Prednáška
"Evolučné algoritmy"
MFF UK,
4. ročník, odbor "informatika"
Šk.r.
2001/02, semester zimný
Dátum
prednášky: utorok o 11.30 hod, poslucháreň V
Sylabus prednášky:
Prednášajúci: Prof. V. Kvasnička {kvasnic@cvt.stuba.sk}a Doc. J. Pospíchal {pospich@cvt.stuba.sk}
Katedra matematiky CHTF STU,
Semester: zimný
Rozsah: 2-0-0
1. Základné pojmy evolučných algoritmov – optimalizačný problém a jeho kódovanie, binárna reprezentácia reálnej premennej, transformácia spojitého optimalizačného problému na binárny optimalizačný problém.
2. Horolezecké (hill climbing) algoritmy – elementárne stochastické optimalizačné algoritmy, slepý algoritmus a horolezecký algoritmus, horolezecký algoritmus s učením, metóda zakázaného hľadania (tabu search), evolučné programovanie.
3. Genetický algoritmus – darvinovská evolúcia v živej prírode, základné pojmy, populácia a sila (fitness) chromozómov, kríženie chromozómov, implementácia genetického algoritmu, teória genetického algoritmu, Hammingova bariéra, ”messy” chromozómy, paralelná implementácia genetického algoritmu.
4. Genetické programovanie – základné pojmy z teórie grafov, koreňové stromy a Readov kód, symbolická regresia, rekonštrukcia stromov s požadovanými vlastnosťami, kódovanie funkcií pomocou acyklických orientovaných grafov.
5. Simulované žíhanie – základné pojmy, vzťah k štatistickej fyzike, paralelná implementácia.
6. Kombinatoriálne optimalizačné problémy – klasifikácia, základné úlohy z teórie grafov a operačného výskumu, špecifikácie operátorov mutácie a kríženia pre kombinatoriálne optimalizačné problémy.
7. Evolučné stratégie – historické poznámky, stratégia (1+1) - jeden rodič a jeden potomok, distribúcia pravdepodobnosti, generovanie náhodných čísel, viacčlenné stratégie a kovariancie, súvislosti s evolučným programovaním.
8. Neurónové siete – klasifikácia neurónových sietí, neurónové siete s dopredným šírením, rekurentné neurónové siete, parametrická adaptácia neurónových sietí pomocou gradientovej optimalizačnej metódy, adaptácia neurónových sietí ako stochastický optimalizačný problém, štrukturálna adaptácia neurónových sietí pomocou evolučných algoritmov.
9. Umelý život – definície života a umelého života, umelá inteligencia a multiagentové systémy, kognitívne aparáty agentov, darvinovská evolúcia multiagentových systémov, emergencia kooperatívnych vlastnosti. Celulárne automaty, evolúcia pravidiel, vznik komplexných javov. Kooperácia, súťaženie, altruizmus, dilema väzňov a tragédia spoločného. Emergencia zložitosti, vznik života evolúciou neživého.
10. DNA výpočty – základné pojmy z molekulovej biológie, štruktúra a vlastnosti DNA, teoretické modely výpočtového procesu, experiment L. Adlemana s hľadaním hamiltónovskej cesty v orientovanom grafe pomocou DNA, DNA počítače in vivo.
Literatúra:
1. V. Kvasnička, J.Pospíchal a P. Tiňo: Evolučné algoritmy, STU Bratislava 2000..
2. T. Bäck: Evolutionary Algorithms in Theory and Practice - Evolutionary Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford, UK, 1996.
3. Z. Michaliewicz: Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag, Berlin, 1992.
4. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone: Genetic Programming – An Introduction. Morgan Kaufmann Publishers, San Francisco, 1998.
Charles Darwin "On the Origin of
Species" (doc)
Úvodná kapitola z knihy "Evolutionary Design by Computers", editor Peter J.
Bentley
ISBN 1-55860-605-X, domovská stránka knihy
je na adrese
http://www.mkp.com/books_catalog/1-55860-605-x.asp
text kapitoly pdf.
Tutoriál od Prof. Hans-Paul Schwefel "On
Natural Life's Tricks to Survive and Evolve"
Tutorial od Prof. John Koza (University of
Stanford) "Genetic Programming: Biologically
Inspired Computation that Creatively Solves Non-Trivial Problems"
(pdf)
Tutorial od Prof. Darrell Whitley "A
Genetic Algorithm Tutorial" (pdf)
Predbežné texty ku knihe "Evolučné
algoritmy"
Jednotlivé kapitoly môžu slúžiť ako
základný text prednášky, kde sú uvedené aj príklady na precvičenie.
