexamined neighboring nodes are pushed onto an
Open list, which is usually a FIFO (first-in-first-out) queue. The
algorithm would go something like what is shown in Listing 1. Figure
4 shows how the search proceeds. We can see that it does find its
way around obstacles, and in fact it is guaranteed to find a shortest
paththat is, one of several paths that tie for the shortest in lengthif all
steps have the same cost. There are a couple of obvious problems.
One is that it fans out in all directions equally, instead of directing its
search towards the goal; the other is that all steps are not equalat
least the diagonal steps should be longer than the orthogonal ones. 

Bidirectional breadth-first search. This enhances the simple
breadth-first search by starting two simultaneous breadth-first
searches from the start and the goal nodes and stopping when a
node from one end’s search finds a neighboring node marked from
the other end’s search. As seen in Figure 5, this can save substantial
work from simple breadth-first search (typically by a factor of 2), but it
is still quite inefficient. Tricks like this are good to remember, though,
since they may come in handy elsewhere.

Dijkstra’s algorithm.  E. Dijkstra developed a classic algorithm for
traversing graphs with edges of differing weights. At each step, it
looks at the unprocessed node closest to the start node, looks at that
node’s neighbors, and sets or updates their respective distances
from the start. This has two advantages to the breadth-first search: it
takes a path’s length or cost into account and updates the goodness
of nodes if better paths to them are found. To implement this, the
Open list is changed from a FIFO queue to a priority queue, where
the node popped is the one with the best scorehere, the one with the
lowest cost path from the start. (See Listing 2.) We see in Figure 6
that Dijkstra’s algorithm adapts well to terrain cost. However, it still
has the weakness of breadth-width search in ignoring the direction to
the goal.

Depth-first search.  This search is the complement to breadth-first
search; instead of visiting all a node’s siblings before any children, it
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visits all of a node’s descendants before any of its siblings. To make
sure the search terminates, we must add a cutoff at some depth. We
can use the same code for this search as for breadth-first search, if
we add a depth parameter to keep track of each node’s depth and
change Open from a FIFO queue to a LIFO (last-in-first-out) stack. In
fact, we can eliminate the Open list entirely and instead make the
search a recursive routine, which would save the memory used for
Open. We need to make sure each tile is marked as “visited” on the
way out, and is unmarked on the way back, to avoid generating paths
that visit the same tile twice. In fact, Figure 7 shows that we need to
do more than that: the algorithm still can tangle around itself and
waste time in a maddening way. For geometric pathfinding, we can
add two enhancements. One would be to label each tile with the
length of the cheapest path found to it yet; the algorithm would then
never visit it again unless it had a cheaper path, or one just as cheap
but searching to a greater depth. The second would be to have the
search always look first at the children in the direction of the goal.
With these two enhancements checked, one sees that the depth-first
search finds a path quickly. Even weighted paths can be handled by
making the depth cut-off equal the total accumulated cost rather than
the total distance.

Iterative-deepening depth-first search.  Actually, there is still one fly
in the depth-first ointmentpicking the right depth cutoff. If it is too low,
it will not reach the goal; if too high, it will potentially waste time
exploring blind avenues too far, or find a weighted path which is too
costly. These problems are solved by doing iterative deepening, a
technique that carries out a depth-first search with increasing depth:
first one, then two, and so on until the goal is found. In the
pathfinding domain, we can enhance this by starting with a depth
equal to the straight-line distance from the start to the goal. This
search is asymptotically optimal among brute force searches in both
space and time.

Best-first search. This is the first heuristic search considered,
meaning that it takes into account domain knowledge to guide its
efforts. It is similar to Dijkstra’s algorithm, except that instead of the
nodes in Open being scored by their distance from the start, they are
scored by an estimate of the distance remaining to the goal. This
cost also does not require possible updating as Dijkstra’s does.
Figure 8 shows its performance. It is easily the fastest of the
forward-planning searches we have examined so far, heading in the
most direct manner to the goal. We also see its weaknesses. In
Figure 8a, we see that it does not take into account the accumulated
cost of the terrain, plowing straight through a costly area rather than
going around it. And in Figure 8b, we see that the path it finds around
the obstacle is not direct, but weaves around it in a manner
reminiscent of the hand-tracing techniques seen above.

