General: J. G. Carbonell, editor, "Machine Learning: Paradigms and Methods", MIT Press, Cambridge, MA 1990. Jude W. Shavlik and Thomas D. Dietterich, editors, "Readings in Machine Learning", Morgan Kaufmann Publishers, 1990, 853 pages. ISBN 1-55860-143-0, $49.95. Tom Mitchell, Jaime G. Carbonell, and Ryszard S. Michalski, "Machine Learning: A guide to current research", Kluwer Academic Publishers, Boston, 1986. [A bit out of date.] Alan Hutchinson, "Algorithmic Learning", Oxford University Press, Oxford, England, 1994. 434 pages, ISBN 0-19-853848-0 paper (27.50 Sterling), ISBN 0-19-853766-2 hardcover (55.00 Sterling). Corrections and additions are available by anonymous ftp from dcs.kcl.ac.uk:/ftp/pub/alg-learn/ [137.73.8.10] [See also the article on Machine Learning from the Encyclopedia of Artificial Intelligence, pages 464-485.] Decision Trees: Quinlan, J. Ross, "Induction of Decision Trees", Machine Learning 1(1):81-106, 1986. Quinlan, J. Ross, "C4.5: Programs for Machine Learning", Morgan Kaufmann Publishers, 1992. ISBN 1-55860-238-0. $44.95 US, $49.45 International. For a slight additional charge ($25), the book comes with software (ISBN 1-55860-240-2). For software only, (ISBN 1-55860-239-9) $34.95 US, $38.45 International. Probabilistic Clustering: Fisher, D.H., "Knowledge Acquisition Via Incremental Conceptual Clustering", Machine Learning 2:139-172, 1987. (Probabilistic clustering methods.) Clancey, W.J., "Classification Problem Solving", Proceedings of the National Conference on Artificial Intelligence, 49-55, Los Altos, CA, Morgan Kaufmann. 1984. Version Spaces: Tom M. Mitchell, "Generalization as Search", Artificial Intelligence 18:203-226, 1982. Machine Discovery: Langley, P., and Zytkow, J. M., "Data-driven approaches to empirical discovery", Artificial Intelligence 40:283-312, 1989. Langley, P., Simon, H.A., Bradshaw, G.L., and Zytkow, J.M., "Scientific Discovery: Computational Explorations of the Creative Processes", MIT Press, Cambridge, MA, 1987. Langley, P., Simon, H.A. and Bradshaw, G.L., "Heuristics for Empirical Discovery", in L. Bolc, editor, Computational Models of Learning, Springer-Verlag, 1987. Also appears as CMU CS Tech Report CMU-CS-84-14. Chunking: Laird J.E., Rosenbloom, P.S. and Newell, A., "Chunking in SOAR: The Anatomy of a General Learning Mechanism", Machine Learning 1:1-46, 1986. Explanation-Based Learning: Mitchell, Tom M., Keller, R. M., and Kedar-Cabelli, S. T., "Explanation-based learning: A unified view", Machine Learning 1:47-80, 1986. Derivational Analogy: Carbonell, J. G., "Derivational analogy: A theory of reconstructive problem solving and expertise acquisition." In R.S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, Morgan Kaufmann Publishers, San Mateo, CA, 1986. Theoretical Results: Leslie G. Valiant, "A theory of the learnable", Communications of the ACM, 27(11):1134--1142, 1984. Haussler, D., "Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning Framework", Artificial Intelligence, 36:177-221, 1988.Go Back Up