Obsah
Kapitola 1- Úvodné poznámky (ps.zip
alebo pdf)
Kapitola 2 - Základné pojmy evolučných
algoritmov (ps.zip
alebo pdf)
Kapitola 3 - Horolezecké algoritmy (ps.zip
alebo pdf)
Kapitola 4 - Genetické algoritmy (ps.zip
alebo pdf)
Kapitola 5 - Genetické programovanie (ps.zip
alebo pdf)
Kapitola 6 - Simulované žíhanie (ps.zip
alebo pdf)
Kapitola 7 - Kombinatoriálne optimalizačné
problémy (ps.zip
alebo pdf)
Kapitola 8 - Evolučné stratégie (ps.zip
alebo pdf)
Kapitola 9 - Umelý život (ps.zip
alebo pdf)
Kapitola 10 - Neurónové siete (ps.zip
alebo pdf)
1. prednáška
Všeobecné predstavy o darvinovskej evolúcii, chápanie evolúcie ako algoritmu, význam učenia v evolúcii (Baldwinov efekt), mémy (Dawkins) ako nosič informácie pre chromozómy.
Priesvitky k prednáške (ps.zip alebo pdf)
Pozri tiež pripravovaný článok "Umelá evolúcia" (ps.zip alebo pdf)
2. prednáška
Binárne kódovanie reálnej premenne, transformácia spojitého optimalizačného problému na binárny optimalizačný problém. Slepý algoritmus, horolezecký algoritmus (hill climbing), horolezecký algoritmus a učením, metóda zakázaného prehľadávania (tabo search), evolučné programovanie. Predmet tejto prednášky odpovedá 2. a 3. kapitole knihy "Evolučné algoritmy".
Priesvitky k prednáške (ps.zip alebo pdf)
3. prednáška
Genetické algoritmy, "messy" genetický algoritmus, paralélny genetický algoritmus. Základné princípy genetických algoritmov.
Priesvitky k prednáške (ps.zip alebo pdf)
4. prednáška
Teória genetických algoritmov.
Priesvitky k prednáške (ps.zip alebo pdf)
5. prednáška
Genetické programovanie, symbolická regresia.
Priesvitky k prednáške (ps.zip alebo pdf)
6. prednáška
Simulované žíhanie.
Priesvitky k prednáške (ps.zip alebo pdf)
7. prednáška
Kombinatoriálne optimalizačné problémy. Úloha obchodného cestujúceho, Number Partitioning Problem.
Priesvitky k prednáške (ps.zip alebo pdf)
8. prednáška
Evolučné stratégie.
Priesvitky k prednáške (ps.zip alebo pdf)
9. prednáška
Umelý život.
Priesvitky k prednáške (ps.zip alebo pdf)
10. prednáška
Neurónové siete.
Priesvitky k prednáške (ps.zip alebo pdf)
11. prednáška
Swarm výpočty.
Priesvitky k prednáške (ps.zip alebo pdf)
12. prednáška
Podrobnosti o skúške, témy "case studies" (ps.zip alebo pdf)
Témy "case studies" z predmetu "Evolučné
algoritmy"
Skúška z prednášky "Evolučné algoritmy" bude udelená na základe vypracovanej "case study" z oblastí uvedených nižšie. "Case study" je písomná práca v rozsahu približne 7-10 strán (page size A4, font size 10, line spacing single), obsahuje teoretický popis použitej metódy a získané numerické výsledky, ktoré sú ilustrované tabuľkami a grafmi. Integrálnou prílohou "case study" bude aj fungujúci program, pomocou ktorého bola vypracovaná jej aplikačná časť.
Skúška sa uskutoční na Katedre matematiky FCHPT STU vždy v piatok v intervale od 9-11 hod., na skúšku je potrebné sa prihlásiť na t.č. 59325104/59325294, alebo emailom {kvasnic,pospich}@cvt.stuba.sk
Každá téma z "case study" bude mocť byť použitá iba jedným študentom, na tému sa treba prihlásiť a postupné "prideľovanie" bude prebiehať podľa pravidla “kto skôr príde..”. Podstatou skúšky bude diskusia o riešenej úlohe a taktiež všeobecné vedomosti z evolučných algoritmov.