The Star of the Search Algorithms (A* Search)  

The best-established algorithm for the general searching of optimal
paths is A* (pronounced “A-star”). This heuristic search ranks each
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node by an estimate of the best route that goes through that node.
The typical formula is expressed as:

f(n) = g(n) + h(n)

where: f(n)is the score assigned to node n g(n)is the actual cheapest
cost of arriving at n from the starth(n)is the heuristic estimate of the
cost to the goal from n 

So it combines the tracking of the previous path length of Dijkstra’s
algorithm, with the heuristic estimate of the remaining path from
best-first search. The algorithm proper is seen in Listing 3. Since
some nodes may be processed more than oncefrom finding better
paths to them laterwe use a new list called Closed to keep track of
them.

A* has a couple interesting properties. It is guaranteed to find the
shortest path, as long as the heuristic estimate, h(n), is
admissiblethat is, it is never greater than the true remaining distance
to the goal. It makes the most efficient use of the heuristic function:
no search that uses the same heuristic function h(n) and finds
optimal paths will expand fewer nodes than A*, not counting
tie-breaking among nodes of equal cost. In Figures 9a, 9b, and 9c we
see how A* deals with situations that gave problems to other search
algorithms.

How Do I Use A*?  

A* turns out to be very flexible in practice. Consider the different
parts of the algorithm.

The state would often be the tile or position the entity occupies. But if
needed, it can represent orientation and velocity as well (for example,
for finding a path for a tank or most any vehicletheir turn radius gets
worse the faster they go).

Neighboring states would vary depending on the game and the local
situation. Adjacent positions may be excluded because they are
impassable or are between the neighbors. Some terrain can be
passable for certain units but not for others; units that cannot turn
quickly cannot go to all neighboring tiles.

The cost of going from one position to another can represent many
things: the simple distance between the positions; the cost in time or
movement points or fuel between them; penalties for traveling
through undesirable places (such as points within range of enemy
artillery); bonuses for traveling through desirable places (such as
exploring new terrain or imposing control over uncontrolled locations);
and aesthetic considerationsfor example, if diagonal moves are just
as cheap as orthogonal moves, you may still want to make them cost
more, so that the routes chosen look more direct and natural.

The estimate is usually the minimum distance between the current
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node and the goal multiplied by the minimum cost between nodes.
This guarantees that h(n) is admissible. (In a map of square tiles
where units may only occupy points in the grid, the minimum distance
would not be the Euclidean distance, but the minimum number of
orthogonal and diagonal moves between the two points.)

The goal does not have to be a single location but can consist of
multiple locations. The estimate for a node would then be the
minimum of the estimate for all possible goals. Search cutoffs can be
included easily, to cover limits in path cost, path distance, or both.
From my own direct experience, I have seen the A* star search work
very well for finding a variety of types of paths in wargames and
strategy games.

The Limitations of A*  

There are situations where A* may not perform very well, for a variety
of reasons. The more or less real-time requirements of games, plus
the limitations of the available memory and processor time in some of
them, may make it hard even for A* to work well. A large map may
require thousands of entries in the Open and Closed list, and there
may not be room enough for that. Even if there is enough memory for
them, the algorithms used for manipulating them may be inefficient.

The quality of A*’s search depends on the quality of the heuristic
estimate h(n). If h is very close to the true cost of the remaining path,
its efficiency will be high; on the other hand, if it is too low, its
efficiency gets very bad. In fact, breadth-first search is an A* search,
with h being trivially zero for all nodesthis certainly underestimates
the remaining path cost, and while it will find the optimum path, it will
do so slowly. In Figure 10a, we see that while searching in expensive
terrain (shaded area), the frontier of nodes searched looks similar to
Dijkstra’s algorithm; in 10b, with the heuristic increased, the search is
more focused.

Let’s look at ways to make the A* search more efficient in problem
areas.

Transforming the Search Space  

Perhaps the most important improvement one can make is to
restructure the problem to be solved, making it an easier problem.
Macro-operators are sequences of steps that belong together and
can be combined into a single step, making the search take bigger
steps at a time. For example, airplanes take a series of steps in order
to change their orientation and altitude. A common sequence may be
used as a single change of state operator, rather than using the
smaller steps individually. In addition, search and general
problem-solving methods can be greatly simplified if they are reduced
to sub-problems, whose individual solutions are fairly simple. In the
case of pathfinding, a map can be broken down into large contiguous
areas whose connectivity is known. One or two border tiles between
each pair of adjacent areas are chosen; then the route is first laid out
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in by a search among adjacent areas, in each of which a route is
found from one border point to another. 

