Rational DECISIONS

Chapter 16
\diamond Rational preferences
\diamond Utilities
\diamond Money
\diamond Multiattribute utilities
\diamond Decision networks
\diamond Value of information

Preferences

An agent chooses among prizes $(A, B$, etc.) and lotteries, i.e., situations with uncertain prizes

Lottery $L=[p, A ;(1-p), B]$

Notation:
$A \succ B \quad A$ preferred to B
$A \sim B \quad$ indifference between A and B
$A \succsim B \quad B$ not preferred to A

Rational preferences

Idea: preferences of a rational agent must obey constraints.
Rational preferences \Rightarrow
behavior describable as maximization of expected utility
Constraints:
Orderability

$$
(A \succ B) \vee(B \succ A) \vee(A \sim B)
$$

Transitivity

$$
(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)
$$

Continuity

$$
A \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B
$$

Substitutability

$$
A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]
$$

Monotonicity

$$
A \succ B \Rightarrow(p \geq q \Leftrightarrow[p, A ; 1-p, B] \succsim[q, A ; 1-q, B])
$$

Rational preferences contd.

Violating the constraints leads to self-evident irrationality
For example: an agent with intransitive preferences can be induced to give away all its money

If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B

If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A

If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C

Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints there exists a real-valued function U such that

$$
\begin{aligned}
& U(A) \geq U(B) \quad \Leftrightarrow \quad A \succsim B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

MEU principle:
Choose the action that maximizes expected utility
Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
E.g., a lookup table for perfect tictactoe

Utilities

Utilities map states to real numbers. Which numbers?
Standard approach to assessment of human utilities: compare a given state A to a standard lottery L_{p} that has "best possible prize" u_{\top} with probability p "worst possible catastrophe" u_{\perp} with probability $(1-p)$ adjust lottery probability p until $A \sim L_{p}$

Utility scales

Normalized utilities: $u_{\top}=1.0, u_{\perp}=0.0$
Micromorts: one-millionth chance of death useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation

$$
U^{\prime}(x)=k_{1} U(x)+k_{2} \quad \text { where } k_{1}>0
$$

With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Money

Money does not behave as a utility function
Given a lottery L with expected monetary value $E M V(L)$, usually $U(L)<U(E M V(L))$, i.e., people are risk-averse

Utility curve: for what probability p am I indifferent between a prize x and a lottery $[p, \$ M ;(1-p), \$ 0]$ for large M ?

Typical empirical data, extrapolated with risk-prone behavior:

Student group utility

For each x, adjust p until half the class votes for lottery $(\mathrm{M}=10,000)$

Decision networks

Add action nodes and utility nodes to belief networks to enable rational decision making

Algorithm:
For each value of action node compute expected value of utility node given action, evidence
Return MEU action
Multiattribute utility

How can we handle utility functions of many variables $X_{1} \ldots X_{n}$? E.g., what is $U($ Deaths, Noise, Cost)?

How can complex utility functions be assessed from preference behaviour?
Idea 1: identify conditions under which decisions can be made without complete identification of $U\left(x_{1}, \ldots, x_{n}\right)$

Idea 2: identify various types of independence in preferences and derive consequent canonical forms for $U\left(x_{1}, \ldots, x_{n}\right)$

Strict dominance

Typically define attributes such that U is monotonic in each
Strict dominance: choice B strictly dominates choice A iff
$\forall i \quad X_{i}(B) \geq X_{i}(A) \quad($ and hence $U(B) \geq U(A))$

Deterministic attributes

Uncertain attributes

Strict dominance seldom holds in practice

Stochastic dominance

Distribution p_{1} stochastically dominates distribution p_{2} iff

$$
\forall t \int_{-\infty}^{t} p_{1}(x) d x \leq \int_{-\infty}^{t} p_{2}(t) d t
$$

If U is monotonic in x, then A_{1} with outcome distribution p_{1} stochastically dominates A_{2} with outcome distribution p_{2} :

$$
\int_{-\infty}^{\infty} p_{1}(x) U(x) d x \geq \int_{-\infty}^{\infty} p_{2}(x) U(x) d x
$$

Multiattribute case: stochastic dominance on all attributes \Rightarrow optimal

Stochastic dominance contd.