Upozornenie: Záujemci o skúšku pošlú e-mailom aspoň jeden deň pred konaním skúšky ako attachment (do 16.00 hod.) vypracovanú "case study" na adresy {kvasnic,pospich}@cvt.stuba.sk , a musia sa uistiť, že sme ich súbor dostali v poriadku (pozor, musí byť do 2 MB), alebo sa dohodnú na inom spôsobe dodania súboru. Súbor má byť v PS alebo v PDF formáte, pričom "čitateľnosť" súborov nech je prekontrolovaná pomocou GhostView-u alebo AcrobatReader-u. Práce budú vystavené na tejto stránke pre poučenie budúcich generácií.
Ako vytvoriť PS dokument pomocou MS WORD-u: Priradí sa poscriptovská tlačiareň a nechá sa tlačiť do súboru (print to file), takto vznikne PS súbor, je potrebné ho ešte prekontrolovať pomocou GhostView, či sa vytvoril korektne.
Téma 1. Horolezecký algoritmus pre funkciu f(x) definovanú v
pre xÎ [-10,10]. Premenná x je binárne reprezentovaná tak v štandardnom kódovaní, ako aj v Grayovom kódovaní. Pokúste sa optimalizovať parametre c0 a Pmut tak, aby ste skoro so 100% istotou dostali globálne minimum s čo najmenším počtom iteračných krokov.
(tému vypracuje
Patrik Sucansky, p3k@goatrance.com)
Téma 2. Metóda zakázaného hľadania aplikovanú na TSP (riešenie obchodného cestujúceho), pričom cesta nech je vyjadrená pomocou permutácie. Transformačné operátory tÎ S sú realizované ako permutácie transpozícií dvoch objektov. Operátor tij pôsobí na permutáciu P ako transpozícia objektov i a j,
pre i<j. Ako testovací príklad použite ortogonálnu mriežku bodov - miest, kde sa vzdialenosť počíta pomocou Hammingovej metriky (pozri príklad 8.2). Pokúste sa o optimalizáciu veľkosti "s" zakázaného zoznamu T (tabu listu) a maximálneho počtu iterácií timemax pre rôzne hodnoty N dimenzie ortogonálnej mriežky bodov, N=4,5,...,10, tak , aby ste s 95% pravdepodobnosťou dostali korektný výsledok. Podobné úvahy vykonajte aj pre suboptimálne výsledky, ktoré sa líšia len niekoľko málo jednotiek od optimálneho výsledku.
(tému vypracuje
Ľudovít Hamaj, 9hamaj@st.fmph.uniba.sk)
Téma 3. Metóda zakázaného hľadania aplikovaná na úlohu N dám na šachovnici. Hľadá sa také umiestnite N dám na šachovnici N´ N tak, aby v každom riadku, stĺpci a diagonále bola umiestnená práve jedna dáma (t.j. neexistuje kolízne postavenie medzi dámami). Zložitosť riešenia tohto problému silne závisí od zvolenej reprezentácie postavenia dám na šachovnici. Jednoduchá reprezentácia postavenia dám je pomocou permutácie P=(p1, p2, ..., pN). Potom dámy na šachovnici sú umiestnené takto: v 1. stĺpci na p1-tom riadku, v 2. stĺpci na p2-tom riadku, atď. Táto jednoduchá reprezentácia rozmiestnenia dám na šachovnici pomocou permutácií má výhodu v tom, že v každom stĺpci a riadku šachovnice sa nachádza práve jedna dáma. Každej permutácii N objektov priradíme celé nezáporné číslo col(P), ktoré odpovedá počtu diagonálnych kolízií. Riešenie problému je potom taká permutácia P, ktorá má nulový počet kolízií, col(P)=0. Funkcia col(P) je určená vzťahom
kde d (i,j) je Kroneckerovo delta, d (i,j)=1, pre i=j, d (i,j)=0, pre i¹ j.
(tému vypracuje
XXX, XXX@st.fmph.uniba.sk)
Téma 4. Genetický algoritmus pre funkciu
pre xÎ [-10,10]. Premenná x je binárne reprezentovaná tak v štandardnom kódovaní, ako aj v Grayovom kódovaní. Pokuste sa nájsť minimálnu veľkosť populácie a také hodnoty pravdepodobností Pcross a Pmut, aby ste skoro so 100% istotou dostali globálne minimum s predpísaným minimálnym počtom krokov.