For example, in a strategic map of Europe, a path-finder searching
for a land route from Madrid to Athens would probably waste a fair
amount of time looking down the boot of Italy. Using countries as
areas, a hierarchical search would first determine that the route
would go from Spain to France to Italy to Yugoslavia (looking at an
old map) to Greece; and then the route through Italy would only need
to connect Italy’s border with France, to Italy’s border with
Yugoslavia. As another example, routes from one part of a building to
another can be broken down into a path of rooms and hallways to
take, and then the paths between doors in each room. 

It is much easier to choose areas in predefined maps than to have
the computer figure them out for randomly generated maps. Note
also that the examples discussed deal mainly with obstacle
avoidance; for weighted regions, it is trickier to assign useful regions,
especially for the computer (it may not very useful, either). 

Storing It Better 

Even if the A* search is relatively efficient by itself, it can be slowed
down by inefficient algorithms handling the data structures.
Regarding the search, two major data structures are involved. 

The first is the representation of the playing area. Many questions
have to be addressed. How will the playing field be represented? Will
the areas accessible from each spotand the costs of moving therebe
represented directly in the map or in a separate structure, or
calculated when needed? How will features in the area be
represented? Are they directly in the map, or separate structures?
How can the search algorithm access necessary information quickly?
There are too many variables concerning the type of game and the
hardware and software environment to give much detail about these
questions here.

The second major structure involved is the node or state of the
search, and this can be dealt with more explicitly. At the lower level is
the search state structure. Fields a developer might wish to include in
it are: 

The location (coordinates) of the map position being considered
at this state of the search. 
Other relevant attributes of the entity, such as orientation and
velocity. 
The cost of the best path from the source to this location. 
The length of the path up to this position. 
The estimate of the cost to the goal (or closest goal) from this
location. 
The score of this state, used to pick the next state to pop off
Open. 
A limit for the length of the search path, or its cost, or both, if
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applicable. 
A reference (pointer or index) to the parent of this nodethat is,
the node that led to this one. 

Additional references to other nodes, as needed by the data
structure used for storing the Open and Closed lists; for example,
“next” and maybe “previous” pointers for linked lists, “right,” “left,” and
“parent” pointers for binary trees.

Another issue to consider is when to allocate the memory for these
structures; the answer depends on the demands and constraints of
the game, hardware, and operating system.

On the higher level are the aggregate data structures the Open and
Closed lists. Although keeping them as separate structures is typical,
it is possible to keep them in the same structure, with a flag in the
node to show if it is open or not. The sorts of operations that need to
be done in the Closed list are:

Insert a new node.
Remove an arbitrary node.
Search for a node having certain attributes (location,
speed, direction).
Clear the list at the end of the search.

The Open list does all these, and in addition will:

Pop the node with the best score. 
Change the score of a node. 

The Open list can be thought of as a priority queue, where the next
item popped off is the one with the the highest priority in our case,
the best score. Given the operations listed, there are several
possible representations to consider: a linear, unordered array; an
unordered linked list; a sorted array; a sorted linked list; a heap (the
structure used in a heap sort); a balanced binary search tree. 

There are several types of binary search trees: 2-3-4 trees, red-black
trees, height-balanced trees (AVL trees), and weight-balanced trees.
Heaps and balanced search trees have the advantage of logarithmic
times for insertion, deletion, and search; however, if the number of
nodes is rarely large, they may not be worth the overhead they
require.

Fine-Tuning Your Search Engine 

There are also ways of tweaking the search algorithm to help get
good results while working with limited resources: 

Beam search. One way of dealing with restricted memory is to limit
the number of nodes on the Open list; when it is full and a new node
is to be inserted, simply drop the node with the worst rating. The
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Closed list could also be eliminated, if each tile stores its best path
length. There is no promise of an optimal path since the node leading
to it may be dropped, but it may still allow finding a reasonable path. 

