[8] Machine Learning
General:
J. G. Carbonell, editor, "Machine Learning: Paradigms and Methods", MIT
Press, Cambridge, MA 1990.
Jude W. Shavlik and Thomas D. Dietterich, editors, "Readings in
Machine Learning", Morgan Kaufmann Publishers, 1990, 853 pages.
ISBN 1-55860-143-0, $49.95.
Tom Mitchell, Jaime G. Carbonell, and Ryszard S. Michalski,
"Machine Learning: A guide to current research", Kluwer Academic
Publishers, Boston, 1986. [A bit out of date.]
Alan Hutchinson, "Algorithmic Learning", Oxford University Press,
Oxford, England, 1994. 434 pages, ISBN 0-19-853848-0 paper (27.50
Sterling), ISBN 0-19-853766-2 hardcover (55.00 Sterling). Corrections and
additions are available by anonymous ftp from
dcs.kcl.ac.uk:/ftp/pub/alg-learn/ [137.73.8.10]
[See also the article on Machine Learning from the Encyclopedia of
Artificial Intelligence, pages 464-485.]
Decision Trees:
Quinlan, J. Ross, "Induction of Decision Trees", Machine Learning
1(1):81-106, 1986.
Quinlan, J. Ross, "C4.5: Programs for Machine Learning", Morgan Kaufmann
Publishers, 1992. ISBN 1-55860-238-0. $44.95 US, $49.45 International.
For a slight additional charge ($25), the book comes with software (ISBN
1-55860-240-2). For software only, (ISBN 1-55860-239-9) $34.95 US,
$38.45 International.
Probabilistic Clustering:
Fisher, D.H., "Knowledge Acquisition Via Incremental Conceptual
Clustering", Machine Learning 2:139-172, 1987. (Probabilistic
clustering methods.)
Clancey, W.J., "Classification Problem Solving", Proceedings of the
National Conference on Artificial Intelligence, 49-55, Los Altos, CA,
Morgan Kaufmann. 1984.
Version Spaces:
Tom M. Mitchell, "Generalization as Search", Artificial Intelligence
18:203-226, 1982.
Machine Discovery:
Langley, P., and Zytkow, J. M., "Data-driven approaches to empirical
discovery", Artificial Intelligence 40:283-312, 1989.
Langley, P., Simon, H.A., Bradshaw, G.L., and Zytkow, J.M.,
"Scientific Discovery: Computational Explorations of the Creative
Processes", MIT Press, Cambridge, MA, 1987.
Langley, P., Simon, H.A. and Bradshaw, G.L., "Heuristics for
Empirical Discovery", in L. Bolc, editor, Computational Models
of Learning, Springer-Verlag, 1987. Also appears as CMU CS
Tech Report CMU-CS-84-14.
Chunking:
Laird J.E., Rosenbloom, P.S. and Newell, A., "Chunking in SOAR: The
Anatomy of a General Learning Mechanism", Machine Learning
1:1-46, 1986.
Explanation-Based Learning:
Mitchell, Tom M., Keller, R. M., and Kedar-Cabelli, S. T.,
"Explanation-based learning: A unified view", Machine Learning
1:47-80, 1986.
Derivational Analogy:
Carbonell, J. G., "Derivational analogy: A theory of
reconstructive problem solving and expertise acquisition." In R.S.
Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors, Machine
Learning: An Artificial Intelligence Approach, Morgan Kaufmann
Publishers, San Mateo, CA, 1986.
Theoretical Results:
Leslie G. Valiant, "A theory of the learnable", Communications
of the ACM, 27(11):1134--1142, 1984.
Haussler, D., "Quantifying Inductive Bias: AI Learning
Algorithms and Valiant's Learning Framework", Artificial Intelligence,
36:177-221, 1988.
Go Back Up
Go To Previous
Go To Next