(tému vypracuje
Marek Dorsic, marek.dorsic@st.fmph.uniba.sk)
Téma 5. Genetický algoritmus pre úlohu obchodného cestujúceho na ortogonálnej štvorcovej mriežke. Použite oba prístupy na kódovanie cesty, tak priamo pomocou permutácie, ako aj pomocou binárneho reťazca (pozri cvičenie 7.1 z kapitoly Kombinatoriálne optimalizačné problémy). Porovnajte efektívnosť týchto dvoch rôznych prístupov.
(tému vypracuje
Jan Michalička, jan.michalicka@st.fmph.uniba.sk)
Téma 6. Genetický algoritmus pre úlohu Number Partitioning Problem. Použite oba prístupy na kódovanie zobrazenia p , tak priamo pomocou N-tice celých čísel, ako aj pomocou binárneho reťazca (pozri cvičenie 7.1 z kapitoly Kombinatoriálne optimalizačné problémy). Porovnajte efektívnosť týchto dvoch rôznych prístupov.
(tému vypracuje
Miloš Hasan, milos.hasan@inmail.sk)
Téma 7. Algoritmus simulovaného žíhania pre úlohu obchodného cestujúceho na ortogonálnej štvorcovej mriežke. Použite oba prístupy na kódovanie cesty, tak priamo pomocou permutácie, ako aj pomocou binárneho reťazca (pozri cvičenie 7.1 z kapitoly Kombinatoriálne optimalizačné problémy). Porovnajte efektívnosť týchto dvoch rôznych prístupov.
(tému vypracuje
Juraj Ursíny, 8URSINY@turing.fmph.uniba.sk)
Téma 8. Evolučná stratégia (1+1). Metódu aplikujete na hľadanie globálneho minima funkcie
pre xÎ [-10,10], ktorá je zovšeobecnená pre viacrozmerný prípad takto
Použite pravidlo zmeny s 1/5 úspešnosti a nakreslite graf, kde na vodorovnej osi bude počet generácií a na zvislej aktuálna funkčná hodnota rodiča.
(tému vypracuje
XXX, XXX@st.fmph.uniba.sk)
Téma 9. Genetické programovanie: Implementuje genetický algoritmus (pozri algoritmus 3.5) tak, že chromozómy budú určené ako Readove lineárne kódy s ohodnotením vrcholov podľa (5.18-19). Toto ohodnotenie nech je vykonané tak, že syntaktické stromy budú odpovedať Boolovským funkciám (t.j. funkčné vrcholy sú operácia and, or, xor, a not, a terminálové vrcholy sú jednotlivé Boolovské premenné). Účelová funkcia (5.24) nech je rozšírená o pokutový člen, ktorý bude preferovať syntaktické stromy s menším počtom vrcholov
kde a je malá kladná konštanta a symbol |t| vyjadruje počet vrcholov v strome t. Modifikujete napísanú implementáciu tak že bude odpovedať horolezeckému algoritmu. Porovnajte efektívnosť týchto troch rozdielnych metód pri konštrukcii funkcií, ktoré reprodukujú predpísanú regresnú tabuľku.
(tému vypracuje
Martin Homola, homola@adela.sk)
Téma 10. Použitie genetického algoritmu na adaptáciu neurónovej siete. Implementujte neurónovú sieť s dopredným šírením signálu, ktorá obsahuje jednu vrstvu skrytých neurónov a so sigmoidálnou prechodovou funkciou. Použitím genetického algoritmu adaptujte túto neurónovú sieť (t.j. váhy a prahové koeficienty) siete tak, aby s čo najmenšou chybou produkovala rôzne Boolovské funkcie, pričom z numerických dôvodov namiesto hodnoty Boolovských premenných 0 a 1 budeme brať 0.1 a 0.9.