Iterative-deepening A*.  The iterative-deepening technique used for
depth-first search (IDDFS) as mentioned above can also be used for
an A* search. This entirely eliminates the Open and Closed lists. Do
a simple recursive search, keep track of the accumulated path cost
g(n), and cut off the search when the rating f(n) = g(n) + h(n)
exceeds the limit. Begin the first iteration with the cutoff equal to
h(start), and in each succeeding iteration, make the new cutoff the
smallest f(n) value which exceeded the old cutoff. Similar to IDDFS
among brute-force searches, IDA* is asymptotically optimal in space
and time usage among heuristic searches. 

Inadmissible heuristic h(n).  As discussed above, if the heuristic
estimate h(n) of the remaining path cost is too low, then A* can be
quite inefficient. But if the estimate is too high, then the path found is
not guaranteed to be optimal and may be abysmal. In games where
the range of terrain cost is widefrom swamps to freewaysyou may try
experimenting with various intermediate cost estimates to find the
right balance between the efficiency of the search and the quality of
the resulting path. 

There are also other algorithms that are variations of A*. Having
toyed with some of them in PathDemo, I believe that they are not
very useful for the geometric pathfinding domain.

What if I’m in a Smooth World? 

All these search methods have assumed a playing area composed of
square or hexagonal tiles. What if the game play area is continuous?
What if the positions of both entities and obstacles are stored as
floats, and can be as finely determined as the resolution of the
screen? Figure 11a shows a sample layout. For answers to these
search conditions, we can look at the field of robotics and see what
sort of approaches are used for the path-planning of mobile robots.
Not surprisingly, many approaches find some way to reduce the
continuous space into a few important discrete choices for
consideration. After this, they typically use A* to search among them
for a desirable path. Ways of quantizing the space include: Tiles. A
simple approach is to slap a tile grid on top of the space. Tiles that
contain all or part of an obstacle are labeled as blocked; a fringe of
tiles touching the blocked tiles is also labeled as blocked to allow a
buffer of movement without collision. This representation is also
useful for weighted regions problems. See Figure 11b. 

Points of visibility. For obstacle avoidance problems, you can focus
on the critical points, namely those near the vertices of the obstacles
(with enough space away from them to avoid collisions), with points
being considered connected if they are visible from each other (that
is, with no obstacle between them). For any path, the search
considers only the critical points as intermediate steps between start
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and goal. See Figure 11c. 

Convex polygons.  For obstacle avoidance, the space not occupied
by polygonal obstacles can be broken up into convex polygons; the
intermediate spots in the search can be the centers of the polygons,
or spots on the borders of the polygons. Schemes for decomposing
the space include: C-Cells (each vertex is connected to the nearest
visible vertex; these lines partition the space) and Maximum-Area
decomposition (each convex vertex of an obstacle projects the edges
forming the vertex to the nearest obstacles or walls; between these
two segments and the segment joining to the nearest visible vertex,
the shortest is chosen). See Figure 11d. For weighted regions
problems, the space is divided into polygons of homogeneous
traversal cost. The points to aim for when crossing boundaries are
computed using Snell’s Law of Refraction. This approach avoids the
irregular paths found by other means. 

Quadtrees.  Similar to the convex polygons, the space is divided into
squares. Each square that isn’t close to being homogenous is
divided into four smaller squares, recursively. The centers of these
squares are used for searching a path. See Figure 11e. 

Generalized cylinders.  The space between adjacent obstacles is
considered a cylinder whose shape changes along its axis. The axis
traversing the space between each adjacent pair of obstacles
(including walls) is computed, and the axes are the paths used in the
search. See Figure 11f. 

Potential fields.  An approach that does not quantize the space, nor
require complete calculation beforehand, is to consider that each
obstacle has a repulsive potential field around it, whose strength is
inversely proportional to the distance from it; there is also a uniform
attractive force to the goal. At close regular time intervals, the sum of
the attractive and repulsive vectors is computed, and the entity
moves in that direction. A problem with this approach is that it may
fall into a local minimum; various ways of moving out of such spots
have been devised. 

Bryan Stout has done work in “real” AI for Martin Marietta and in computer
games for MicroProse. He is preparing a book on computer game AI to be
published by Addison-Wesley.  
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