PLANNING AND ACTING

Chapter 13

Outline

- \Diamond The real world
- ♦ Conditional planning
- \Diamond Monitoring and replanning

The real world

START

~Flat(Spare) Intact(Spare) Off(Spare) On(Tire1) Flat(Tire1) $On(x) \sim Flat(x)$

FINISH

On(x)

Remove(x)

Off(x) ClearHub

Off(x) ClearHub

Puton(x)

On(x) ~ClearHub

Intact(x) Flat(x)

Inflate(x)

~Flat(x)

Things go wrong

Incomplete information

```
Unknown preconditions, e.g., Intact(Spare)?
Disjunctive effects, e.g., Inflate(x) causes Inflated(x) \vee SlowHiss(x) \vee Burst(x) \vee BrokenPump \vee \dots
```

Incorrect information

Current state incorrect, e.g., spare NOT intact Missing/incorrect postconditions in operators

Qualification problem:

can never finish listing all the required preconditions and possible conditional outcomes of actions

Solutions

Conformant or sensorless planning

Devise a plan that works regardless of state or outcome Such plans may not exist

Conditional planning

Plan to obtain information (observation actions)

Subplan for each contingency, e.g.,

 $[Check(Tire1), \mathbf{if}\ Intact(Tire1)\ \mathbf{then}\ Inflate(Tire1)\ \mathbf{else}\ CallAAA]$

Expensive because it plans for many unlikely cases

Monitoring/Replanning

Assume normal states, outcomes

Check progress during execution, replan if necessary Unanticipated outcomes may lead to failure (e.g., no AAA card)

(Really need a combination; plan for likely/serious eventualities, deal with others when they arise, as they must eventually)

Conformant planning

Search in space of belief states (sets of possible actual states)

Conditional planning

If the world is nondeterministic or partially observable then percepts usually *provide information*, i.e., *split up* the belief state

Conditional planning contd.

Conditional plans check (any consequence of KB +) percept

 $[\ldots, \mathbf{if}\ C\ \mathbf{then}\ Plan_A\ \mathbf{else}\ Plan_B, \ldots]$

Execution: check C against current KB, execute "then" or "else"

Need *some* plan for *every* possible percept

(Cf. game playing: *some* response for *every* opponent move)

(Cf. backward chaining: some rule such that every premise satisfied

AND-OR tree search (very similar to backward chaining algorithm)

Double Murphy: sucking or arriving may dirty a clean square

Triple Murphy: also sometimes stays put instead of moving

 $[L_1: Left, if AtR then L_1 else [if CleanL then [] else Suck]]$ or [while AtR do [Left], if CleanL then [] else Suck] "Infinite loop" but will eventually work unless action always fails

Execution Monitoring

"Failure" = preconditions of *remaining plan* not met

Preconditions of remaining plan

- = all preconditions of remaining steps not achieved by remaining steps
- = all causal links *crossing* current time point

On failure, resume POP to achieve open conditions from current state

IPEM (Integrated Planning, Execution, and Monitoring): keep updating Start to match current state links from actions replaced by links from Start when done

Emergent behavior

Emergent behavior

Emergent behavior

"Loop until success" behavior *emerges* from interaction between monitor/replan agent design and uncooperative environment