(tému vypracuje
Matúš Navarčík, Matus.Navarcik@st.fmph.uniba.sk)
Téma 11. L-systém (tvorba "kríka") je daný nasledovnými pravidlami: (1) štartovný bod F, (2) produkčné pravidlo F ® F [+F][-F], kde F znamená "nakresli čiaru" (začíname kolmou čiarou z počiatočného bodu so súradnicami 0,0 do koncového bodu so súradnicami 0,10). Symbol [ znamená zapamätať si súradnice koncového bodu a zodpovedajúcu zmenu súradníc
dx= x koncový - x počiatočný , dy= y koncový - y počiatočný
Symbol ] znamená vrátiť sa na zapamätané súradnice bodu a zodpovedajúce dx a dy, symbol + znamená otočiť sa doľava (použili sme prepis pre súradnice nového bodu
x koncový = x počiatočný + 0.7 (cos(40o) dx - sin(40o) dy)
y koncový = y počiatočný + 0.7 (sin(40o) dx + cos(40o) dy)
Symbol - znamená otočiť sa doprava (použili sme prepis pre súradnice nového bodu
x koncový = x počiatočný + 0.7 (cos(33o) dx + sin(33o) dy)
y koncový = y počiatočný + 0.7 (sin(33o) dx - cos(33o) dy)
Vytvorte obrázok trojrozmerného stromčeka, kde jednotlivé vetvy sa nebudú skracovať faktorom 0.7, ale náhodným číslom s gaussovským rozložením pravdepodobnosti so stredom napr. v 0.7, kde aj hrúbka kmeňa sa bude zmenšovať a bližšie vetvy budú vyzerať hrubšie, kde uhly vetiev v priestore tiež budú dané náhodne. Vyskúšajte aj iné produkčné systémy, napr. počet vetiev bude daný náhodným číslom od 2 do 3.
(tému vypracuje
Richard Bartelt, Richard.Bartelt@st.fmph.uniba.sk) (ps.zip pdf
, dokumentacia projektu zip)
Téma 12. Namodelujte priebehy množstva dravcov a koristi ukázané v nasledujúcich obrázkoch podľa rovníc
dN1(t)/dt = N1(r1- b1N2 )
dN2(t)/dt
= N2(- r2+b2N1
kde N1(t) je počet kusov koristi (alebo hostiteľa) a N2(t) je počet kusov dravcov (alebo parazitov) v čase t. Predpokladáme, že za neprítomnosti dravcov sa korisť rozmnožuje rýchlosťou r1, zatiaľ čo za absencie koristi dravci hynú rýchlosťou r2. Nech b1 zodpovedá schopnosti dravcov požierať korisť a b2 vplyvu množstva koristi (a teda nasýtenia dravcov) na ich rozmnožovanie. Nech r1= 1.5, b1=0.1 r2= 0.25 b2= 0.01 a N1(0)= 15 a N2(0)=20. Znázornite priebeh, nie však pomocou klasického riešenia pomocou diferenciálnych rovníc, ale vytvorením stochastického modelu, kde množstvá dravcov a koristi a ich prírastky/úbytky budú dané celými číslami; v prípade, že zmena nie je vyjadrená celým číslom, berte neceločíselnú časť ako pravdepodobnosť a rozhodnite o zaokrúhlení nahor/nadol na základe porovnania tejto pravdepodobnosti s náhodným číslom z intervalu (0,1) – použite analógiu algoritmov 10.1 a 10.2 z kapitoly o umelom živote. Numericky modelujte a diskutujte pravdepodobnosť zániku jedného či obidvoch druhov v závislosti na počiatočných množstvách jedincov a na ostatných parametroch.
Prvá závislosť ukazuje oscilácie počtu dravcov a množstva koristi v čase, druhý obrázok je trajektóriou sústavy diferenciálnych rovníc (10.4).
(tému vypracuje
Tomas Nalevajko, nalevajk@dcs.fmph.uniba.sk)
Téma 13. Vytvorte program pre animáciu pohybu žubrienok (pozri priložený obrázok), kde veľký kruh je prekážka, "hlavička žubrienok" predstavuje umiestnenie žubrienky v dvojrozmernom priestore a dĺžka a smer chvostíka určujú rýchlosť a smer pohybu žubrienky. Počítačový model sa má riadiť troma základnými vlastnosťami:
· vyhýbať sa kolízii s okolitými jedincami
· prispôsobiť rýchlosť okolitým jedincom
· snažiť sa držať sa blízko okolitých jedincov
Každá žubrienka pritom vidí iba svojich najbližších susedov. Pridajte "dravca", teda inofarebnú žubrienku, ktorá sa pohybuje smerom k ostatným žubrienkam a ktorej sa žubrienky snažia vyhýbať.
Zobrazenie ”žubrienok” (čiernych bodov s ”chvostíkom”), ktoré sa pohybujú smerom vpravo nahor a vyhýbajú sa prekážke (kruhu).
