First-ORDER LOGIC

Chapter 7

Outline

\diamond Why FOL?
\diamond Syntax and semantics of FOL
\diamond Fun with sentences
\diamond Wumpus world in FOL

Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to factsPropositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)Propositional logic is compositional:meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)Propositional logic has very limited expressive power (unlike natural language) E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First-order logic

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries ...
- Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, beginning of . . .

Logics in general

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in[0,1]$
Fuzzy logic	degree of truth $\in[0,1]$	known interval value

Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB,...
Predicates Brother, $>, \ldots$
Functions Sqrt, LeftLegOf,...
Variables $\quad x, y, a, b, \ldots$
Connectives $\wedge \vee \neg \Rightarrow \Leftrightarrow$
Equality $=$
Quantifiers $\quad \forall \exists$

Atomic sentences

```
Atomic sentence \(=\) predicate \(\left(\right.\) term \(_{1}, \ldots\), term \(\left._{n}\right)\)
                        or term \(_{1}=\) term \(_{2}\)
Term \(=\) function \(\left(\right.\) term \(_{1}, \ldots\), term \(\left._{n}\right)\)
        or constant or variable
E.g., Brother(KingJohn, RichardTheLionheart)
\(>(\) Length \((\) LeftLegOf(Richard \())\), Length(LeftLegOf(KingJohn \())\) )
```


Complex sentences

Complex sentences are made from atomic sentences using connectives

$$
\neg S, \quad S_{1} \wedge S_{2}, \quad S_{1} \vee S_{2}, \quad S_{1} \Rightarrow S_{2}, \quad S_{1} \Leftrightarrow S_{2}
$$

E.g. Sibling (KingJohn, Richard $) \Rightarrow$ Sibling(Richard, KingJohn)
$>(1,2) \vee \leq(1,2)$
$>(1,2) \wedge \neg>(1,2)$

Truth in first-order logic

Sentences are true with respect to a model and an interpretation
Model contains ≥ 1 objects (domain elements) and relations among them
Interpretation specifies referents for
constant symbols \rightarrow objects
predicate symbols \rightarrow relations
function symbols \rightarrow functional relations
An atomic sentence predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by $\operatorname{term}_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate

Models for FOL: Example

Models for FOL: Lots!

We can enumerate the models for a given KB vocabulary:
For each number of domain elements n from 1 to ∞
For each k-ary predicate P_{k} in the vocabulary
For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary For each choice of referent for C from n objects ...

Computing entailment by enumerating models is not going to be easy!

Universal quantification

$\forall\langle$ variables $\rangle\langle$ sentence \rangle
Everyone at Berkeley is smart:
$\forall x \operatorname{At}(x$, Berkeley $) \Rightarrow \operatorname{Smart}(x)$
$\forall x P$ is true in a model m iff P with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

$$
\begin{aligned}
& \text { At }(\text { KingJohn, Berkeley }) \Rightarrow \text { Smart }(\text { KingJohn }) \\
\wedge & \text { At }(\text { Richard, Berkeley }) \Rightarrow \text { Smart }(\text { Richard }) \\
\wedge & \text { At }(\text { Berkeley, Berkeley }) \Rightarrow \text { Smart } \text { Berkeley }) \\
\wedge & \ldots
\end{aligned}
$$

Typically, \Rightarrow is the main connective with \forall
Common mistake: using \wedge as the main connective with \forall :
$\forall x \operatorname{At}(x, \operatorname{Berkeley}) \wedge \operatorname{Smart}(x)$
means "Everyone is at Berkeley and everyone is smart"

Existential quantification

$\exists\langle$ variables $\rangle\langle$ sentence \rangle
Someone at Stanford is smart:
$\exists x \operatorname{At}(x, \operatorname{Stanford}) \wedge \operatorname{Smart}(x)$
$\exists x P$ is is true in a model m iff P with x being each possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

$$
\begin{aligned}
& \text { At }(\text { KingJohn }, \text { Stanford }) \wedge \operatorname{Smart}(\text { KingJohn }) \\
\vee & \text { At }(\text { Richard }, \text { Stanford }) \wedge \text { Smart }(\text { Richard }) \\
\vee & \text { At }(\text { Stanford }, \text { Stanford }) \wedge \operatorname{Smart}(\text { Stanford }) \\
\vee & \ldots
\end{aligned}
$$

Another common mistake to avoid

Typically, \wedge is the main connective with \exists
Common mistake: using \Rightarrow as the main connective with \exists :
$\exists x \operatorname{At}(x, \operatorname{Stanford}) \Rightarrow \operatorname{Smart}(x)$
is true if there is anyone who is not at Stanford!

Properties of quantifiers

$\forall x \forall y$ is the same as $\forall y \forall x$ (why??)
$\exists x \exists y$ is the same as $\exists y \exists x$ (why??)
$\exists x \forall y$ is not the same as $\forall y \exists x$
$\exists x \forall y \operatorname{Loves}(x, y)$
"There is a person who loves everyone in the world"
$\forall y \exists x \operatorname{Loves}(x, y)$
"Everyone in the world is loved by at least one person"
Quantifier duality: each can be expressed using the other
$\forall x \operatorname{Likes}(x$, IceCream $) \quad \neg \exists x \neg \operatorname{Likes}(x$, IceCream)
$\exists x \operatorname{Likes}(x$, Broccoli $) \quad \neg \forall x \neg \operatorname{Likes}(x$, Broccoli $)$

Brothers are siblings

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
One's mother is one's female parent

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$.
A first cousin is a child of a parent's sibling