Stochastic dominance can often be determined without exact distributions using qualitative reasoning
E.g., construction cost increases with distance from city
S_{1} is closer to the city than S_{2}
$\Rightarrow \quad S_{1}$ stochastically dominates S_{2} on cost
E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:
$X \xrightarrow{+} Y(X$ positively influences $Y)$ means that
For every value z of Y 's other parents Z
$\forall x_{1}, x_{2} \quad x_{1} \geq x_{2} \Rightarrow \mathbf{P}\left(Y \mid x_{1}, \mathbf{z}\right)$ stochastically dominates $\mathbf{P}\left(Y \mid x_{2}, \mathbf{z}\right)$

Label the arcs + or -

Preference structure: Deterministic

X_{1} and X_{2} preferentially independent of X_{3} iff preference between $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ and $\left\langle x_{1}^{\prime}, x_{2}^{\prime}, x_{3}\right\rangle$
does not depend on x_{3}
E.g., \langle Noise, Cost, Safety \rangle :
$\langle 20,000$ suffer, $\$ 4.6$ billion, 0.06 deaths $/ \mathrm{mpm}\rangle$ vs.
$\langle 70,000$ suffer, $\$ 4.2$ billion, 0.06 deaths $/ \mathrm{mpm}\rangle$
Theorem (Leontief, 1947): if every pair of attributes is P.I. of its complement, then every subset of attributes is P.I of its complement: mutual P.I..

Theorem (Debreu, 1960): mutual P.I. $\Rightarrow \exists$ additive value function:

$$
V(S)=\sum_{i} V_{i}\left(X_{i}(S)\right)
$$

Hence assess n single-attribute functions; often a good approximation

Preference structure: Stochastic

Need to consider preferences over lotteries:
X is utility-independent of Y iff preferences over lotteries in \mathbf{X} do not depend on \mathbf{y}

Mutual U.I.: each subset is U.I of its complement
$\Rightarrow \exists$ multiplicative utility function:

$$
\begin{aligned}
U= & k_{1} U_{1}+k_{2} U_{2}+k_{3} U_{3} \\
& +k_{1} k_{2} U_{1} U_{2}+k_{2} k_{3} U_{2} U_{3}+k_{3} k_{1} U_{3} U_{1} \\
& +k_{1} k_{2} k_{3} U_{1} U_{2} U_{3}
\end{aligned}
$$

Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions

Value of information

Idea: compute value of acquiring each possible piece of evidence Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth k
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is $k / 2$
"Consultant" offers accurate survey of A. Fair price?
Solution: compute expected value of information
$=$ expected value of best action given the information minus expected value of best action without information
Survey may say "oil in A" or "no oil in A", prob. 0.5 each (given!)
$=[0.5 \times$ value of "buy A" given "oil in A"
$+0.5 \times$ value of "buy B" given "no oil in A"]

- 0
$=(0.5 \times k / 2)+(0.5 \times k / 2)-0=k / 2$

General formula

Current evidence E, current best action α
Possible action outcomes S_{i}, potential new evidence E_{j}

$$
E U(\alpha \mid E)=\max _{a} \Sigma_{i} U\left(S_{i}\right) P\left(S_{i} \mid E, a\right)
$$

Suppose we knew $E_{j}=e_{j k}$, then we would choose $\alpha_{e_{j k}}$ s.t.

$$
E U\left(\alpha_{e_{j k}} \mid E, E_{j}=e_{j k}\right)=\max _{a} \sum_{i} U\left(S_{i}\right) P\left(S_{i} \mid E, a, E_{j}=e_{j k}\right)
$$

E_{j} is a random variable whose value is currently unknown \Rightarrow must compute expected gain over all possible values:

$$
V P I_{E}\left(E_{j}\right)=\left(\sum_{k} P\left(E_{j}=e_{j k} \mid E\right) E U\left(\alpha_{e_{j k}} \mid E, E_{j}=e_{j k}\right)\right)-E U(\alpha \mid E)
$$

$(\mathrm{VPI}=$ value of perfect information $)$

Properties of VPI

Nonnegative-in expectation, not post hoc

$$
\forall j, E \quad V P I_{E}\left(E_{j}\right) \geq 0
$$

Nonadditive-consider, e.g., obtaining E_{j} twice

$$
V P I_{E}\left(E_{j}, E_{k}\right) \neq V P I_{E}\left(E_{j}\right)+V P I_{E}\left(E_{k}\right)
$$

Order-independent

$$
V P I_{E}\left(E_{j}, E_{k}\right)=V P I_{E}\left(E_{j}\right)+V P I_{E, E_{j}}\left(E_{k}\right)=V P I_{E}\left(E_{k}\right)+V P I_{E, E_{k}}\left(E_{j}\right)
$$

Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal
\Rightarrow evidence-gathering becomes a sequential decision problem

Qualitative behaviors

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c) Choice is nonobvious, information worth little