(tému vypracuje
Ladislav Petrus, ladislav.petrus@rt.sk)
Téma 14. Standing Ovation. (Homework from Miching State University, see homepage http://zia.hss.cmu.edu/econ/homework95). Consider the following situation: Agents are seated in an auditorium listening to a brilliant economics lecture. At the end of the talk, after wiping away the tears, the applause begins, and perhaps a standing ovation ensues.
Model, using whatever techniques you desire, the process of a standing ovation.
Suggest some in nature appearing scenarios that could be usefully modeled using such a process.
(tému vypracuje
Milada Kovárová, milada.kovarova@st.fmph.uniba.sk)
Téma 15. Použite simulované žíhanie pre riešenie pohybu koňa na šachovnici, kde zo zadaného poľa máte prebehnúť všetky ostatné poľa, pričom na každé pole vstúpite iba raz. Ako druhú časť úlohy riešte rovnaký problém s podmienkou, že sa kôň musí vrátiť naspäť. Pri riešení použite perturbáciu (mutáciu) toho druhu, že počiatok postupnosti polí do náhodne vybraného počtu polí skopírujete do nového riešenia a zvyšok vygenerujete. Úloha sa dá riešiť aj spätným prehľadávaním, ale len pre malé prípady.
(tému vypracuje
Martin Lang, 9lang@pauli.fmph.uniba.sk)
Pakovanie je klasickým problémom v optimalizácii. Predpokladajme, že máme nákladný voz schopný uviezť akýkoľvek počet krabíc, pokiaľ ich celková váha neprekročí W. V skladisku máte nelimitované množstvo rozličných typov tovaru. Každý typ položky i má váhu wi a hodnotu vi . Váš problém je určiť, ktorou kombináciou objektov dosiahnete najvyššiu hodnotu bez prekročenia maximálnej povolenej celkovej váhy. Napríklad, keď váhy a hodnoty sú
Položka |
váha |
hodnota |
|
pomaranče |
3 |
5 |
|
knihy |
8 |
11 |
|
potom náklaďák s maximálnou nosnosťou W=200 môže viezť:
pomaranče |
knihy |
váha |
hodnota |
30 |
13 |
194 |
293 |
40 |
10 |
200 |
310 |
50 |
6 |
198 |
316 |
60 |
2 |
196 |
322 |
Najlepšia stratégia je naložiť toľko krabíc s pomarančmi ako sa len dá a
zvyšok zaplniť knihami. Vyriešte problém pre väčší počet položiek s náhodne
definovanými hodnotami a váhami pomocou genetického algoritmu, s obmedzeným
počtom niektorých položiek, vymyslite si vlastnú reprezentáciu problému a k nej
odpovedajúce chromozómy, mutácie a kríženie, porovnajte váš algoritmus s
kanonickým genetickým algoritmom, a použite pokutovaciu funkciu. (Adaptované z
http://www.epcc.ed.ac.uk/epic/ga/intro.html)
(tému vypracuje
Michal Hitka, michal@hitka.sk)
Rozvrhovací problém je intenzívne v oblasti operačného výskumu už veľa rokov. Jednou z formulácií problému je predpokladať, že máme množinu N úkolov ti, i=1..N, každý z nich vyžaduje niektoré zo zdrojov rj po zadaný čas timei,rj. Našou úlohou je nájsť najrýchlejší rozvrh pre celkové splnenie týchto úkolov, pričom zdroje môžu byť využívané súčasne, ale každý zdroj iným úkolom. Na poradí zdrojov pre úkol nezáleží. Vyriešte problém pre väčší počet úkolov s náhodne definovanými požadovanými zdrojmi a časmi pomocou genetického algoritmu, vymyslite si vlastnú reprezentáciu problému a k nej odpovedajúce chromozómy, mutácie a kríženie, porovnajte váš algoritmus s kanonickým genetickým algoritmom. Použite pokutovaciu funkciu pri nesplnení ohraničení.
(tému vypracuje
Peter Rumpler, peter.rumpler@st.fmph.uniba.sk)
Téma 18. Evolúcia sortovacích sietí
(max. fitness = 120)
Vodorovné línie označujú pozície v sekvencii, vertikálne spoje dvoch horizontálnych línií reprezentujú operáciu výmeny zle usporiadanej dvojice (tzv. komparátor). Komparátor porovnáva dve čísla z pozícií určených horizontálnymi líniami, a keď sú zle usporiadané, prehodí ich. vzájomné pozície. Keď chceme vzostupnú sekvenciu a "horné" číslo je väčšia ako "dolné", prehodíme ich navzájom.
· Príklad: pre hodnoty 4,1,3,2 získaj 1,2,3,4 alebo 4,3,2,1 ako výstup: vertikálna čiara označuje výmenu hodnôt medzi horizontálnymi čiarami, keď je prvá hodnota väčšia/menšia ako tá druhá.
· Vyskúšaj: veľkosť populácie=10, kríženie=10%, mutácie=0%
· Vyskúšaj: veľkosť populácie =10, kríženie =10%, mutácie =1% (200 generácií)
· Vyskúšaj: veľkosť populácie =10, kríženie =80%, mutácie =1% (150 generácií)
· Vyskúšaj: veľkosť populácie =50, kríženie =90%, mutácie =1%
Príklad triediacej siete pre testovací príklad - sekvenciu (4,1,3,2), ktorá je korektne usporiadaná na sekvenciu (1,2,3,4). Táto sieť môže byť popísaná ako sekvencia komparátorov [1:2],[3:4],[1:3],[2:4],[2:3], kde čísla v zátvorkách sú indexy spojených línií, na ktorých výmena prebieha.
GA vytvára napr. pre prípad zoradenia piatich čísel 5-vstupové sortovacie siete obsahujúce najviac 9 porovnaní-výmen. Existuje 120 fitness prípadov (všetkých 5! permutácií sekvencie 1,2,3,4,5), a korektná sieť ich všetky zoradí bezchybne. Vyskúšaj koevolúciu pre zložitejšie prípady, kde sekvencie hodnôt sa vyvíjajú nezávisle a sú ohodnotené tým lepšie, čím viac sietí na nich zlyháva.
(tému vypracuje
Peter Kozej, 9kozej@pauli.fmph.uniba.sk)
Téma 19. Genetické programovanie pre mravca hľadajúceho cestu
Genetickým programovaním vytvoriť "program" pre mravca pomocou súboru pravidiel. Mravec má zberať potravu rozsiatu na nie celkom súvislej dráhe umiestnenej na toroidálnej mriežke, pričom má iba obmedzené senzory (teda vidí iba na vedľajšie bunky mriežky). Mravec má za daný počet časových krokov zozberať čo najviac potravy. V detailoch zadania sa možno inšpirovať na
http://www2.informatik.uni-erlangen.de/~jacob/Evolvica/GP/Java/html/ant/ant.html).
Úlohou je vygenerovať pravidlá a) pre vlastnú náhodne vygenerovanú dráhu s podobnými vlastnosťami ako je John Muir Trail z vyše uvedenej WWW stránky. b) Vyskúšať vygenerovanie pravidiel, ktoré by platili pre viac dráh súčasne.
(tému vypracuje
Tomáš Potok, potok@kopernik.cc.fmph.uniba.sk)
20. Simulované žíhanie pre kombinatorickú optimalizácia umiestenia prostriedkov
Tento problém QAP (quadratic assignment problem) podľa C.E. Nugent, T.E. Vollman, and J. Ruml, "An experimental comparison of techniques for the assignment of facilities to locations," Operations Research 16 (1968) pp. 150-173. 15 dielní má byť rozmiestnených do 15 pozícií. Cieľom je minimalizovať cenu transportu dodávok medzi rozmiestnenými oddeleniami. Cena transportu je (veľkosť dodávky * vzdialenosť), kde veľkosť dodávky aj vzdialenosť sú symetrické u ktorejkoľvek dvojice oddelení. V dolu uvedenej tabuľke je veľkosť dodávky medzi dieľňami (dolná polovina matice) a vzdialenosť možných umiestnení dieľní (horná polovina matice). Optimálne riešenie je 575 (alebo 1150 pre dvojnásobok tokov).
(tému vypracuje
Ján Senko, JanoS@ksp.sk)
Vypracované "case studies" v šk.r. 2001/2002
viď http://math.chtf.stuba.sk/evol/prednaska01.htm naspodku strany
Vypracované "case studies" v
šk.r. 2000/2001
viď http://math.chtf.stuba.sk/evol/prednaska00.htm naspodku strany
Vypracované "case studies" v šk.r. 1999/2000
viď http://math.chtf.stuba.sk/evol/prednaska99.htm naspodku strany