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$.
A first cousin is a child of a parent's sibling
$\forall x, y \operatorname{FirstCousin}(x, y) \Leftrightarrow \exists p, p s \operatorname{Parent}(p, x) \wedge \operatorname{Sibling}(p s, p) \wedge$ Parent $(p s, y)$

Equality

term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term $_{1}$ and term m_{2} refer to the same object

$$
\text { E.g., } \begin{aligned}
& 1=2 \text { and } \forall x \times(\operatorname{Sqrt}(x), \operatorname{Sqrt}(x))=x \text { are satisfiable } \\
& 2=2 \text { is valid }
\end{aligned}
$$

E.g., definition of (full) Sibling in terms of Parent:

$$
\begin{aligned}
& \forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge \\
& \quad \text { Parent }(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]
\end{aligned}
$$

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:

Tell(KB, Percept ([Smell, Breeze, None], 5))
$\operatorname{Ask}(K B, \exists a \operatorname{Action}(a, 5))$
I.e., does the KB entail any particular actions at $t=5$?

Answer: Yes, $\{a /$ Shoot $\} \quad \leftarrow$ substitution (binding list)
Given a sentence S and a substitution σ,
$S \sigma$ denotes the result of plugging σ into S; e.g.,
$S=\operatorname{Smarter}(x, y)$
$\sigma=\{x /$ Hillary,$y /$ Bill $\}$
$S \sigma=$ Smarter (Hillary, Bill)
$\operatorname{Ask}(K B, S)$ returns some/all σ such that $K B \models S \sigma$

Knowledge base for the wumpus world

"Perception"
$\forall b, g, t \operatorname{Percept}([S m e l l, b, g], t) \Rightarrow \operatorname{Smelt}(t)$
$\forall s, b, t \operatorname{Percept}([s, b$, Glitter $], t) \Rightarrow \operatorname{AtGold}(t)$
Reflex: $\forall t \operatorname{AtGold}(t) \Rightarrow \operatorname{Action}(G r a b, t)$
Reflex with internal state: do we have the gold already?
$\forall t$ AtGold $(t) \wedge \neg$ Holding $($ Gold,$t) \Rightarrow$ Action $(G r a b, t)$
Holding (Gold, t) cannot be observed
\Rightarrow keeping track of change is essential

Deducing hidden properties

Properties of locations:
$\forall x, t$ At (Agent, $x, t) \wedge \operatorname{Smelt}(t) \Rightarrow \operatorname{Smelly}(x)$
$\forall x, t \operatorname{At}($ Agent $, x, t) \wedge \operatorname{Breeze}(t) \Rightarrow \operatorname{Breezy}(x)$
Squares are breezy near a pit:
Diagnostic rule-infer cause from effect

$$
\forall y \operatorname{Breezy}(y) \Rightarrow \exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)
$$

Causal rule-infer effect from cause

$$
\forall x, y \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y) \Rightarrow \operatorname{Breez} y(y)
$$

Neither of these is complete-e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

$$
\forall y \operatorname{Breezy}(y) \Leftrightarrow[\exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)]
$$

Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function
$\operatorname{Result}(a, s)$ is the situation that results from doing a in s

Describing actions I

"Effect" axiom—describe changes due to action
$\forall s$ AtGold $(s) \Rightarrow$ Holding $($ Gold, Result $(G r a b, s))$
"Frame" axiom-describe non-changes due to action $\forall s$ HaveArrow $(s) \Rightarrow \operatorname{Have} \operatorname{Arrow}(\operatorname{Result}(G r a b, s))$

Frame problem: find an elegant way to handle non-change
(a) representation-avoid frame axioms
(b) inference-avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveatswhat if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequenceswhat about the dust on the gold, wear and tear on gloves, ...

Describing actions II

Successor-state axioms solve the representational frame problem
Each axiom is "about" a predicate (not an action per se):

```
P true afterwards }\Leftrightarrow\mathrm{ [an action made P true
    V true already and no action made P false]
```

For holding the gold:

$$
\begin{aligned}
& \forall a, s \operatorname{Holding}(\operatorname{Gold}, \operatorname{Result}(a, s)) \Leftrightarrow \\
& \quad[(a=\operatorname{Grab} \wedge \text { AtGold}(s)) \\
& \quad \vee(\text { Holding }(\text { Gold }, s) \wedge a \neq \text { Release })]
\end{aligned}
$$

Making plans

Initial condition in KB:

$$
\begin{aligned}
& \text { At }\left(\text { Agent, }[1,1], S_{0}\right) \\
& \operatorname{At}\left(\text { Gold, }[1,2], S_{0}\right)
\end{aligned}
$$

Query: $\operatorname{Ask}(K B, \exists s$ Holding $(G o l d, s))$
i.e., in what situation will I be holding the gold?

Answer: $\left\{s / \operatorname{Result}\left(G r a b, \operatorname{Result}\left(\right.\right.\right.$ Forward,$\left.\left.\left.S_{0}\right)\right)\right\}$
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_{0} and that S_{0} is the only situation described in the KB

Making plans: A better way

Represent plans as action sequences $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$
PlanResult (p, s) is the result of executing p in s
Then the query $\operatorname{Ask}\left(K B, \exists p \operatorname{Holding}\left(\operatorname{Gold}, \operatorname{PlanResult}\left(p, S_{0}\right)\right)\right)$ has the solution $\{p /[$ Forward, Grab $]\}$

Definition of PlanResult in terms of Result:
$\forall s$ PlanResult $([], s)=s$
$\forall a, p, s$ PlanResult $([a \mid p], s)=\operatorname{PlanResult}(p, \operatorname{Result}(a, s))$
Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world
Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB

